When the Sun Goes Down: Repairing Photometric
Losses for All-Day Depth Estimation
SUPPLEMENTARY MATERIAL

Abstract: In this supplementary material, we provide (i) further details about
how we trained and evaluated our networks on the Oxford RobotCar dataset; (ii) a
comparison of the requirements of our method vs. those of existing state-of-the-art
approaches; (iii) additional experiments and discussion relating to our estimation
of ego-motion and lighting changes, and our method’s ability to generalise to an-
other dataset; and (iv) compute time analysis for our method.

1 Training and Evaluation Details

1.1 Network Architecture Details

DepthNet: Our DepthNet architecture is borrowed from our baseline, Monodepth2 [1]. ResNet-18,
after removing the max-pooling and fully connected layers, is used as an encoder, and a sequence of
up-convolution layers is used to decode depth information. Skip connections from the encoder are
used to enrich the local context information in the estimated depth maps. We output single-channel
depth at 4 different scales, having used sigmoid activation functions in the output layers.

MotionNet: Our MotionNet uses a ResNet-18 encoder that is similar to the above, but takes two
images as input. There are three separate decoders attached to this encoder:

1. The MotionNet decoder inputs the features from the last convolutional layer and predicts
the ego-motion of the camera. The MotionNet encoder and decoder are directly borrowed
from Monodepth2 [1].

2. The lighting change decoder is similar to the DepthNet decoder, but without any skip con-
nections. It outputs 2-channel images. We estimate light changes at 4 different scales. No
activation functions are used in the output layers of this decoder.

3. The residual flow decoder is also similar to the DepthNet decoder, but it has skip con-
nections from the MotionNet encoder and outputs 2-channel images at 4 different scales.
Again, no activation functions are used in the output layers.

1.2 Dataset Processing

We evaluated our method’s performance on both day and night sequences from the Oxford Robot-
Car dataset [2]. This dataset was collected over a one-year period by traversing the same route
multiple times, so as to include a variety of different weather and lighting conditions. We used the
six sequences in the 2014-12-09-13-21-02 traversal for our daytime experiments, and the six se-
quences in the 2014-12-16-18-44-24 traversal for our nighttime ones. We cropped the bottom
20% of each image to remove the car hood, and adjusted the camera intrinsics accordingly. We then
filtered each sequence to produce a sub-sequence of keyframes such that each consecutive pair of
keyframes was at least 0.5m apart. We then constructed our training, validation and testing splits
from triplets of images in the original sequence, each centred on one keyframe (at this stage with a
stride of 1). This process had the beneficial side-effect of filtering out most of the images that were
captured when the ego-vehicle was stationary.

There are unfortunately no standard splits for the RobotCar dataset, and moreover the splits chosen
by other methods [3, 4] overlap geographically (see Figure 1(a)). For these reasons, we constructed
our own splits by geographically dividing our triplets (constructed as above) into three daytime sets
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Figure 1: A geographic visualisation of the training and testing splits used by (a) RNW [3] and
ADDS-DepthNet [4], and (b) our method, based on the GPS locations provided with the Oxford
RobotCar dataset [2]. The splits of the methods in (a) clearly suffer from geographical overlap,
whereas ours are explicitly constructed to be geographically disjoint, enabling fairer comparisons
between methods on this dataset going forwards. (Best viewed in colour.)

T’ Method  Abs. Rel.  Sq.Rel. RMSE LogRMSE §<125 §<1.25% §<1.25°

50m RNW [3] 0.180 1.525 6.183 0.259 0.740 0.913 0.962
Ours 0.171 1.481 6.009 0.242 0.758 0.917 0.965
100m RNW [3] 0.185 1.710 6.549 0.262 0.733 0.910 0.960
Ours 0.174 1.637 6.302 0.245 0.754 0.915 0.964

Table 1: The effects of truncating the depths estimated by different methods to different thresholds,
for a maximum evaluation distance of 50m, evaluated over our test set. The methods’ performance
appears significantly better when the estimated depths are truncated to 50m rather than 100m.

and three nighttime sets (see Figure 1(b)). The nighttime splits are comprised of 19, 612 triplets for
training, 2,629 triplets for validation and 4, 559 triplets for testing. The daytime splits comprise
17,790 triplets for training, 6, 693 triplets for testing and 2, 629 triplets for validation. We use the
GPS locations provided with the dataset to ensure that there is no overlap between the training and
testing locations in the city. Our hope in constructing these new splits is that they will help enable
fairer comparisons between methods on this dataset going forwards.

1.3 Training

The networks were trained for 15 epochs using PyTorch. The learning rate was set to 10~%. The
loss function weights A, and )\, (see main paper) were both set to 10~3. We used the popular Adam
optimiser with 81 = 0.9 and 83 = 0.99 to train our network. The residual sparsity regularisation
weight A, was chosen by ablating three different weight values: 0.05, 0.005, and 0.001. We found
0.001 to work the best in terms of RMSE metrics as evaluated on the validation set. The gradient
smoothening weight A\, was directly borrowed from the baseline method Monodepth2 [1].

1.4 Evaluation

For depth evaluation, to avoid redundant computation due to the high camera frame rate, we sub-
sampled the test set to have a 2m frame separation resulting in 709 test images for nighttime and 702
images for daytime. We used the (sparse) LiDAR data provided with the dataset as ground truth for
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Table 2: The error and accuracy metrics from [6] that are used for our depth evaluation in §4.1 of the
main paper. In this, (; denotes the set of pixels at frame ¢ for which ground truth depth is available,
Dy denotes the estimated depth image at frame ¢, and D} denotes the corresponding ground-truth
depth image. The RMSE metrics are reported in metres (m). For the accuracy, we consider three
different thresholds 7, namely 1.25, 1.252 and 1.25%, in line with our baseline method [1]. Note that
we report these as § < 7 for the different thresholds 7 in the main results table.

the evaluation, as no official per-pixel ground truth depth is available. As per common practice, we
used a script from the Oxford RobotCar SDK to reproject LIDAR points from several nearby frames
onto the current test frame to increase the number of points available for evaluation.

Scale: Like other methods trained using only monocular images, our method can only estimate
depth maps up to a scale factor. When reporting results, we scale the predictions of all the methods
using the median value approach suggested in [5].

Metrics: We use the error and accuracy metrics from [6] to evaluate our depth estimation perfor-
mance. The definitions of these metrics are shown in Table 2.

Depth Truncation: Typically, a depth estimation benchmark will specify one or more maximum
distance thresholds, and then, for each such threshold 7, include only pixels whose ground-truth
depth is < 7 in the corresponding depth evaluation. This makes sense, since the intention is to
determine the ability of a method to predict depths up to certain maximum distances.

However, for each 7, most (if not all) existing unsupervised depth estimation methods also truncate
their estimated depth values to 7 (as opposed to e.g. counting pixels whose depth is estimated as
being > 7 as outliers). Unfortunately, this makes far less sense, and can have the unintended side-
effect of biasing the evaluation in their favour. For example, consider a method that estimates a
depth d > 7 for a pixel u whose corresponding ground-truth depth is 7. Without truncation, the
error for this pixel will be |d — 7| >> 0, but with truncation, it will be | min (d, 7) — 7| = 0. In other
words, this practice can lead to low errors wrongly being ascribed to mispredicted pixels, which can
cause the overall error that is reported to be much lower than it otherwise would have been.

To avoid this problem, and as an alternative to explicitly counting outliers, we truncate all estimated
depth values in this paper to a threshold 7" > 7, thus limiting the maximum penalty for each outlier
to at most 7/ — 7 (in practice, we set 7/ = 100m, which is much larger than 7 = 50m, the largest
maximum distance for which we report results). The difference this makes to the evaluation can be
seen in Table 1.

2 Ease-of-Deployment Comparison with State-of-the-Art Approaches

To better understand the relative deployability of our method, we compare it to three state-of-the-art
approaches, namely DeFeat-Net [7], ADDS-DepthNet [4] and RNW [3]. Besides outperforming the
existing models, our method also has several other advantages over them, including easier data and
training requirements, as shown in Table 3.

DeFeat-Net [7] is trained with an additional feature space with pixel-wise contrastive learning,
which is assumed to be illumination and weather invariant. This feature network is simultaneously



Requirement DeFeat-Net [7] ADDS-DepthNet [4] RNW [3]  Ours

No additional features X v v v
No daytime images v X X v
No paired day-night images v X v v
No GAN losses v v X v
Night-only training v X X 4
Works for day and night v v X v

Table 3: Ease-of-deployment comparison of our method with three state-of-the-art approaches

Method tate (M) | Tate (rad) |

Monodepth?2 [1] 0.01317 & 0.01517  0.00036 4 0.00040
DeFeat-Net [7] 0.03760 4+ 0.01990 0.00115 4 0.00129
ADDS-DepthNet [4]  0.01312 + 0.01386  0.00083 £ 0.00061
Ours 0.01310 4= 0.01348  0.00041 4 0.00039

Table 4: A quantitative comparison of our ATE errors to those of Monodepth2 [1], DeFeat-Net [7]
and ADDS-DepthNet [4] on our nighttime test sequence. (The results are in the form mean =+ std.)

learned with the depth and pose networks. We used their pre-trained model to compare against our
method.

ADDS-DepthNet [4] is compared against our method using the pre-trained models released along-
side their code on GitHub. The orthogonality loss proposed in their method requires corresponding
daytime data. It is not possible to train this model with night-only data.

RNW [3] did not release their pre-trained models alongside their code. We retrained their model
with our training data and reported the results. This method uses a GAN-based regularisation loss,
through which they achieve an ~ 93% improvement over the baseline method. To achieve this,
they needed to carefully train a model using daytime images, as the nighttime performance directly
depends on how well the daytime model is trained.

The results reported in their paper are trained with a ResNet-50 model, whereas the model we use
is ResNet-18. When we tried retraining their approach with ResNet-18, we observed a divergence
of training after a few epochs. Training instability is a well-known issue that must be overcome
when working with GANSs, but this does highlight the relative difficulties of making even simple
modifications to a GAN-based system such as RNW in comparison to our own approach. Notably,
in spite of such training difficulties, RNW is the only approach that is very close to our method in
terms of its error and accuracy metrics. However, unlike our method, their model can only be used
for nighttime depth estimation.

3 Ego-Motion Estimation

To evaluate the ability of our method to estimate the ego-motion of the camera, we compare the
absolute trajectory error (ATE) [5, 8] it can achieve on our nighttime test sequence to the ATEs of
three state-of-the-art methods, namely Monodepth2 [1], DeFeat-Net [7] and ADDS-DepthNet [4]
(see Table 4). We also visualise the overall trajectory we estimate and compare it to those of other
methods, as well as the ground truth (see Figure 2). Note that we estimate the ego-motion only up
to scale, as our method uses monocular images during training. Moreover, the scale can drift over
the course of the sequence, as there is no external constraint enforced to keep it constant.

We used the rescaling approach described in [5] for both our quantitative and qualitative pose es-
timation results. In both cases, our proposed method achieves results that are competitive with the
state-of-the-art.
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Figure 2: Comparing the trajectory estimated by our method for our nighttime test sequence to the
trajectories estimated by Monodepth2 [1] and ADDS-DepthNet [4], and to the ground truth.

4 Lighting Change Compensation

In this section, we aim to provide a greater understanding of the lighting change compensation
technique we propose in the main paper by motivating it from first principles.

Recall that at frame ¢, our approach first predicts two per-pixel change images, C; and By, that aim
to capture the per-pixel changes in contrast (scale) and brightness (shift) that occur between frame
t and frame ¢ + 1. It then uses these change images to transform the reconstructed image I, via
IL=C o I} + B; before it is compared with image I.

A natural question to ask about this is: ‘why is this linear transformation an appropriate model of the
lighting changes between frames ¢ and ¢t + 1?’ In this section, we will attempt to provide an answer.

4.1 Theoretical Background

Image Formation: Recall the basic Phong illumination model from Computer Graphics, which
calculates the brightness at a 3D point p in world space when viewed from a direction —V (p):

B(p) = Baka+ka > B ((N(p) - La(p) + ks (Ri(p) - V(p))*) M
lelights

In this, as usual, B, denotes the ambient illumination, B; denotes the brightness of light [,
{ka, ka, ks} denote the {ambient,diffuse,specular} reflection coefficients and k,, the specular ex-
ponent associated with the surface material, N(p) denotes the unit normal to the surface at p, IL; (p)
denotes a unit vector from p towards p;, the position of light /, R, (p) denotes the result of reflecting
L;(p) across N(p), and V (p) denotes a unit vector from p towards the viewer.

The image formation process can then be modelled as

I(u) = f(eV(u)B(p)), 2



in which u is the pixel corresponding to p on the image plane, f denotes the camera response
function, e denotes the exposure time, and V denotes the Vignetting function. This is commonly
simplified (e.g. [9, 10]) by assuming that f is the identity function and that there is no Vignetting
effect, in which case the model simplifies to

I(u) = eB(p). 3)

Further Simplification: For our purposes here, we will simplify this model still further by assuming
that the only illumination in the scene is diffuse, which allows us to approximate B(p) as

B(p)~ka »_ Bi(N(p)-Li(p)). )
lelights
Whilst this assumption is not really true in practice (though the ambient illumination at night is

likely to be negligible), it will significantly simplify our derivation in what follows.

Lighting Change Model: To model the change in lighting between frames ¢ and ¢ + 1 for a 3D
world-space point p that is imaged at pixels u in I; and u’ in I;;1, we can first approximate I;(u)
and I;;1(u’) using our image formation model:

Lw~e ks Y B (N(p)-L"(p))
lelights

L (W) ~ eV kg 3 BUY(R(p) - LV (p)).
lelights

(&)

In this, e denotes the exposure time at frame t, Bl(t) denotes the brightness of light [ at frame ¢

and f;l(t) (p) denotes a unit vector from p towards pl(t), the position of light [ at frame ¢. Note that
both the brightness and the position of each light in the scene are now assumed to potentially vary

with time (e.g. a car headlight will move with the car).

We next observe that both I; and I; 1 are actually 3-channel RGB images, not single-channel inten-
sity images as in the simplest version of the Phong illumination model. In Computer Graphics, this
is commonly handled by assigning a 3-channel RGB colour to each light, thus making each Bl(t) a
3-channel vector. However, it is more physically correct to think of the diffuse reflection coefficient
kq as a 3-channel vector that captures the extent to which different components of white light get
reflected/absorbed by the surface material. Moreover, it will turn out to be possible to eliminate kg4

in this case, and so for our purposes here, we will take this latter view.
To eliminate kg4, it suffices to divide I;(u) by I (u’) via

L) % B (N) - LY (D)
L (W) et41) 2 ictights Bl(tH)(N(P) : IA‘z(Hl)(P))

1 =Ci(u)l, (6)

inwhich 1 = (1,1,1) T € R®. This yields a scalar, C¥ (u), that can clearly be multiplied by 7; 1 (u’)
to approximate I;(u) via C}(u)l;y1(u') = I;(u). Interestingly, since Ij(u) ~ I;1(u’) as per the
definition in the main paper, this means that C} (u)I;(u) =~ I;(u), which we can also write as

L~Croll. (7)
This corresponds to a single-channel lighting change model in which we will aim to compensate for

the lighting changes in I; by simply multiplying the value of each pixel in I] by its corresponding
scaling factor.

4.2 Scale-only Model

Based on the theoretical formulation in the previous sub-section, it makes sense to try to predict a
single per-pixel change image C; for each frame ¢ (using a single-channel variant of the lighting
change decoder described in the main paper) that can take the place of C in Equation 7 and be
used to multiply I] to compensate for lighting changes. The effects of applying such a scale-only
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Figure 3: A qualitative comparison showing the differences in depth estimation performance be-
tween Monodepth2 [1], our scale-only lighting change model (see §4.2) and our scale + shift light-
ing change model (see §4.3). Our final model (which additionally includes the motion compensation
and denoising components) achieves the best overall performance.

lighting change compensation technique to Monodepth2 [1] can be seen in Figure 3, in which it can
be clearly seen that e.g. the sizes of the holes directly in front of the car have been significantly
reduced. Noticeably, however, our scale-only model still struggles to cope with the strong intensity
discontinuities caused by the car headlights in the close-range image region.

4.3 Scale + Shift Model

The intensity transforms are purely linear when using the scale-only model, but they can be straight-
forwardly changed into affine ones by introducing an additional (shift) channel B;. This provides
an extra degree of freedom to the network to learn a suitable intensity transform for each pixel, and,
as shown in Figure 3, results in significant improvements in the estimated depth for the affected
areas. We observed that our affine (scale+shift) model specifically improved depth estimation for
pixels close to the camera that represent textureless road patches illuminated non-uniformly by the
ego-vehicle’s headlights. We hypothesise that given the specific nature of this image region, the
affine model benefits from additional learnable parameters.

5 Generalisation to Another Dataset

To examine our method’s ability to generalise to datasets other than Oxford RobotCar [2], we per-
formed a qualitative evaluation of our model on a number of images from the Once dataset [11]. The
images in question were extracted from sequence 000340 of the Unlabeled medium split subset of
the dataset. It is important to note here that the lighting conditions and geographic location of the
Once dataset are very different from those of Oxford RobotCar. Nevertheless, despite these differ-
ences, our model manages to estimate visually plausible depth maps with sharp structural details for
these images, as shown in Figure 4.
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Figure 4: Qualitative examples showing the performance of our model trained on the Oxford Robot-
Car dataset [2] when tested on images from the Once dataset [11].

Estimated Depth RGB Images

6 Compute Time Analysis

Our inference network (DepthNet) is composed of a ResNet-18 encoder and a U-Net-style decoder.
It has 14.84 million parameters, and its computational complexity, as measured in GMACs (Giga
Multiply Accumulate per second), is 8.58. For a batch size of 1, the model runs at 231 FPS (i.e.
each frame takes roughly 0.00423s) on an NVIDIA A10 GPU, and at 34 FPS (i.e. each frame takes
roughly 0.02887s) on an Intel Xeon Silver 4314 CPU @ 2.40GHz. These numbers were estimated
by averaging over 300 runs. We used the ptflops! library to estimate the GMACs.
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