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A APPENDIX

A.1 PROPERTIES OF EQUIVARIANT MAPS

Theorem 15 (Degree of Freedom of Equivariant Maps). Let a group G act on sets S and T , and
B ⊂ T a base space. Then, a G-equivariant map F : RS → RT can be represented using its
generator as

F [x](t) = FB[g
−1
t · x](PB(t)), (9)

where gt ∈ G is an arbitrary element which satisfies gt · PB(t) = t. Conversely, for an arbitrary
map FB : C(S) → C(B), a map F defined by (9) is an equivariant map whose generator equals FB.

[Proof] . For any x ∈ RS and t ∈ T , the following holds:

FB[g
−1
t · x](PB(t)) = FB[g

−1
t · x](g−1

t · t)
= F [g−1

t · x](g−1
t · t)

= (g−1
t · F [x])(g−1

t · t)
= F [x](t), (10)

where gt ∈ G is an arbitrary element which satisfies gt · PB(t) = t and the third equality follows
from the equivariance of F .

Conversely, for an arbitrary map FB : C(S) → C(B), a map F defined by (9) is an equivariant map
whose generator equals FB as follows:

(g · F [x])(t) = F [x](g−1 · t)
= FB[g

−1
g−1·t · x](PB(g

−1 · t))

= FB[g
−1
g−1·t · x](PB(t))

= FB[(gg
−1
t ) · x](PB(t))

= FB[g
−1
t · (g · x)](PB(t))

= F [g · x](t),

where we used gg−1·t = gg−1
t in the forth equality because (g−1gt) · PB(g

−1 · t) = g−1 · t.
Theorem 15 clarifies the rigidity and flexibility of the class of equivariant maps. That is, equivariant
maps are completely rigid given generators in the sense that the generator determines those. On the
other hand, the generators of equivariant maps are entirely flexible because they have no restrictions
on constructing equivariant maps.

From the following proposition, the distance between equivariant maps is calculated from their
generators.

Proposition 16 (Isometric Restriction). Let a group G act on sets S and T , and B ⊂ T an arbitrary
base space. The restriction RB onto B is isometry from equivariant maps. That is, for two G-
equivariant maps F and F̃ : RS → RT ,

‖F − F̃‖∞ = ‖FB − F̃B‖∞. (11)

[Proof] . We note that, for any base space B ⊂ T , g ∈ G and τ ∈ B,

F [x](g · τ) = FB[g
−1 · x] ◦ PB(τ) = FB[g

−1 · x](τ).
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Thus, ∥∥∥F − F̃
∥∥∥
∞

:= sup
x∈RS

sup
t∈T

∣∣∣F [x](t)− F̃ [x](t)
∣∣∣

= sup
x∈RS

sup
τ∈B,g∈G

∣∣∣F [x](g · τ)− F̃ [x](g · τ)
∣∣∣

= sup
x∈RS

sup
τ∈B,g∈G

∣∣∣FB[g
−1 · x](τ)− F̃B[g

−1 · x](τ)
∣∣∣

= sup
x∈RS

sup
τ∈B

∣∣∣FB[x](τ)− F̃B[x](τ)
∣∣∣

=
∥∥∥FB − F̃B

∥∥∥
∞

.

This completes the proof of Proposition 16.

We immediately obtain the following corollary from Proposition 16.
Corollary 17 (Identity Condition). Let a group G act on sets S and T , and B ⊂ T an arbitrary
base space. Let F and F̃ : RS → RT be G-equivariant maps. Then, F = F̃ if and only if FB = F̃B.

A.2 PROOF OF THEOREM 13

Guss & Salakhutdinov (2019) derived the following theorem in infinite-dimensional settings.
Theorem 18 (Universal Approximation for Continuous Maps by FNNs, Guss & Salakhutdinov
(2019)). Let an activation function ρ : R → R be continuous and non-polynomial. Let S ⊂ Rd

and T ⊂ Rd′
be compact domains. Let F : C(S) → C(T ) be a continuous map. Then, for any

compact E ⊂ C(S) and ϵ > 0, there exist N ∈ N and a two-layer fully connected neural network
ϕE = A2 ◦ ρ ◦ A1 ∈ NFNN(ρ, 2;S, T ) such that A1[·] = W (1)[·] + b(1) : E → C([N ]) = RN ,
A2[·] = W (2)[·] + b(2) : RN → C(T ), µϕE

is the Lebesgue measure, and ‖F |E − ϕE‖∞ < ϵ.

Thus, any continuous function can be approximated by an FNN whose neurons in the hidden layer
is finite. Krukowski (2018) derived the following theorem10.
Theorem 19 (Arzelà-Ascoli Theorem for C0(S), Krukowski (2018)). Let S be a locally compact
Hausdorff space. A subset E ⊂ C0(S) is relatively compact if and only if the following three
conditions hold:

(A1) E is point-wise bounded, i.e. for any s ∈ S , the inequality sup
x∈E

|x(s)| < ∞ holds,

(A2) E is equicontinuous, i.e., for any ε > 0 and s ∈ S , there exists a neighborhood U around
s, for any s̃ ∈ U , the inequality sup

x∈E
|x(s̃)− x(s)| < ε holds,

(A3) E is equivanishing, i.e., for any ε > 0, there exists a compact set K ⊂ S , for any s /∈ K,
the inequality sup

x∈E
|x(s)| < ε holds.

Note that E in Theorem 13 is relatively compact since any compact set is relatively compact in an
arbitrary metric space, and thus, we can use Theorem 19.

Let L > 0 be the Lipschitz constant of F . By (A3) of Theorem 19, for any ϵ > 0, there exist a
large r > 0 and a small δ > 0, for any r̄ ≥ r − δ, a compact ball Br̄ := {x ∈ S|‖x‖Rd ≤ r̄} ⊂ S
centered at 0 ∈ Rd with radius r̄ satisfies

sup
x∈E

‖x− x · 1Br̄‖∞ <
ϵ

4L
, (12)

where 1Br̄
is the indicator function on Br̄. Here, although x · 1Br̄

approximates x, it may not be
included in C0(S). Then, we can take a continuous approximation function 1̃Br ∈ C0(S) of the

10Although Arzelà-Ascoli Theorem for functions on compact Hausdorff spaces is well-known, here we re-
quire its non-compact version.

13



Under review as a conference paper at ICLR 2021

indicator function 1Br
such that the support equals Br, 0 ≤ 1̃Br

≤ 1, 1̃Br
= 1 on Br−δ and it

satisfies

sup
x∈E

‖x · 1Br
− x · 1̃Br

‖∞ <
ϵ

4L
. (13)

From (12) and (13), we obtain

sup
x∈E

‖x− x · 1̃Br
‖∞ <

ϵ

2L
. (14)

Since E is assumed to be compact and F is continuous, the image F (E) is also compact in C0(T ).
Thus, using (A3) of Theorem 19 again, for any ϵ > 0, there exist r′ > 0 and δ′, for any r̄′, a compact
ball Br̄′ := {x ∈ T |‖x‖Rd′ ≤ r̄′} ⊂ T centered at 0 ∈ Rd′

with radius r̄′ satisfies

sup
x∈E

‖F [x]− F [x] · 1Br̄′‖∞ <
ϵ

4
. (15)

Then, we can take an continuous approximation function 1̃Br′ ∈ C0(T ) of the indicator function
1Br′ ∈ C(T ) such that the support equals Br′ , 0 ≤ 1̃Br′ ≤ 1, 1̃Br′ = 1 on Br′−δ′ and it satisfies

sup
x∈E

‖F [x] · 1Br′ − F [x] · 1̃Br′‖∞ <
ϵ

4
. (16)

From (15) and (16), we obtain

sup
x∈E

‖F [x]− F [x] · 1̃Br′‖∞ <
ϵ

2
. (17)

We define the smoothed restriction function R̃Br
: C0(S) → C0(S) as R̃Br

(x) := x · 1̃Br
and

R̃Br′ : C0(T ) → C0(T ) as R̃Br′ (x
′) := x′ · 1̃Br′ . Then, for any x ∈ E, we obtain

‖F |E [x]− R̃Br′ ◦ F ◦ R̃Br
[x]‖∞

≤ ‖F [x]− F [x · 1̃Br
] · 1̃Br′‖∞

≤ ‖F [x]− F [x] · 1̃Br′‖∞ + ‖F [x] · 1̃Br′ − F [x · 1̃Br
] · 1̃Br′‖∞

≤ ‖F [x]− F [x] · 1̃Br′‖∞ + ‖F [x]− F [x · 1̃Br
]‖∞

≤ ‖F [x]− F [x] · 1̃Br′‖∞ + L‖x− x · 1̃Br
‖∞

<
ϵ

2
+ L · ϵ

2L
= ϵ.

From the above discussion, we can approximate F |E by R̃Br′ ◦F ◦ R̃Br
. Thus, it is enough to show

that R̃Br′ ◦ F ◦ R̃Br can be approximated by an FNN.

For a compact set K ⊂ S , let C(K)|∂K=0 := {x ∈ C(K)|x|∂K ≡ 0}, where ∂K is the boundary
set of K. Then, we define the inclusion ιK : C(K)|∂K=0 → C0(Rd) as

ιK(x)(s) =

{
x(s) (s ∈ K)
0 (s /∈ K).

We can verify that ιK is a bounded affine map. Moreover, we define the restriction function RK :
C0(S) → C(K) for a subset K ⊂ S as RK(x) := x|K . Using the above notions, we have

R̃Br′ ◦ F ◦ R̃Br = ιBr′ ◦ (RBr′ ◦ R̃Br′ ◦ F ◦ ιBr ) ◦ (RBr ◦ R̃Br ). (18)

Thus, in order to approximate R̃Br′ ◦F ◦R̃Br
by an FNN, we show that both RBr′ ◦R̃Br′ ◦F ◦ιBr

|E′

and RBr ◦ R̃Br can be approximated by FNNs, where E′ := RBr ◦ R̃Br (E).

First, we prove that RBr′ ◦ R̃Br′ ◦ F ◦ ιBr
|E′ can be approximated by a two-layer FNN. Since

RBr
◦ R̃Br

: E → C(Br)|∂Br=0 is continuous, the image E′ is compact in C(Br)|∂Br=0 ⊂ C(Br)

because of the compactness of E. Then, using Theorem 18, RBr′ ◦R̃Br′ ◦F ◦ιBr |E′ : E′ → C(Br′)
is approximated by a two-layer FNN with any precision.
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Next, we prove that RBr
◦ R̃Br

can be approximated by a bounded affine map. We denote by δt the
Dirac delta function at t ∈ S . Let w(t, s) := 1̃Br′ (s)δt(s) and b(t) ≡ 0 in (2). Then, the following
holds:

A[x](t) =

∫
Rd

x(s)1̃Br′ (s)δt(s)dµ(s) = x(t)1̃Br′ (t) = RBr
◦ R̃Br

[x](t).

Thus, RBr ◦ R̃Br is exactly represented by a bounded affine map if the Dirac delta function is
allowed. However, the Dirac delta function is not a function but a generalized function. Here, the
Dirac delta δt can be approximated by a smooth function δ̃t called a mollifier with any precision.
Thus, instead of 1̃Br′ (s)δt(s), taking 1̃Br′ (s)δ̃t(s) as w(t, s), we can verify that RBr

◦ R̃Br
is

approximated by a bounded affine map with any precision.

From the above discussion, for any ϵ > 0, there exist a bounded affine map A and a two-layer FNN
ϕ such that ‖RBr ◦ R̃Br −A‖∞ ≤ ϵ

2L and ‖R̃Br′ ◦ F ◦ ιBr |E′ − ϕ‖∞ ≤ ϵ
2 . Thus, we have

‖R̃Br′ ◦ F ◦ R̃Br − ιBr′ ◦ ϕ ◦A‖∞
= ‖ιBr′ ◦ (RBr′ ◦ R̃Br′ ◦ F ◦ ιBr

) ◦ (RBr
◦ R̃Br

)− ιBr′ ◦ ϕ ◦A‖∞
≤ ‖(RBr′ ◦ R̃Br′ ◦ F ◦ ιBr

) ◦ (RBr
◦ R̃Br

)− ϕ ◦A‖∞
≤ ‖(R̃Br′ ◦ F ◦ ιBr ) ◦ (RBr ◦ R̃Br )− (R̃Br′ ◦ F ◦ ιBr ) ◦A‖∞

+ ‖(R̃Br′ ◦ F ◦ ιBr
) ◦A− ϕ ◦A‖∞

≤ L‖RBr ◦ R̃Br −A‖∞ + ‖R̃Br′ ◦ F ◦ ιBr − ϕ‖∞
≤ ϵ.

Since A and ιBr′ are affine and ϕ is a two-layer FNN, the map ϕE := ιBr′ ◦ϕ◦A is also a two-layer
FNN. Thus, this concludes the proof. ■

B PROOF OF CONVERSION THEOREM

In this section, we prove Theorem 9. Since ϕ : E → C0(BT ) is a fully-connected neural network,
there exist topological spaces Bℓ for ℓ = 1, . . . , L − 1 and affine maps A1 : E → C0(B1), Aℓ :
C0(Bℓ−1) → C0(Bℓ) for ℓ = 1, . . . , L − 1, and AL : C0(BL−1) → C0(BT ) such that the FNN
ϕ = AL ◦ρ◦AL−1 ◦ · · · ◦ρ◦A1 : E → C0(BT ). Here, we note that the sets Bℓ for ℓ = 1, . . . , L−1
does not relate to the action of the group G while BS and BT are defined via the action of a group
G. When we define as Sℓ := G/HT × Bℓ for ℓ = 1, . . . , L − 1, the action of G on Sℓ is naturally
defined by the action of G on G/HT . Then, the sets Bℓ for ℓ = 1, . . . , L− 1 become the base space
by the definition of Sℓ. For brevity, we denote BT by BL and T by SL.

In the following, for the fully-connected neural network ϕ, we show the existence of a group-
convolutional neural network Φ := CL ◦ ρ ◦ CL−1 ◦ · · · ◦ ρ ◦ C1 such that C1 : E → C0(S1)
and Cℓ : C0(Sℓ−1) → C0(Sℓ) for ℓ = 2, . . . , L are biased G-convolutions and Φ satisfies (7).

First, we construct C1. Since A1 : E → C0(B1) is affine, there are w(1)(τ, ·) ∈ C(S) and b(1)(τ) ∈
R for each τ ∈ B1 such that A1[·] = W (1)[·] + b(1), where W (1) : E → C0(B1) satisfies

W (1)[x](τ) =

∫
S
w(1)(τ, s)x(s)dµ(1)(s).

From the assumption (C1) of Theorem 9, there exists a G-invariant measure ν1 such that µ(1) is
absolute continuous with respect to ν1. Thus, we can set in (6) as

v1((g, τ), s) := w(1)(τ, g−1 · s)dµ
(1)

dν1
(g−1 · s),

b1(g, τ) := b(1)(τ),

where g ∈ G/HT , and t ∈ B1. Then, one can easily verify that these functions are G-invariant.
Then, C1 : E → C(S1) is given by

C1[x](g, τ) :=

∫
S
v1((g, τ), s)x(s)dν1(s) + b1(g, τ),
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where x ∈ E. Moreover, the following holds for arbitrary x ∈ E and τ ∈ B1:

RB1 ◦ C1[x](τ) =

∫
S
x(s)w(1)(τ, 1−1 · s)dµ

(1)

dν1
(1−1 · s)dν(s) + b(1)(τ)

=

∫
S
w(1)(τ, s)x(s)dµ(1)(s) + b(1)(τ)

= A1[x](t).

(19)

Thus, we obtain
RB1 ◦ C1 = A1. (20)

Next, we construct Cℓ for ℓ ∈ {2, . . . , L}. Since Aℓ : C(Bℓ−1) → C(Bℓ) is affine, there are
w(ℓ)(τ, ς) ∈ R and b(ℓ)(τ) ∈ R for each τ ∈ Bℓ and ς ∈ Bℓ−1 such that Aℓ[·] = W (ℓ)[·] + b(ℓ),
where W (ℓ) : C(Bℓ−1) → C(Bℓ) satisfies

W (ℓ)[x](τ) =

∫
Bℓ−1

x(ς)w(ℓ)(τ, ς)dµ(ℓ)(ς),

where x ∈ C(Bℓ−1) and τ ∈ Bℓ. For ℓ ∈ {2, . . . , L}, we set as νℓ := νG/HT × µ(ℓ),
vℓ((g, τ), (h, ς)) := δ(h, g)w(ℓ)(τ, ς) and bℓ(g, τ) := b(ℓ)(τ) in (6), where h, g ∈ G/HT , ς ∈ Bℓ−1,
τ ∈ Bℓ, and δ(h, ·) is the Dirac delta function at h ∈ G/HT . Then, Cℓ : C(Sℓ−1) → C(Sℓ) is given
by

Cℓ[x](g, τ) :=

∫
G/HT ×Bℓ−1

x(h, ς)vℓ((g, τ), (h, ς))dνG/HT (h)dµ
(ℓ)(ς) + bℓ(τ)

=

∫
G/HT ×Bℓ−1

x(h, ς)δ(h, g)w(ℓ)(τ, ς)dνG/HT (h)dµ
(ℓ)(ς) + b(ℓ)(τ)

=

∫
Bℓ−1

x(g, ς)w(ℓ)(τ, ς)µ(ℓ)(ς) + b(ℓ)(τ)

= W (ℓ)[xg](τ) + b(ℓ)(τ)

= Aℓ[xg](t),

where x ∈ C(Sℓ−1) and xg(ς) := x(g, ς). Then, the following equation holds for ℓ ∈ {2, . . . , L−1}
by the definition of RBℓ

:
RBℓ

◦ Cℓ −Aℓ ◦RBℓ−1
= 0.

We note that the Dirac delta function δ used above is not a function but a generalized function. Here,
it can be approximated by a smooth function δ̃ called a mollifier with any precision.

Thus, replacing δ by δ̃ in Cℓ, we obtain the following inequality for ℓ ∈ {2, . . . , L}:
‖RBℓ

◦ Cℓ −Aℓ ◦RBℓ−1
‖∞ < ϵ′. (21)

Since ρ acts component-wise, the following equation hold:
RB1 ◦ ρ = ρ ◦RB1 . (22)

By (20), (21), and (22), we can see the diagram in Figure 2 is ”approximately” commutative.

We note that every Aℓ is Lipschitz because W (ℓ) is a bounded linear operator. Using (20), (21), (22),
and the fact that Aℓ is Lipschitz, and taking a small ϵ′, we obtain

‖RBL
◦ Φ− ϕ‖∞ < ϵ. (23)

Lastly, we show the inequality (8):
‖F |E − Φ‖∞ = ‖RBL

◦ F |E −RBL
◦ Φ‖∞ (24)

= ‖(FBT |E − ϕ) + (ϕ−RBL
◦ Φ)‖∞

≤ ‖FBT |E − ϕ‖∞ + ‖ϕ−RBL
◦ Φ‖∞

≤ ‖FBT |E − ϕ‖∞ + ϵ, (25)
where we used Proposition 16 in (24) and (23) in (24). ■
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Figure 2: Approximately commutative diagram.

C PROOF OF UNIVERSALITY OF DEEPSETS

We set G = Sn , H = Stab(1) := {s ∈ Sn | s(1) = 1} and B = {∗}, where {∗} is a singleton.
Then we can see that Stab(1) is a subgroup of G and its left cosets G/H = [n] .
Lemma 20. As a set, Sn/Stab(1) is equal to [n], and the canonical Sn-action on Sn/Stab(1) is
equivalent to the permutation action on [n].

[Proof] . Firstly, we can see that Stab(1) is isomorphic to Sn−1 as a group, since Stab(1) can freely
permute any element other than 1. Therefore |Sn/Stab(1)| = |Sn/Sn−1| = n!/(n − 1)! = n.
Next, we confirm that the action on Sn/Stab(1) is equal to permutation on [n] as a representa-
tion. To see this, we consider a complete system of representatives of Sn/Stab(1). We can take
(1 1), (1 2), . . . , (1 n) as a complete system of representatives. This is because for any s ∈ Sn there
is a decomposition s = (1 s(1)) · t for some t ∈ Stab(1). Here, we note that s = (1 s(1)) by this
formula. Finally, we see that the Sn-action on {(1 1), (1 2), . . . , (1 n)} = [n] ( (1 j) 7→ j ) coincide
with the permutation action. When we take s ∈ Sn and (1 j) ∈ {(1 1), (1 2), . . . , (1 n)}, we have
s · (1 j) = (1 s(j)) · t′ for some t′ ∈ Stab(1) . This implies that s · (1 j) = (1 s(j)) and this is
equivalent to the permutation action s · j = s(j) by the correspondence above.

Therefore, C(G/H × B) = C([n]) = Rn holds, and the equivariant model of our paper is equal to
the one of DeepSets.

Theorem 12. For any permutation equivariant function F : Rn → Rn, a compact set E ⊂ Rn and
ϵ > 0, there is an equivariant model of DeepSets (or equivalently, our model) ΦE : E → Rn such
that ‖ΦE(x)− F |E(x)‖∞ < ϵ.

[Proof] . Firstly, we see that our model is equal to the equivariant model of DeepSets when S is
[n]. Our group convolution is defined by

Cν,v,b[x](t) :=

∫
S
v(t, s)x(s)dν(s) + b(t).

Since S = T = [n], we have∫
S
v(t, s)x(s)dν(s) + b(t) =

∑
s∈S

v(t, s)x(s) + b(t).

Therefore, the map Cν,v,b : Rn → Rn is induced by the matrix W = (v(i, j))i,j∈[n] and bias b(t).
Here, since v : S×T → R is G-invariant, v(i, j) satisfies the condition v((k, l)·i, (k, l)·j) = v(i, j)
for any transition (k, l). This implies the parametrization W = λE + γ11⊤ by direct calculation.
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