23
24
25
26
27
28
29
30

32
33

35

36

38
39
40
41
42
43
44
45
46

47

Supplementary Materials: R°SFD : Improving Single Image
Reflection Removal using Semantic Feature Dictionary

Anonymous Authors

1 OVERVIEW

This supplementary is organized as follows. In Section 1, we pro-
vide implementation details of the proposed SFDNet architecture.
In Section 2, we provide an analysis of the network computational
complexity. In Section 3, we detail the training details for RAFENet
and SFDNet. In Section 4, we provide an ablation study to analyse
the impact of the number of images in the semantic feature dic-
tionary (SFD). In Section 5, we provide a detailed analysis of the
reflection aware features extracted by the RAFENet. In Section 6,
we describe how to extended our algorithm to a user-in-the-loop ap-
proach. In Section 7, we provide some results on the similar images
extracted by the proposed Coarse Semantic Search (CSS) module.
We provide sample images from our dataset in Section 8 and some
qualitative comparisons against state-of-the-art methods in Section
9.

2 NETWORK IMPLEMENTATION DETAILS

In this section, we provide additional details regarding the imple-
mentation of the proposed SFDNet. The proposed SFDNet architec-
ture is shown in Fig. 1 for reference.

2.1 Encoder

The encoder consists of 2 Conv-Batchnorm-ReLU layers of stride
1 followed by 3 Conv-Batchnorm-ReLU layers of stride 2. All the
convolutions used in the architecture have a kernel size of 3 X 3.
Each of the stride-1 convolutions have 32 output channels. The
stride-2 convolutions have output channel sizes of 64, 128 and 256
respectively.

2.2 Decoder

The decoder consists of 3 Upsample-Conv-Batchnorm-ReLU layers
followed by 2 Conv-Batchnorm-ReLU layers. We use bilinear inter-
polation for upsampling. All the convolutions have stride 1 and a
kernel size of 3 X 3. The first 3 convolutions have output channel
sizes of 128, 64 and 32 respectively. The subsequent convolutions
have output channel sizes of 32 and 3 respectively.

2.3 Residual Convolution Block (RCB)

Each of the RCB consists of 2 Conv-Batchnorm-Relu layers of stride
1, kernel size 3 x 3 and output channel size of 256. The input to the
RCB is added back to the output of the RCB.

2.4 Semantic Transfer Block

A schematic of the ST module is shown in Fig. 1. Let f;;, denote the
matched feature matrix ¥, reshaped back to H X W X C dimension.
We first concatenate the input features (f) and f;, along the channel
dimensions. This is passed through a convolutional block consisting
of two conv-batchnorm-relu layers. Each of the convolutions have
a kernel size of 3 X 3 and 256 outputs channels each. A gated

Feat_1 Dict Feat_2 Dict
[ |

Pretrained RAFENet (1 l SFDNet A

GE L

Output
Slrlde 2

Decoder

Residual Blocks

( Index

. ‘ Conv 1x1
Semantic Input —

Transfer Feature Map|
I Upsample- Conv-Batchnorm-

ST
Relu » [
Matched
Feature Search e m e fe_aﬂ”_e_""_aE ________________________ !
L )

Figure 1: Semantic Feature Dictionary Network (SFDNet). The
input is first passed through the pre-trained RAFENet. Next,
the Feature Search (FS) module searches for the most similar
features from the SFD (Feat; and Feat, dicts) for semantic
transfer.

[ Conv-Batchnorm-Relu

skip connection consisting of (1 X 1) convolution with 256 output
channels is provided from the input to the output. The resultant
feature map is then added back to f to learn the semantic transfer
in a residual manner.

3 NETWORK COMPLEXITY ANALYSIS

In this section, we analyze the complexity of various components of
the proposed method during inference. The VGG features required
for Coarse Semantic Search (CSS) and the RAFE features are pre-
computed for all the images in the image database. Since these are
computed only once, their computations are asymptotically negli-
gible over a large number of inferences. Hence we do not include
this in the complexity analysis. We only analyze the components
that needs to be executed for every inference, i.e, Coarse Semantic
Search (CSS) and SFDNet. We also analyze the computations re-
quired for Feature Search (FS) and Semantic Transfer (ST) modules
within the SFD. These results are summarized in Table 1. We use
Multiply-Accumulate (MAC) operations to quantify the complexity
of our methodology. We report the MAC operations required per
output pixel.

We use 50000 images in our image database for Coarse Semantic
Search (CSS). It can be observed that the computations required
for CSS is negligible comparable to other modules in our pipeline.
This is because every comparison in the CSS modules involves
computing the cosine distance between two 1 X 1000 vectors, re-
gardless of the input image shape. Hence our method is scalable to
handle very large image databases. For example, increasing the size
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Table 1: Complexity Analysis. M denotes million operations.
s = 10 and the image database is of size 50000.

Component/Method MACs/pixel
Coarse Semantic Search (CSS) 47
Feature Search 1.31M
Semantic Transfer 0.47M
Remaining components in SFDNet 1.89M
Total Computations 3.67TM

of the database from 50000 to 1 million would increase the total
computations only by ~0.02 %.

It can also be seen that Feature Search module accounts for
~ 30% of the total computations required for the model. These
values are computed for s = 10, where s denotes the number of
similar images selected from the image database. Increasing the
value of s further would further increase the computations, with
minimal improvement in accuracy of the model. Hence we used
s = 10 for an optimal trade-off between computations and accuracy.

4 TRAINING DETAILS

We train the proposed RAFENet and SFDNet using PyTorch frame-
work on a PC with NVIDIA Tesla V100 GPU and 32 GB RAM. The
specific training details for these networks are detailed below.

4.1 RAFENet

We first pre-train the encoder backbone and the transmission branch
of the RAFENet using synthetic training dataset for 250 epochs.
The coefficient for cycle loss is set to zero and the reflection branch
weights are frozen so that only the transmission branch is trained.
Next, we unfreeze the weights for reflection branch and train for a
further 250 epochs using all the three loss components. We used
ADAM optimizer for training with an initial learning rate of 107>
and a weight decay of 0.025.

4.2 SFDNet

To train the proposed SFDNet, we first load the reflection-aware
feature extractor weights pre-trained using RAFENet into SFDNet.
The SFDNet training consists of three phases. In the first phase, the
SFDNet is trained for 500 epochs using synthetic dataset. Next, we
train the SFDNet for a further 500 epochs using the proposed LSRR
training dataset. During these training phases, we set SFD size (s) to
1, to improve training time. The feature extractor weights are also
fine-tuned in these phases. For the final phase of training, we set
the size of SFD to 10. We also freeze the feature extractor weights so
that SFD can be pre-computed for all the training images, for faster
training. The SFDNet is then trained for another 1000 epochs using
our LSRR training dataset. We used ADAM optimizer for training
with an initial learning rate of 10> and a weight decay of 0.025.

5 IMPACT OF THE SIZE OF SFD

In this section, we analyze the impact of the number of images (s)
used to create the Semantic Feature Dictionary on the output PSNR.

Anonymous Authors

Table 2: Impact of the number of images (s) used to create
SFD. The metrics are averaged over SIR2 [4], Berkeley [6]
and our LSRR datasets. We use s = 10 for an optimal trade-
off between output quality and computational complexity
(shown in bold).

s PSNR (dB) SSIM  Million MACs (per pixel)
1 25.85 0.900 2.49
10 (Ours) 26.26 0.902 3.67
100 26.45 0.908 15.47
SRNet [1] 25.35 0.896 2.96
RAGNet [3] 24.90 0.885 3.28
IBCLN-F [2] 24.36 0.880 4.81
ERRNet-F [5] 23.39 0.872 9.46

We evaluate our model using feature dictionaries extracted from 1,
10 and 100 images respectively, and summarize the results in Table
2. It should be noted that these s images are chosen from our image
database consisting of ~ 50000 images using the Coarse Semantic
Search module (CSS). The cost of computation required for CSS is
also included within Table 2 (million MACs/pixel). From Table. 2, it
can be seen that the model performance increases with s. However,
the gains in PSNR increases only marginally when s is very large
(100), while the computational cost increases significantly. Hence,
we choose s = 10 for an optimal trade-off between PSNR and model
complexity.

We also provide comparisons against the state-of-the-art meth-
ods SRNet [1], RAGNet [3], IBCLN [2] and ERRNet [5] for reference.
It can be seen that our proposed method using s = 1 (one refer-
ence image) outperforms all the methods on both PSNR and SSIM
metrics. Further, it can be seen that the proposed method with
s = 1 has the lowest computational complexity compared to all
the the state-of-the-art methods. Moreover, it can be seen that us-
ing s = 10 significantly outperforms all the methods while having
similar computational complexity as that of RAGNet [3].

6 ANALYSIS OF RAFE FEATURES

In this section, we provide a more detailed analysis of the impact of
reflection-aware (RAFE) features. First, we conduct an experiment to
analyze the ability of our proposed RAFENet to extract reflection-
aware features across varying strengths of reflections. For this
experiment, we first created synthetic testing sets with varying
reflection strengths using the method proposed by [5]. We vary the
value of blending factor a (Eq. 1, Main Paper) from 0.0 to 1.0 to create
testing sets with varying strengths of reflections. In this experiment,
a lower value of « represent a lower strength of reflection, with 0
representing an image without any reflections. Next, we use the
proposed RAFENet to extract features from the input corrupted
with reflections (I) and and the ground-truth transmission image
(Ir). Let F7 and Fr denotes the features extracted from the input
and ground truth images respectively. Next we define a metric to
measure the reflection invariance of the features as follows:

Drafe = ||F1 - Frll2 (1

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232



233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289
290

Supplementary Materials: RZSFD : Improving Single Image Reflection Removal using Semantic Feature Dictionary

a = 0.0 a = 0.25 a = 0.5
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Figure 2: Reflection Invariance of extracted features. The
features extracted using RAFENet is more reflection aware
compared to the ones extracted using VGG, especially for
higher strengths of reflections (). We also provide sample
images for different values of .

Here ||.||2 denotes the Root Mean Square Error. This metric mea-
sures the distance between features extracted from reflection cor-
rupted input images and the reflection free groundtruth image. If
the network is able to extract features in a reflection-aware manner,
then the features extracted from both the images would be similar.
Hence, a lower metric would correspond to a better ability of the
network to generate reflection aware features. Next, we perform the
same experiment using VGG features. Let D4y denote the measure
of reflection invariance of the features extracted using VGGNet.
The results of this experiment are summarized in Fig. 2. From the
figure, it can be seen that for very low values of « (Eg: 0.01, 0.1
etc) the value of D, is similar to that of Dygg. However, as the
value of & increases, Dygq increases much faster than D, . This
shows that RAFENet is able to extract reflection-aware features
much better than conventional VGG based feature extractors in the
presence of reflections.

We also conduct an experiment to justify our choice of using
Feat_1 and Feat_2 as the reflection aware features. For this experi-
ment, we created models where only Feat_1 or Feat_2 was used as
the reflection aware features. The results are summarized in Table.
3.1t can be seen that the proposed method using both Feat_1 and
Feat_2 is able to generate better results compared to using only
one set of features.

7 TOWARDS A USER-GUIDED APPROACH

Our proposed method can easily be extended as user-guided ap-
proach for reflection removal. In this approach, the user can man-
ually provide one or more reference images to aid the removal of
reflection. This eliminates the need to automatically find similar im-
ages from a database. This would also allow the user to control the

ACM MM, 2024, Melbourne, Australia

Table 3: Analysis of RAFE Features. Evaluated on wildscene
dataset

S1 No. Feature Extractor PSNR SSIM
1 RAFE(Only Feat_1) 26.28 0.9038
2 RAFE(Only Feat_2) 26.15 0.905

Ours RAFE (Feat_1 & Feat_2) 26.62 0.9232

amount of reflection removal by provided different semantic scenes
as a context. An example of this approach is shown in Figures 3
and 4.

In Fig. 3 we show an image example from LSRR dataset, with
four different reference images provided by the user, and the cor-
responding outputs. It can be observed that the image restoration
quality improves with increased semantic similarity. In Fig. 4, we
analyse the impact, if a stereo image captured with the input image
is provided as a reference image. It can be seen that the outputs ob-
tained using a reflection-corrupted stereo reference image is almost
able to match the output quality obtained by using a semantically
similar image as reference. This is because, the reference image
represents the same scene, and the network is able to extract rele-
vant semantic content using the proposed reflection aware feature
extraction.

8 ANALYSIS OF CSS MODULE

In this section, we provide a few image examples of the similar
images retrieved by our Coarse Semantic Search module. These
results are shown in Fig. 5. It can be seen that the CSS module is
able to find images with similar semantic or texture content as that
of the provided input image.

9 LSRR DATASET SAMPLES

We provide some sample images from our proposed LSRR dataset
in Figs. 6 and 7. Our dataset consists of 2650 high resolution im-
ages with real reflections and their corresponding reflection-free
ground truth images. The dataset was captured using a smartphone
in various indoor and outdoor locations and in different lighting
conditions. Our dataset consists of images with strong as well as
weak reflection components for better variability and generaliza-
tion. To the best of our knowledge, the proposed dataset is the
largest dataset consisting of images with real reflection and their
corresponding aligned ground truths.

10 RESULTS

In this section, we provide more comparative results against state
of the art methods. In Figures 8 - 11, we provide comparisons on the
proposed LSRR Dataset. We also provide comparisons on DSLR50
dataset [5] in Fig. 12 - 13 and on Berkeley dataset [6] in Fig.14.
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Figure 3: Reference Similarity Analysis. The network output can be controlled by changing the reference image. It can be seen
that the reflection removal gets better as the similarity of the reference image increases

Figure 4: Stereo Reference Image. A stereo image captured along with the input image is provided as reference image (Top
Row). The restoration quality is almost as good as that obtained using a semantic reference image.

Figure 5: Examples of similar images obtained from the CSS module
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Figure 6: Samples from our LSRR dataset. Left image: Input; Right Image: ground truth
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Figure 7: Samples from our LSRR dataset. Left image: Input; Right Image: ground truth
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Dong et al SFDNet (Ours) Ground Truth

Figure 8: Comparisons against state-of-the-art methods on LSRR outdoor datasets
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Dong et al SFDNet (Ours) Ground Truth

Figure 9: Comparisons against state-of-the-art methods on LSRR outdoor datasets
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Figure 10: Comparisons against state-of-the-art methods on LSRR indoor datasets
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Dong et al SFDNet (Ours) Ground Truth

Figure 11: Comparisons against state-of-the-art methods on LSRR indoor datasets
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Dong et al - SFDNet (Ours) Ground Truth

Figure 12: Comparisons against state-of-the-art methods on ERRNet DSLR50 dataset [5]
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Figure 13: Comparisons against state-of-the-art methods on ERRNet DSLR50 dataset [5]
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Figure 14: Comparisons against state-of-the-art methods on Berkeley dataset [6]
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