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A More about Random Pattern Generator

Figure 7 illustrates the steps for the random pattern generator to create a template for G = PACING.
To generate a template in general, we first sample 7' € [24, 28] (step 1). Since the control frequency
is 50 Hz, this corresponds to a cycle length of 0.48 ~ 0.56 seconds. We then sample a foot-ground
contact length ratio within the cycle reoptact € [0.5,0.7], T7contact therefore gives the number of “1’s
and T(1 — reonact) the number of ‘0’s in each row (step 2). Proper length scaling and bit shifts of
these ones and zeros are necessary to produce feasible foot contact patterns on a real robot (step
3). For G = BOUND, we shorten the foot-ground contact time to 60% of the sampled value (i.e.,
Teontact = 0-67contact), We place the ones at the beginning of the FL and FR rows and shift those in the
RL and RR rows by 0.5T 7¢ontact bits to the right. We do no scaling for G = TROT. Finally, we shift
the "1’s to form complete templates (step 4): we place the ones at the beginning in the FL. and RR
rows and at the end of the FR and RL rows. We keep 7contact untouched for G = PACE, but shrink
the cycle length to half its sampled value (i.e., T = 0.57) to make the gait natural and feasible. We
place the ones at the beginning in the FL. and RL rows and at the end of the FR and RR rows. Finally,
for G € {STAND_STILL, STAND_3LEGS}, we perform no scaling and fill in the pattern template
matrix with ones. We randomly sample one row and replace it with zeros if G = STAND_3LEGS.

T Treontact Scaled T
T ~_ - ~_ G = PACING
FL
FR
RL
RR
“1’s ‘0’s

Step 1: Sample template length T'  Step 2: Sample contact ratio reontact  Step 3: Scale T or Tcontact if Necessary Step 4: Shifts

Figure 7: How the random pattern generator works.

B Reward Design

Our reward design is based on those in legged gym [41]. The total reward consists of 8 weighted
reward terms: J = Z?:l w;r;, where w;’s are the weights and r;’s are the rewards. The definition
of each reward term and the value of the weights are in the following. We put the purpose of each
reward term in the bracket at the beginning of the description.

* [Task Reward] Linear velocity tracking reward. r; = e~ ((vx=0x) 40y ), where v x and 7, are
the current and desired linear velocities along the robot’s heading direction, and v, is the
current linear velocity along the lateral direction. All velocities are in the base frame, and
wi = 1.

4x

* [Task Reward] Angular velocity tracking reward. r, = e~ @2 where w; is the current

angular yaw velocity in the base frame and w, = —0.5.

* [Task Reward] Penalty on foot contact pattern violation. r3 = ;112?:1 |c; — ¢i|, where
¢i,¢; € {0, 1} are the realized and desired foot-ground contact indicators for the i-th foot,
and w3 = —1.

* [Sim-to-Real] Regularization on action rate. rq = Z}zzl(a, —a,_1)? where a, and a,_; are
the controller’s output at the current and the previous time steps, and w4 = —0.005.

* [Sim-to-Real] Penalty on roll and pitch angular velocities. We encourage the robot’s base
to be stable during motion and hence r5 = wi + wi, where wy and wy are the current roll
and pitch angular velocities in the base frame. This penalty does not apply to G = BOUND
and ws = —0.05.

* [Sim-to-Real] Penalty on linear velocity along the z-axis. Similar to the previous term,
we use this term to encourage the base stability during motion. r¢ = vﬁ where v, is the
current linear velocity along the z-axis in the base frame. This penalty does not apply to
G = BOUND either and wg = —2.

* [Natural Motion] Penalty on body collision. r; = Zi’i | I{F; > 0.1}, where F; is the contact
force on the i-th body. In our experiments K = 8 (i.e., 4 thighs and 4 calves) and w7 = —1.
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* [Natural Motion] Penalty on deviation from the default pose. 3 = 3., cpip |a:|, where a;’s
are the actions (i.e., deviation from the default joint position) applied to the hip joints, and
wg = —0.03.

C Training Configurations

C.1 Control

We use PD control to convert positions to torques in our system. The bases value for the 2 gains are
kp, =20 and kg = 0.5. Our control frequency is 50 Hz.

C.2 Gait Sampling

We randomly assign a gait G to a robot at environment resets, and also samples it again every 150
steps in simulation. Of the 5 G’s, some gaits are harder to learn than others. To avoid the case where
the hard-to-learn gaits die out, leaving the controller to learn only on the easier gaits, we restrict the
sampling distribution such that the ratio of the 5 G’s are always approximately the same.

C.3 Reinforcement Learning

We use the Proximal policy optimization (PPO) [43] algorithm as our reinforcement learning method
to train the controller. In our experiments, PPO trains an actor-critic policy. The architecture of the
actor is introduced in Section 3.2.3, and the critic has the identical network architecture except that
(1) its output size is 1 instead of 12, and (2) it also receives the base velocities in the local frame as its
input. We keep all the hyper-parameters the same as in [41] and train for 1000 iterations. For safety
reasons, we end an episode early if the body height of the robot is lower than 0.25 meters. Training
can be done on a singe NVIDIA V100 GPU in approximately 15 minutes.

C.4 Domain Randomization

During training, we sample noises € ~ Unif, and add them to the controller’s observations. We
use PD control to convert positions to torques in our system, and domain randomization is also
applied to the 2 gains k, and k4. Table 3 gives the components where noises € were added and their
corresponding ranges.

Table 3: Domain randomization settings.

# Component Noise Range
1 Base linear velocities [-2,2]

2 Base angular velocities [-0.25,0.25]
3 Gravity vector in the base frame [-1, 1]

4 Joint positions [-1,1]

5 Joint velocities [-0.05,0.05]
6 kp [-5,0]

7 kg [0,0.25]

13



w2 D More Images from the Extended Tests

“Good news, we are going to a picnic this weekend!”
v

“Back offl Don’t hurt that squirrel”
vl

“Act as if the ground is very hot”
v

“Act as if you have a limping rear left leg”
=

“Go catch that squirrel on the tree”
v

Figure 8: Images from the extended tests. We show the command for each test on the top-left corner
on each row. LLM translated foot contact patterns are shown at the bottom-right corner in each
image. Motions better viewed in the supplementary video.
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