
Modular Gaussian Processes for Transfer Learning
Supplementary Material

Pablo Moreno-Muñoz∗ Antonio Artés-Rodríguez† Mauricio A. Álvarez‡

∗Section for Cognitive Systems, Technical University of Denmark (DTU)
†Dept. of Signal Theory and Communications, Universidad Carlos III de Madrid, Spain

†Evidence-Based Behavior (eB2), Spain
‡Dept. of Computer Science, University of Sheffield, UK

pabmo@dtu.dk, antonio@tsc.uc3m.es, mauricio.alvarez@sheffield.ac.uk

In this appendix, we provide additional details about the modular GP framework. The full derivation
of the evidence lower bound (ELBO) for fitting meta-GPs from pre-trained modules is also provided.
More insights about the predictive GP posterior used for the contrastive expectation integrals are
in the first section. Importantly, we remark that our framework includes a Pytorch tool1 amenable
for multiple testing options and scenarios. Our coding idea is that the Python user only specifies
a dictionary of models as input: models = {model1, model2, . . . , modelK}. The code for
experiments is included as well as the URLs to the data and the performance metrics used. The true
generative functions of the toy data and the initial setup of hyperparameters within optimization
algorithms are written down at the end of this appendix.

A Detailed Derivation of the Module-driven Lower Bound

The construction of module-driven variational bounds from modular GP models is based on the idea
of augmenting the marginal likelihood to be conditioned on the large-dimensional GP function f+.
Notice that f+ contains all the function values taken by f(·) over the input-space Rp, including the
input targets {xi}Ni=1, the inducing-inputs {Zk}Kk=1 from modules {Mk}Kk=1 and the global onesZ∗.
Thus, having K partitions of the dataset D with their corresponding outputs y = {y1,y2, . . . ,yK},
we begin by augmenting the marginal log-likelihood distribution as

log p(y) = log p(y1,y2, . . . ,yK) = log

∫
p(y, f+)df+, (1)

that factorises according to

log

∫
p(y, f+)df+ = log

∫
p(y|f+)p(f+)df+, (2)

where p(y|f+) is the augmented likelihood term of all the output targets of interest and p(f+) the
GP prior over the finite number of points in the input-space Rp. This last distribution takes the
form of a multivariate Gaussian, that we avoid to evaluate explicitly in the equations. To build the
lower bound on the log-marginal likelihood, we first introduce the global variational distribution
q(u∗) = N (u∗|µ∗,S∗) into the equation,

log p(y) = log

∫
p(y|f+)p(f+)df+ = log

∫
q(u∗)

q(u∗)
p(y|f+)p(f+)df+

= log

∫∫
q(u∗)

q(u∗)
p(y|f+)p(f+6=u∗ |u∗)p(u∗)df+6=u∗du∗. (3)

1The code is publicly available in the repository https://github.com/pmorenoz/ModularGP.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/pmorenoz/ModularGP

Notice that the differentials df+ have been splitted into df+6=u∗du∗, and at the same time, we applied
properties of Gaussian conditionals in the GP prior to rewrite p(f+) as p(f+6=u∗ |u∗)p(u∗). When
the target variables u∗ are explicit in the expression, our second step is the application of the Jensen
inequality, similarly as it is done in the reparameterisation of (Gal et al., 2014) for Gaussian process
latent variable models (GPLVM), that is

log p(y) = log

∫∫
q(u∗)

q(u∗)
p(y|f+)p(f+6=u∗ |u∗)p(u∗)df+6=u∗du∗

= log

∫∫
q(u∗)p(f+6=u∗ |u∗)p(y|f+)

p(u∗)

q(u∗)
df+6=u∗du∗

= log

(
Eq(u∗)

[
Ep(f+ 6=u∗ |u∗)

[
p(y|f+)

p(u∗)

q(u∗)

]])
≥ Eq(u∗)

[
log

(
Ep(f+ 6=u∗ |u∗)

[
p(y|f+)

p(u∗)

q(u∗)

])]
≥ Eq(u∗)

[
Ep(f+ 6=u∗ |u∗)

[
log

(
p(y|f+)

p(u∗)

q(u∗)

)]]
= LM. (4)

Then, if we have (4), which is the first version of our module-driven lower bound LM, we can use the
augmented likelihood term p(y|f+) to introduce the variational approximations of modules instead
of revisiting the data. This is based on Bayes theorem, and we rewrite

LM = Eq(u∗)
[
Ep(f+6=u∗ |u∗)

[
log p(y|f+) + log

(
p(u∗)

q(u∗)

)]]
= Eq(u∗)

[
Ep(f+6=u∗ |u∗) [log p(y|f+)]− log

(
q(u∗)

p(u∗)

)]
= Eq(u∗)

[
Ep(f+6=u∗ |u∗)

[
K∑
k=1

log p(yk|f+)

]
− log

(
q(u∗)

p(u∗)

)]

= Eq(u∗)

[
K∑
k=1

Ep(f+ 6=u∗ |u∗) [log p(yk|f+)]− log

(
q(u∗)

p(u∗)

)]
, (5)

where the log-ratio q(u∗)/p(u∗) acts as a constant to the second expectation Ep(f+ 6=u∗ |u∗) [·] and we
applied conditional independence (CI) among all the output partitions given the finite latent function
values f+. That is, we introduced p(y|f+) =

∏K
k=1 p(yk|f+) to factorise the expectation term in (5)

across the K tasks.

Under the approximation of p(yk|f+) obtained by inverting Bayes theorem, we use p(yk|f+) ≈
Zkqk(f+)/pk(f+) to introduce the local posterior distributions qk(·) and priors pk(·) in the bound
LM. The variable Zk is the normalization constant of Bayes theorem. This leads to

LM = Eq(u∗)

[
K∑
k=1

Ep(f+ 6=u∗ |u∗) [log p(yk|f+)]− log

(
q(u∗)

p(u∗)

)]

≈ Eq(u∗)

[
K∑
k=1

Ep(f+ 6=u∗ |u∗)

[
log

(
Zk

qk(f+)

pk(f+)

)]
− log

(
q(u∗)

p(u∗)

)]

= Eq(u∗)

[
K∑
k=1

Ep(f+ 6=u∗ |u∗)

[
log

(
Zk

((((((
p(f+6=uk

|uk)qk(uk)
((((((
p(f+6=uk

|uk)pk(uk)

)]
− log

(
q(u∗)

p(u∗)

)]

= Eq(u∗)

[
K∑
k=1

Ep(f+ 6=u∗ |u∗)

[
log

(
Zk

qk(uk)

pk(uk)

)]
− log

(
q(u∗)

p(u∗)

)]
, (6)

2

where we now have the explicit distributions qk(uk) and pk(uk) on the subsets of inducing-inputs
{Zk}Kk=1. Notice that these ones are stored in theMk module. The cancellation of conditionals is
a result of the variational factorization (Titsias, 2009). Looking to the last version of the bound in
(6), there is still one point that maintains the large-dimensionality, the conditional prior p(f+6=u∗ |u∗)
and its corresponding expectation term Ep(f+ 6=u∗ |u∗) [·]. To adapt it to the inducing variables uk of
modules, we apply the following simplification to each k-th integral in (6) based in the properties of
Gaussian marginals (see section A.1),

Ep(f+ 6=u∗ |u∗)

[
log

(
Zk

qk(uk)

pk(uk)

)]
=

∫
p(f+6=u∗ |u∗) log

(
Zk

qk(uk)

pk(uk)

)
df+6=u∗

=

∫∫
p(f+6={u∗,uk},uk|u∗) log

(
Zk

qk(uk)

pk(uk)

)
df+6={u∗,uk}duk

=

∫
p(uk|u∗) log

(
Zk

qk(uk)

pk(uk)

)
duk = Ep(uk|u∗)

[
log

(
Zk

qk(uk)

pk(uk)

)]
. (7)

This is the expectation that we plug in the final version of the bound, to obtain

LM = Eq(u∗)

[
K∑
k=1

Ep(uk|u∗)

[
log

(
Zk

qk(uk)

pk(uk)

)]
− log

(
q(u∗)

p(u∗)

)]

=

K∑
k=1

Eq(u∗)
[
Ep(uk|u∗)

[
log

(
Zk

qk(uk)

pk(uk)

)]]
− Eq(u∗)

[
log

(
q(u∗)

p(u∗)

)]

=

K∑
k=1

Eq(u∗)
[
Ep(uk|u∗)

[
log

(
Zk

qk(uk)

pk(uk)

)]]
− KL [q(u∗)||p(u∗)]

=

K∑
k=1

logZk +

K∑
k=1

EqC(uk) [log qk(uk)− log pk(uk)]− KL [q(u∗)||p(u∗)] , (8)

where qC(uk) is the contrastive predictive GP posterior, whose derivation is provided in the section
A.2. Importantly, the module-driven bound in (8) includes the K normalization constants of Bayes
Theorem. One can show that using the alternative construction of the variational lower bound on
sparse GP models, this constant satisfies logZk = L∗k + KL[q(f,uk)||p(f,uk|yk)]. Since we know
the KL divergence is greater or equal to zero, and each L∗k per module is a lower bound of logZk, we
have that

∑K
k=1 L∗k ≤

∑K
k=1 logZk. This allows us to rewrite the bound in (8) as

LM =

K∑
k=1

L∗k +
K∑
k=1

EqC(uk) [log qk(uk)− log pk(uk)]− KL [q(u∗)||p(u∗)] .

This module-driven bound is the one that we aim to maximise w.r.t. some variational parameters φ∗
and hyperparameters ψ∗. For a better comprehension of this point, we provide an extra-view of the
bound and the presence of (fixed) local and (unfixed) global parameters in each term. See section
A.3. for this.

A.1 Gaussian marginals for infinite-dimensional integral operators

The properties of Gaussian marginal distributions indicate that, having two normal-distributed random
variables a and b, its joint probability distribution is given by

p(a, b) = N
([
µa
µb

]
,

[
Σaa Σab

Σba Σbb

])
,

and if we want to marginalize one of that variables out, such as
∫
p(a, b)db. It turns to be∫

p(a, b)db = p(a) = N (µa,Σaa).

This same property is applicable to every derivation with GPs. In our case, it is the key point that we
use to reduce the large-dimensional integral operators w.r.t. the stochastic process f+. An example

3

can be found in the expectation Ep(f+ 6=u∗ |u∗) [·] of (6). Its final derivation to only integrate on uk
rather than on f+6=u∗ comes from

p(f+6=u∗ |u∗) = p(f+6={u∗,uk},uk|u∗)

= N
([
mf+ 6={u∗,uk}|u∗

muk|u∗

]
,

[
Qf+ 6={u∗,uk}|u∗ Qf+ 6={u∗,uk},uk|u∗

Quk,f+6={u∗,uk}|u∗ Quk|u∗

])
,

and if we marginalize over f+6={u∗,uk}|u∗, ends in the following reduction of the conditional prior
expectation

Ep(f+ 6=u∗ |u∗) [g(uk)] =

∫
p(f+6=u∗ |u∗)g(uk)df+6=u∗

=

∫∫
p(f+6={u∗,uk},uk|u∗)g(uk)df+6={u∗,uk}duk

=

∫
p(uk|u∗)g(uk)duk = Ep(uk|u∗) [g(uk)] , (9)

where we denote g(uk) = log (qk(uk)/pk(uk)) and we used∫
p(f+6={u∗,uk},uk|u∗)df+6={u∗,uk} = p(uk) = N (muk|u∗ ,Quk|u∗).

A.2 Contrastive predictive GP posterior

The contrastive predictive GP posterior distribution qC(uk) is obtained from the nested integration in
(8). We begin its derivation with the l.h.s. expectation term in (8), then

K∑
k=1

Eq(u∗)

[
Ep(uk|u∗)

[
log

(
Zk

qk(uk)

pk(uk)

)]]

=

K∑
k=1

∫∫
q(u∗)p(uk|u∗) log

(
Zk

qk(uk)

pk(uk)

)
dukdu∗

=

K∑
k=1

∫ (∫
q(u∗)p(uk|u∗)du∗

)
qC(uk)

log

(
Zk

qk(uk)

pk(uk)

)
duk, (10)

where the conditional GP prior distribution between the module’s inducing-inputs uk and the new
ones u∗, is p(uk|u∗) = N (uk|mk|∗,Qk|∗) with

mk|∗ = K>∗kK
−1
∗∗u∗,

Qk|∗ = Kk −K>∗kK
−1
∗∗K∗k,

and where covariance matrices are built from [K∗∗]m,n := k(zm, zn) with zm, zn ∈ Rp. Finally,
the contrastive predictive GP posterior qC(uk) can be computed from the expectation term in (10) as∫

q(u∗)p(uk|u∗)du∗ = qC(uk) = N (uk|mC ,SC), (11)

where the parametersmC and SC are

mC = K>∗kK
−1
∗∗µ∗,

SC = Kk −K>∗kK
−1
∗∗ (S∗ −K∗∗)K

−1
∗∗K∗k.

A.3 Parameters in the module-driven lower bound

We approximate the meta-GP posterior distribution as q(f,u∗) ≈ p(f,u∗|D), where we introduce the
subset of inducing-inputs Z∗ = {zm}Mm=1 and their corresponding function evaluations, u∗. Then,
the explicit variational distribution given the pseudo-observations u∗ is q(u∗) = N (u∗|µ∗,S∗).

4

Previously, we have obtained the dictionary of modulesM = {M1,M2, . . . ,MK} without any
specific order, where eachMk = {φk,ψk,Zk,L∗k}, φk being the corresponding local variational
parameters µk and Sk.

If we look to the module-driven lower bound in (8), we omitted the conditioning on both varia-
tional parameters and hyperparameters for clarity. However, to make this point clear, we will now
rewrite (8) to show the influence of each parameter variable over each term in the final bound. We
remark that {φk,ψk}Kk=1 are given and fixed, whilst {φ∗,ψ∗} are the variational parameters and
hyperparameters that we aim to fit,

LM(φ∗,ψ∗) =

K∑
k=1

L∗k +
K∑
k=1

EqC(uk|φ∗,ψ∗) [log qk(uk|φk)− log pk(uk|ψk)]

− KL [q(u∗|φ∗)||p(u∗|ψ∗)] .

We remind that the global variational parameters are φ∗ = {µ∗,S∗}, while the hyperparameters
would correspond to ψ∗ = {`, σa} in the case of using the vanilla kernel, with ` being the lengthscale
and σa the amplitude variables. The notation of the modular counterpart is equivalent.

The dependencies of parameters in our Pytorch implementation (https://github.com/pmorenoz/
ModularGP) are clearly shown and evident from the code structure oriented to objects. It is also
amenable for the introduction of new covariance functions and more structured variational approxi-
mations if needed.

A.4 Contrastive predictive GP posterior with multi-output modules

When we consider modular multi-output scenarios, we assume the output functions {fk(·)}Kk=1
per module Mk ∈ M to be linear combinations of Q latent functions V . Additionally,
we define Q variational distributions, such that q(v∗q) = N (v∗q|µ∗q,S∗q), where v∗q =
[vq(z1), vq(z2), . . . , vq(zM)]>. Similarly as in the single-output case, the exact solution of the
contrastive density qC(uk) can be obtained from the following derivation, that is

qC(uk) =

∫
p(uk|v∗)q(v∗)dv∗

=

∫
· · ·
∫
p(uk|v∗1,v∗2, . . . ,v∗Q)

Q∏
q=1

q(v∗q)dv∗1 . . . dv∗Q = N (uk|mC ,SC),

where the conditional distribution is p(uk|v∗) = N (uk|muk|v∗ ,Quk|v∗) with

muk|v∗ = Kukv∗K−1v∗v∗v∗,

Quk|v∗ = Kukuk
−Kukv∗K−1v∗v∗K>ukv∗

.

Note that covariance matrices in the latter case are equivalent to the ones shown in section A.2 but
considering the cross-covariance structure of the multi-output GP prior. Finally, the mean vector mC
and the covariance matrix SC of the contrastive distribution qC(uk) are

mC =

Q∑
q=1

Kukv∗q
K−1v∗qv∗q

µ∗q,

SC = Kukuk
+

Q∑
q=1

Kukv∗q
K−1v∗qv∗q

(S∗q −Kv∗qv∗q
)K−1v∗qv∗q

K>ukv∗q
.

B Distributions and Expectations

To assure the future and easy reproducibility of our modular GP framework, we provide the exact
expression of all distributions and expectations involved in the module-driven lower bound in (8).

Distributions: The log-distributions and distributions that appear in (8) are log q(uk), log p(uk),
q(u∗), p(u∗) and qC(uk). First, the computation of the logarithmic distributions is

log q(uk) = log (N (uk|µk,Sk)) = −
1

2
(uk − µk)>S−1k (uk − µk)−

1

2
log det(2πSk),

5

https://github.com/pmorenoz/ModularGP
https://github.com/pmorenoz/ModularGP

log p(uk) = log (N (uk|0,Kkk)) = −
1

2
u>k K−1kk uk −

1

2
log det(2πKkk),

while q(u∗) and p(u∗) are just q(u∗) = N (u∗|µ∗,S∗) and p(u∗) = N (u∗|0,K∗∗). The exact
expression of the distribution qC(uk) is provided in the section A.2.

Expectations and divergences: The K expectations in the l.h.s. term in (8) can be rewritten as

K∑
k=1

EqC(uk) [log qk(uk)− log pk(uk)]

=

K∑
k=1

[
EqC(uk) [log qk(uk)]− EqC(uk) [log pk(uk)]

]
=

K∑
k=1

[〈
log qk(uk)

〉
qC(uk)

−
〈
log pk(uk)

〉
qC(uk)

]
, (12)

where the k-th expectations over both log qk(uk) and log pk(uk) take the form〈
log qk(uk)

〉
qC(uk)

= −1

2

(
Tr
(
S−1k SC

)
+ (mC − µk)>S−1k (mC − µk) + log det (2πSk)

)
,〈

log pk(uk)
〉
qC(uk)

= −1

2

(
Tr
(
K−1kkSC

)
+m>CK−1kkmC + log det (2πKkk)

)
.

C Combined Module-driven Bounds with New Unseen Data

There might be scenarios where it could be not necessary to distribute the whole dataset D in K local
tasks or, for instance, a new unseen subset k+1 of observations might be available for processing. In
such case, it is still possible to obtain a combined meta-GP solution that fits both to the GP module
approximations and the new data. For clarity on this point, we rewrite the principal steps of the lower
bound derivation in section A but without substituting all the log-likelihood terms by their Bayesian
approximation, that is

LM = Eq(u∗)

[
Ep(f+ 6=u∗ |u∗)

[
K∑
k=1

log(Zkp(yk|f+)) + log p(yk+1|f+)

]
− log

(
q(u∗)

p(u∗)

)]

= Eq(u∗)

[
K∑
k=1

Ep(f+ 6=u∗ |u∗) [log (Zkp(yk|f+))] + Ep(f+ 6=u∗ |u∗) [log p(yk+1|f+)]

]

− Eq(u∗)
[
log

(
q(u∗)

p(u∗)

)]
= Eq(u∗)

[
K∑
k=1

Ep(uk|u∗)

[
log

(
Zk

qk(uk)

pk(uk)

)]
+ Ep(fk+1|u∗) [log p(yk+1|fk+1)]

]

− Eq(u∗)
[
log

(
q(u∗)

p(u∗)

)]

=

K∑
k=1

logZk +

K∑
k=1

EqC(uk) [log qk(uk)− log pk(uk)] +

Nk+1∑
n=1

Eq(fn) [log p(yn|fn)]

− KL [q(u∗)||p(u∗)] , (13)

where q(fn) is the result of the integral q(fn) =
∫
q(u∗)p(fn|u∗)du∗ and we applied the factorisa-

tion to the new (k + 1)-th expectation term as in Hensman et al. (2015).

D Detailed Derivation of Multi-output Module-driven Lower Bounds

The first decision that we take for introducing the multi-output GP setting into the modular framework
is to relax the assumption of a single latent GP function f(·) modulating all the independent modules.

6

Instead, we assume them to be correlated and accept a new parameterization based on a set of Q
latent functions V = {vq(·)}Qq=1. Thus, each one of the parameter functions {fk(·)}Kk=1 inferred for
every GP moduleMk ∈M is assumed to be a linear combination of V .

Having K partitions of the dataset D with their corresponding outputs y = {y1,y2, . . . ,yK} as in
Sec. A in this appendix, we begin by augmenting the marginal log-likelihood distribution as

log p(y) = log p(y1,y2, . . . ,yK) = log

∫∫
p(y,F+,V+)dF+dV+, (14)

where we have denoted F+ = {fk+}Kk=1 and V+ = {vq+(·)}Qq=1. Importantly, notice that each fk+
is the augmented large-dimensional GP per kth module. This is different from the usual f+ in the
single-output formulation, as we now assume that modules are parametrized by correlated functions
fk(·). Then, the log-marginal likelihood factorises as

log

∫∫
p(y,F+,V+)dF+dV+ = log

∫∫
p(y|F+)p(F+,V+)dF+dV+, (15)

where the augmented likelihood distribution factorises as p(y|F+) =
∏K
k=1 p(yk|fk+). To build the

lower bound under the log-marginal likelihood, we first introduce Q variational distributions such
that q(v∗q) = N (v∗q|µ∗q,S∗q), where v∗q = [vq(z1), vq(z2), . . . , vq(zM)]>. Then,

log p(y) = log

∫∫
p(y|F+)p(F+,V+)dF+dV+ = log

∫∫
q(V∗)
q(V∗)

p(y|F+)p(F+,V+)dF+dV+

= log

∫∫
q(V∗)
q(V∗)

p(y|F+)p(F+,V+6=∗|V∗)p(V∗)dF+dV+6=∗dV∗, (16)

where q(V∗) =
∏Q
q=1 q(v∗q), p(V∗) =

∏Q
q=1 p(v∗q) and we used V+ = {V+6=∗,V∗}. We also

remark the GP priors per qth latent function are p(v∗q) = N (0,K∗q∗q) and matrices [K∗q∗q]m,n :=

k(zm, zn), with zm, zn ∈ Z∗. Similarly as in the single-output case and derivation included in Sec.
A, this log-marginal likelihood distribution can be lower bounded as

log p(y) = log

∫∫
q(V∗)
q(V∗)

p(y|F+)p(F+,V+6=∗|V∗)p(V∗)dF+dV+6=∗dV∗

= log

∫∫
q(V∗)p(y|F+)p(F+,V+6=∗|V∗)

p(V∗)
q(V∗)

dF+dV+6=∗dV∗

= log

(
Eq(V∗)

[
Ep(F+,V+ 6=∗|V∗)

[
p(y|F+)

p(V∗)
q(V∗)

]])
≥
(
Eq(V∗)

[
Ep(F+,V+ 6=∗|V∗)

[
log p(y|F+)

p(V∗)
q(V∗)

]])
= LMO

M . (17)

This multi-output module-driven bound LMO
M is the one included in Eq. 7 in the main manuscript. The

derivation of integrals is analogous to the single-output case, considering Q independent variational
distributions instead.

E Intractable Expectations

When we consider a binary classification task, the likelihood function use to be a Bernoulli distribution,
such as p(yn|fn) = Ber(yn|ρ = φ(fn)). The non-linear linking mapping φ(·) is the sigmoid function
in our case. However, for training the modular GP approximations, the expectation term of the ELBO
is still intractable over the log-likelihood distribution. To solve the following integrals

Eq(fn) [log p(yn|fn)] =
∫
q(fn) log p(yn|fn)dfn,

we make use of the Gaussian-Hermite quadratures. In the univariate case with binary observations,
the previous integral can be approximated as

7

Eq(fn) [log p(yn|fn)] ≈
1√
π

S∑
s=1

ws log p(yn|
√
2vnfs +mn),

wheremn and vn are the corresponding mean and variance of the marginal variational distribution
q(fn). Additionally, the pairs of weight-point values (ws,fs) are obtained by sampling S times the
Hermite polynomial Hn(x) = (−1)nex2 dn

dxn e
−x2

. This computation is also used for the calculus of
predictive distributions and NLPD metrics.

F Experiments, Optimization Algorithms and Metrics

The code for the experiments is written in Python 3.7 and uses the Pytorch syntax for the automatic
differentiation of the probabilistic models. It can be found in the repository https://github.
com/pmorenoz/ModularGP, where we also use the library GPy for some algebraic utilities. In this
section, we provide a detailed description of the experiments and the data used, the initialization
of both variational parameters and hyperparameters, the optimization algorithm for both the local
and the global GP and the performance metrics included in the main manuscript, e.g. the negative
log-predictive density (NLPD), the root mean square error (RMSE) and the mean absolute error (MAE).

F.1 Detailed description of experiments

In our experiments with toy data, we used two versions of the same sinusoidal function, one of them
with an incremental bias. The true expressions of f(·) are

f(x) =
9

2
cos

(
2πx+

3π

2

)
− 3 sin

(
43π

10
x+

3π

10

)
,

and
f(x)bias = f(x) + 3x− 15

2
.

i) Toy concatenation: For the first experiment, whose results are illustrated in the Figure 2 of the
main manuscript, we generated K = 5 subsets of observations in the input-space range x ∈ [0.0, 5.5].
Each subset was formed by Nk = 500 uniform samples of xk that were later evaluated by f(x)bias.
Having the values of the true underlying function fk = f(xk), we generated the true output targets
as yk = fk + εk, where εk ∼ N (0, 2). For each modular task, we set a number of Mk = 15
inducing-inputs Zk that were initially equally spaced in each input region. The chosen number of
inducing-inputs Z∗ for the meta-GP was M = 35, initialized in the same manner as in the modular
GP case. For all the predictive posterior distributions plotted, we usedNtest = 400 also equally spaced
in the global input-space. The setup of the VEM algorithm (see section F.3) was {VE = 30, VM = 10,
ηm = 10−3, ηL = 10−6, ηψ = 10−8, ηZ = 10−8} for the meta-GP. The previous variables η and
VM refer to the learning rates used for each type of parameter and the number of iterations in the
optimization algorithm.

ii) Distributed GPs: In this second experiment, our goal is to compare the performance of the
modular GP framework with the distributed GP methods in the literature (Tresp, 2000; Ng and
Deisenroth, 2014; Cao and Fleet, 2014; Deisenroth and Ng, 2015). To do so, we begin by generating
toy samples from the sinusoidal function f(x). The comparative experiment is divided in two parts,
in one, we observe N = 103 and in the other, N = 104 input-output data points. In the first case,
we splitted the dataset D in K = 50 tasks with Nk = 200 and Mk = 3 per partition. Any of these
distributed subsets were overlapping, and their corresponding input-spaces concatenated perfectly
in the range x ∈ [0.0, 5.5]. For the setting with N = 104 samples, we used K = 500 local tasks,
that in this case, were overlapping. As we already commented in the main manuscript, the baseline
methods underperform more than our framework in problems where partitions do not overlap in the
input-space. Additionally, standard deviation (std.) values in Table 3 indicate that we are more robust
to the fitting crash of some task. This fact is understandable as our method searches a global solution
q(u∗) that fits to all the GP modules in average. In contrast, the baseline methods are based on a final
ensemble solution that is an analytical combination of all the distributed ones. Then, if one or more
fails, the final predictive performance might be catastrophic. Notice that the baseline methods only
require to train the GP modules separately, thing that we did with the LBFGS optimization algorithm.
The setup of the VEM algorithm during the ensemble fitting was {VE = 30, VM = 10, ηm = 10−3,

8

https://github.com/pmorenoz/ModularGP
https://github.com/pmorenoz/ModularGP

ηL = 10−6, ηψ = 10−8, ηZ = 10−8}. As in the previous experiment with toy data, we set M = 35
inducing-inputs.

Figure 1: Graphical depiction of the pyramidal
structure for meta-GP models of meta-GPs.

iii) Modular Meta-GPs: For simulating poten-
tial scenarios with at leastN = 106 input-output
data points, we used the setting of the previ-
ous experiment, but with K = 5 · 103 tasks of
Nk = 800 instead. However, as explained in the
paper, its performance was hard to evaluate in
the baseline methods, due to the problem of com-
bining bad-fitted GP models. Then, based on the
experiments of Deisenroth and Ng (2015) and
the idea of building meta-GPs of meta-GPs, we
set a pyramidal way for joining the distributed
GP modules. It was formed by two layers, that
is, we joined ensembles twice as shown in the
Figure 1 of this appendix.

iv) Banana dataset: The banana experiment
is perhaps one of the most used datasets for
testing GP classification models. We followed a
similar strategy as the one used in the illustrative
MNIST experiment. After removing the 33%
of samples for testing, we partitioned the input-area in four quadrants, i.e. as is shown in Figure 5.
For each partition we set a grid of Mk = 9 inducing-inputs and later, the maximum complexity of
the meta-GP model was set to M = 25. The baseline GP classification method also used M = 25
inducing-inputs and obtained an NLPD value of 7.29 ± 7.85 × 10−4 after ten trials with different
initializations. Our method obtained a test NLPD of 7.21 ± 0.04. As we mentioned in the main
manuscript, the difference is understandable as the recyclable GP framework used a total amount of
4× 16 inducing-inputs, that capture more uncertainty than the 16 of the baseline method. The setup
of the VEM algorithm was {VE = 20, VM = 10, ηm = 10−3, ηL = 10−5, ηψ = 10−6, ηZ = 10−5}.

v) Airline delays (US flight data): Based on the experiments presented in Gal et al. (2014);
Deisenroth and Ng (2015); Hensman et al. (2013, 2015), we obtained a large-scale dataset re-
porting the delays of flights in US during the year 2008. The data is publicly available at
https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009. The col-
lection is huge, with approximately N = 1.5 × 106 input-output data points. Similarly as in the
experiments of Deisenroth and Ng (2015), we considered the input space to be 6−dimensional. The
input features correspond to: i) year, ii) month, iii) day, iv) day-of-week, v) time of departure and vi)
distance of flight. The output target is the delay of the flight in minutes, if there is no delay, the target
value is 0. The pre-processing script for the experiments is also included in the repository. For the
experiments we used a total number of M = 100 inducing points Z∗. The meta-GP optimization
process was carried out using the Adam optimizer (Kingma and Ba, 2015). The setup of learning
rates was the following: {ηm = 10−2, ηL = 10−3, ηψ = 10−5, ηZ = 10−5}. We used the ARD
version of the vanilla kernel for this experiment.

vi) London household data: Based on the large scale experiments in Hensman et al. (2013), we
obtained the register of properties sold in the Greater London county during the 2017 year (https:
//www.gov.uk/government/collections/price-paid-data). All addresses of household reg-
isters were translated to latitude-longitude coordinates, that we used as the input data points. In
our experiment, we selected three heterogeneous registers, one real-valued and the two others are
binary. The real-valued output targets correspond to the log-price of the properties included in the
registers. Moreover, the binary values make reference to the type of contract, yi = 1 if it was a
leasehold and yi = 0 if freehold, and to the type of property, yi = 1 if it was a flat-type and yi = 0
otherwise. Interestingly, we appreciated that both tasks share modes across the input region, as they
are correlated. That is, if there is more presence of some type of contract, it makes sense that the
price increases or decreases accordingly.

vii) Pixel-wise MNIST classification: For the illustrative experiment, we took images of ones and
zeros from the MNIST dataset. To simulate a pixel-wise unsupervised classification problem, true
labels of images were ignored. Instead, we threshold the pixels to be greater or smaller than 0.5,

9

https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009
https://www.gov.uk/government/collections/price-paid-data
https://www.gov.uk/government/collections/price-paid-data

and labeled as yi = 0 or yi = 1. That is, we turned the grey-scaled values to a binary coding.
Then, all pixels were described by a two-dimensional input in the range [−1.0, 1.0], that indicates the
coordinate of each output datum. In the case of the zero image, we splitted the data in four areas,
i.e. the four corners, as is shown in the subfigure (A) of Figure 4. Each one of the modular tasks
was initialized with an equally spaced grid of Mk = 16 inducing-inputs. The meta-GP required
M = 25 in the case of the number zero and M = 16 for the one. The plotted curves correspond to
the test GP predictive posterior at the probit levels [0.2, 0.5, 0.8]. The setup of the VEM algorithm
was {VE = 20, VM = 10, ηm = 10−3, ηL = 10−5, ηψ = 10−6, ηZ = 10−5}.

F.2 Performance metrics

In our experiments, we used three metrics for evaluating the predictive performance of the global GP
solutions: i) negative log-predictive density (NLPD), ii) root mean square error (RMSE) and iii) mean
absolute error (MAE). Given a test input datum xt and {f̂t, ŷt} being the predictive mean of the GP
function and output prediction respectively, the metrics can be computed as

NLPD = −
Nt∑
t=1

log p(yt|D),

RMSE =

√√√√ 1

Nt

Nt∑
t=1

(f̂t − ft)2,

MAE =
1

Nt

Nt∑
t=1

∣∣∣f̂t − ft∣∣∣ ,
where yt and ft are the true output target and function values. Nt is the number of test data points.

F.3 Optimization algorithms

Sometimes with sparse variational GP models, if one fits both hyperparameters ψ, inducing points Z
and variational parameters φ at the same time, the optimization becomes difficult. This is mainly
due to the hyperparameters ψ and Z, whose abrupt changes while optimising may affect to the
conditional GP densities and provide errors. To avoid this and also inspired in the well-known
expectation-maximization (EM) algorithm and coordinate ascent methods, we alternatively can freeze
and unfreeze hyperparameters and parameters during optimization. The following version of the
variational expectation-maximization (VEM) algorithm was used mainly for the training of GP
modules. That is the reason why we do not include the sub-scripts {k, ∗} in the parameter variables.

Algorithm 1 — VARIATIONAL EM FOR MODULAR GPS

1: Initialize ψ,φ and Z
2: while not L(t)

M ≈ L
(t−1)
M do

3: # Variational Expectation (VE)
4: for j ∈ 1, . . . , VE do
5: update µ(j) ← µ(j−1) + ηµ∇µLM
6: update L(j) ← L(j−1) + ηL∇LLM
7: end for
8: # Variational Maximization (VM)
9: # Hyperparameters

10: for j ∈ 1, . . . , VM do
11: update `(j) ← `(j−1) + ηψ∇`LM
12: update σa,(j) ← σa,(j−1) + ηψ∇σa

LM
13: end for
14: # Inducing-inputs
15: for j ∈ 1, . . . , VM do
16: update Z(j) ← Z(j−1) + ηZ∇ZLM
17: end for
18: end while

10

For the distributed GP regression models needed for the baseline methods, we used the LBFGS
optimization algorithm with a learning rate η = 10−2. We set a default maximum of 50 iterations.

For the learning of meta-GPs we observed that the Adam optimizer (Kingma and Ba, 2015) was
well-suited for this task. Details on learning rates and epochs can be found in the experiments
included in our Github repository https://github.com/pmorenoz/ModularGP.

G Discussion on Assets

F.1 License of scripts. Our code is based on the Pytorch framework, publicly available under
the BSD license, and whose copyright is available at https://github.com/pytorch/pytorch/
blob/master/LICENSE. We did not modify or redistributed the library, and its use was only
for a research purpose. Additionally, we made use of the GPy library (https://github.com/
SheffieldML/GPy) which is also under the BSD license. Finally, the code for the kernel using the
Pytorch syntax is based on the original scripts of Steven Atkinson, which are publicly available at
https://github.com/cics-nd/gptorch under the MIT license.

F.2 Data consent and identifiable information. For our experiments, we used two datasets whose
information comes from people. For both the London household and the US airlines datasets, the
information was anonymous and pre-processed for guaranteeing the privacy. In the case of the
London dataset, the latitude-longitude coordinates were normalized to the [0, 1] range. In both cases,
consent was given by authorities for using the data for statistical analysis in the public websites.

F.3 Computing resources used. All experiments were carried out in MacBook Pro (2021) with
an M1 chip processor with 16GB of memory. No extra GPU resources were needed, neither for the
1.5M dataset.

H Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] In the experiments.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] In the

conclusion.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] In Section 2.2.
of the main manuscript.

(b) Did you include complete proofs of all theoretical results? [Yes] See Eq. 4 and extra
derivations in the appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] Pytorch
code available at public repository, experiments files included, links to datasets in the
appendix.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Setup of GP variables (Q, M , etc) in the experiments, further
details on initialization and optimization in the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All GP error metrics (NLPD, MAE, RMSE) include std.
values.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In the appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] In the experiments

and in the scripts.

11

https://github.com/pmorenoz/ModularGP
https://github.com/pytorch/pytorch/blob/master/LICENSE
https://github.com/pytorch/pytorch/blob/master/LICENSE
https://github.com/SheffieldML/GPy
https://github.com/SheffieldML/GPy
https://github.com/cics-nd/gptorch

(b) Did you mention the license of the assets? [Yes] In the appendix and scripts.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

In the appendix.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] In the appendix.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] In the appendix.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

References
Y. Cao and D. J. Fleet. Generalized product of experts for automatic and principled fusion of Gaussian process

predictions. arXiv preprint arXiv:1410.7827, 2014.

M. Deisenroth and J. W. Ng. Distributed Gaussian processes. In International Conference on Machine Learning
(ICML), pages 1481–1490, 2015.

Y. Gal, M. Van Der Wilk, and C. E. Rasmussen. Distributed variational inference in sparse Gaussian process
regression and latent variable models. In Advances in Neural Information Processing Systems (NIPS), pages
3257–3265, 2014.

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Uncertainty in Artificial
Intelligence (UAI), pages 282–290, 2013.

J. Hensman, A. Matthews, and Z. Ghahramani. Scalable variational Gaussian process classification. In Artificial
Intelligence and Statistics (AISTATS), pages 351–360, 2015.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. 2015.

J. W. Ng and M. P. Deisenroth. Hierarchical mixture-of-experts model for large-scale Gaussian process regression.
arXiv preprint arXiv:1412.3078, 2014.

M. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Artificial Intelligence and
Statistics (AISTATS), pages 567–574, 2009.

V. Tresp. A Bayesian committee machine. Neural Computation, 12(11):2719–2741, 2000.

12

	Appendices
	Detailed Derivation of the Module-driven Lower Bound
	Gaussian marginals for infinite-dimensional integral operators
	Contrastive predictive GP posterior
	Parameters in the module-driven lower bound
	Contrastive predictive GP posterior with multi-output modules

	Distributions and Expectations
	Combined Module-driven Bounds with New Unseen Data
	Detailed Derivation of Multi-output Module-driven Lower Bounds
	Intractable Expectations
	Experiments, Optimization Algorithms and Metrics
	Detailed description of experiments
	Performance metrics
	Optimization algorithms

	Discussion on Assets
	Checklist

