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A.1 Hyperparameters Sensitivity

Here we test the sensitivity of model w.r.t. the hyperparameter λval in (2). Since most loss values falls
within the range of [0.1, 10], we evaluate how the model accuracy and fairness change w.r.t. different
cutoff values λval. Fig. 2 shows the change of accuracy under different cutoff value. Generally,
increasing λval increases the test accuracy, as the distribution of top-k validation samples becomes
more similar to that of the whole validation set, and the classifier focuses more on overall validation
samples, instead of only hard sample. However, for gender classification under CelebA dataset,
the trade-off between λval and accuracy is not very clear; and we suspect that under such scenario,
focusing on hard samples does not harm the performance of easy samples, and thus benefits the
classifier.

Fig. 5 shows the change of fairness (equalized odds) under different cutoff value. The overall
equalized odds shows an increasing trend as λval increases, which validates the effectiveness of
Max-Min objective for improving group fairness.

A.2 Sensitivity of Validation Size

We show the effect of validation size on accuracy and equalized odds in Fig. . As shown in the figures,
when the validation size is larger than 10% of training size, the model’s performance becomes stable
in terms of accuracy and fairness.

B Proof of Theorem 3.2

Suppose we have a large unlabeled training set of size N and a small labeled validation set
{
(
xval
j ,yval

j

)
, 1 ≤ j ≤ M} with M ≪ N . In each training step, we sample a small mini-batch

of size n(n < N) from training set and perform random augmentation twice to obtain a subset
{x̃i, 1 ≤ i ≤ 2n} and we update the contrastive encoder f with parameter θ. During validation,
we freeze the contrastive encoder and train a downstream linear classifier g with parameter ω for
classification task.

(a) COMPAS (b) Adult

(c) CelebA (attractiveness classification) (d) CelebA (gender classification)

Figure 2: Change of accuracy as λval varies.
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(a) COMPAS (sex) (b) COMPAS (race) (c) Adult (gender)

(d) Adult (race) (e) CelebA (gender) (f) CelebA (age)

Figure 3: Change of equalized odds as λval varies.

(a) COMPAS (b) Adult

(c) CelebA (attractiveness classification) (d) CelebA (gender classification)

Figure 4: Change of accuracy as validation size varies.

Denote the training (contrastive) loss of the i-th data at iteration t as

lt,i = − log
exp (sim (zt,i, zt,j) /τ)∑
h ̸=i exp (sim (zt,i, zt,h) /τ)

, (6)

where zt,i = f(x̃i; θt) is the output of contrastive encoder f for the i-th training data at iteration
t, sim (zt,i, zt,j) =

zt,izt,j

∥zt,i∥∥zt,j∥ is the cosine similarity and τ is the temperature scaling hyper-
parameter.

For ease of exposition, here we consider binary classification (i.e., yval
j |Mj=1 ∈ {0, 1}). Our proof can

easily extend to the multi-class classification scenario, since the only difference is that we will use
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(a) COMPAS (sex) (b) COMPAS (race) (c) Adult (gender)

(d) Adult (race) (e) CelebA (gender) (f) CelebA (age)

Figure 5: Change of equalized odds as validation size varies.

cross entropy loss (instead of binary cross entropy loss in (7) below). Denote λt as the k-th largest
validation loss at iteration t. The top-k average validation (classification) loss is represented as

lval
t =

1
k

M∑
j=1

[(
−yval

j log(ŷval
t,j)− (1− yval

j )log(1− ŷval
t,j)
)
− λt

]
+
+ λt

 , (7)

where ŷval
t,j = g(zj ;ωt) = 1

1+e
−ω⊤

t zval
t,j

is the predicted output of the linear classifier, and zval
t,j =

f(xval
j ; θt) is the output of the contrastive encoder f for the j-th validation data at iteration t. For the

ease of notation, in the following we drop the parameter k and use lval
t to represent the top-k average

validation loss. In Section A.1 above, we showed the sensitivity of model performance and fairness
w.r.t. different cutoff values λt. Increasing k means decreasing cutoff value λt.

Now we are ready to prove the prove the converence in Theorem 3.2.

Proof. In each training step, the parameter θ of contrastive encoder f is updated with mini-batch
stochastic gradient descent (SGD) as follows:

θt+1 = θt − α1∇θ

(
1

2n

2n∑
i=1

vt,ilt,i

)
, (8)

where vt,i is the weight assigned to training sample xi at iteration t.

During validation, the contrastive encoder is frozen, and the parameter ω of linear classifier g is
updated according to

Wt+1 = Wt − α2∇ωl
val
t . (9)

Following the protocol of Ren et al. (2018), we approximate vt,i as

ut,i = −
(
∂lval

t

∂ω

)⊤
∂ω

∂θ

∂θ

∂vt,i

∣∣∣∣∣
vt,i=0

,

vt,i = max (ut,i, 0) .

(10)

Here we use the negative derivative of lval
t with respect to vt,i since our goal is to minimize the

validation loss through reweighing, and if ut,i > 0, applying this positive weight will increase the
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validation loss. By taking the derivative of both sides in (8) w.r.t. vt,i, we have

∂θ

∂vt,i
∝ −∂lt,i

∂θ
. (11)

Here we can omit the influence of α1 since we normalize the weights on each mini-batch to match
the original training step size.

Combining (10) and (11), we can approximate vt,i as

vt,i = max
((

∇θl
val
t

)⊤ ∇θlt,i, 0
)
. (12)

Combining (12) and (8), we can derive the following update rule for contrastive encoder parameter:

θt+1 = θt −
α1

2n

(
2n∑
i=1

max

((
∂lval

t

∂θ

)⊤
∂lt,i
∂θ

, 0

)
∇θlt,i

)
. (13)

Based on Taylor’s expansion, we can express the validation loss at (t+ 1)-th iteration as

lval
t+1 = lval

t +
(
∇θl

val
t

)⊤
δθ +

(
∇ωl

val
t

)⊤
δω +

1

2
(δθ)

⊤ ∇2
θθl

val
t δθ

+ (δθ)
⊤ ∇2

θωl
val
t (δω) +

1

2
(δω)⊤∇2

ωωl
val
t (δω) .

(14)

Denote

rt =

(
2n∑
i=1

max
((

∇θl
val
t

)⊤ ∇θlt,i, 0
)
∇θlt,i

)
. (15)

Plugging in the update rules (9) and (13) to (14), we can substitute δθ and δω with their respective
gradient descent form in each iteration, and we have

lval
t+1 = lval

t − α1

2n

(
∇θl

val
t

)⊤
rt − α2

(
∇ωl

val
t

)⊤ (∇ωl
val
t

)
+

α2
1

8n2
r⊤t ∇2

θθl
val
t rt

+
α1α2

2n
r⊤t ∇2

θωl
val
t ∇ωl

val
t +

α2
2

2

(
∇ωl

val
t

)⊤ ∇2
WW lval

t ∇ωl
val
t .

(16)

Since the validation loss is Lipschitz-smooth, we can replace the second-order derivative ∇2
ωωl

val
t ,

∇2
θωl

val
t and ∇2

θθl
val
t in (16) with constant L, and we derive the following inequality

lval
t+1 ≤ lval

t + ∥∇ωl
val
t ∥2

(
α2
2L

2
− α2

)
+ r⊤t

(
α2
1L

8n2
rt −

α1

2n
∇θl

val
t

)
+

α1α2L

2n
r⊤t ∇ωl

val
t

≤ lval
t + ∥∇ωl

val
t ∥2

(
α2
2L

2
− α2

)
+ r⊤t

(
α2
1L

8n2
rt −

α1

2n
∇θl

val
t

)
+

α1α2L

2n
∥rt∥∥∇ωl

val
t ∥ .

(17)

Plugging the definition of rt in (15) back into (17) we can rewrite (17) as

lval
t+1 ≤ lval

t + ∥∇ωl
val
t ∥2

(
α2
2L

2
− α2

)
+

α2
1L

8n2

2n∑
i=1

(
max

(
∇θl

val
t

)⊤ ∇θlt,i, 0
)2

∥∇θlt,i∥2

− α1

2n

(
2n∑
i=1

max
((

∇θl
val
t

)⊤ ∇θlt,i, 0
)
∇θl

⊤
t,i∇θl

val
t

)

+
α1α2L

2n

(
n∑

i=1

max
((

∇θl
val
t

)⊤ ∇θlt,i, 0
)
∥∇θlt,i∥∥∇ωl

val
t ∥

)
,

(18)

where the third term on the right hand side of the inequality is derived from Jensen’s inequality.
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For any r ∈ R, we can derive that r ·max(r, 0) = max(r, 0)2, thus we can rewrite the fourth and
fifth terms on the right hand side of (18) and get:

lval
t+1 ≤ lval

t + ∥∇ωl
val
t ∥2

(
α2
2L

2
− α2

)
+

α2
1L

8n2

2n∑
i=1

(
max

(
∇θl

val
t

)⊤ ∇θlt,i, 0
)2

∥∇θlt,i∥2

− α1

2n

2n∑
i=1

max
((

∇θl
val
t

)⊤ ∇θlt,i, 0
)2

+
α1α2L

2n

(
2n∑
i=1

max
((

∇θl
val
t

)⊤ ∇θlt,i, 0
)2 ∥∇θlt,i∥∥∇ωl

val
t ∥(

∇θl
val
t

)⊤ ∇θlt,i

)
,

(19)

Given that the contrastive loss of training data have σ-bounded gradients w.r.t. θ, and consider the
definition of vt,i in (12), we can further simplify (19) as

lval
t+1 ≤ lval

t + ∥∇ωl
val
t ∥2

(
α2
2L

2
− α2

)
+

2n∑
i=1

v2t,i

(
α2
1σ

2L

8n2
− α1

2n
+

α1α2L

2n

∥∇ωl
val
t ∥∥∇θlt,i∥

(∇θlt,i)
⊤ ∇θl

val
t

)
. (20)

Consider the last term in (20), which is a summation over 2n training samples. Denote cos(βt,i) =
(∇θlt,i)

⊤∇θl
val
t

∥∇θlt,i∥∥∇θl
val
t ∥ and split the n training sample indices into two sets St = {i|cos(βt,i) > 0} and

S̄t = {i|cos(βt,i) ≤ 0}. We can observe that for any sample xi where i ∈ S̄t, we have the sample

weight vt,i = max
((

∇θl
val
t

)⊤ ∇θlt,i, 0
)
= 0. Thus we can omit sample indices in S̄t in the last

term of (20) and obtain the following

lval
t+1 ≤ lval

t + ∥∇ωl
val
t ∥2

(
α2
2L

2
− α2

)
+
∑
i∈St

((
∇θl

val
t

)⊤ ∇θlt,i

)2(α2
1σ

2L

8n2
− α1

2n
+

α1α2L

2n

∥∇ωl
val
t ∥∥∇θlt,i∥

(∇θlt,i)
⊤ ∇θl

val
t

)

= lval
t + ∥∇ωl

val
t ∥2

(
α2
2L

2
− α2

)
+
∑
i∈St

(
σ2L

8n2

(
(∇θlt,i)

⊤ ∇θl
val
t

)2)
α2
1

−
∑
i∈St

(
1

2n

(
(∇θlt,i)

⊤ ∇θl
val
t

)2
− α2L

2n
∥∇ωl

val
t ∥∥∇θlt,i∥ (∇θlt,i)

⊤ ∇θl
val
t

)
α1 .

Since the learning rates satisfy that α1,t ⩽
4σ2L

∑
i β

2
t,i

n
∑

i(β2
t,i−2γt,iβt,i)

, and α2,t ≤ min
(

2
L ,

∑
i β

2
t,i

L
∑

i γt,iβt,i

)
by

definition, where

γt,i = ∥∇ωl
val
t ∥∥∇θlt,i∥, βt,i =

(
(∇θlt,i)

⊤ ∇θl
val
t

)
,

it follows that lval
t+1 ≤ lval

t for any t.
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