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Abstract

This study presents a novel two-level SVM
(Support Vector Machine) model for the au-
tomatic (early) detection of Alzheimer’s Dis-
ease (AD) using language markers that are in-
dependent of lexical semantics. We avoid lex-
ical semantic features because they are sub-
ject to high individual variation, thus limiting
their predictive power for unseen data. Instead,
we focus on morphosyntactic, syntactic, and
sentence-level features, which are more stable
and potentially allow for easier generalization
of the model to other datasets, languages, and
individuals. We constructed SVMs at both
the sentence level and the subject level, ap-
plying language features extracted from auto-
matically parsed transcriptions from the Pitt
and Delaware corpora in DementiaBank. Our
model demonstrated that the subject-level SVM
significantly improved classification accuracy.
The model yields high performance across all
evaluation metrics on the test set for both AD
and Mild Cognitive Impairment statuses.

1 Introduction

Language markers have been used as an inexpen-
sive, non-invasive, accessible, and fast test for the
early detection of Alzheimer’s Disease (AD) (Os-
trand and Gunstad 2021, Vigo et al. 2022; see Luz
et al. 2021a for an overview of relevant studies).
This approach enables the creation of platforms
such as chatbot applications for identifying AD pa-
tients (e.g., de Arriba-Pérez et al. 2023, BT and
Chen 2024), potentially leading to treatments that
can preserve the cognitive functions of AD patients
for a longer time (Stern 2006, Lautenschlager et al.
2008).

Previous studies have shown that integrating dif-
ferent language markers with machine learning
leads to superior performance (Luz et al. 2021a).
Recently, there has been a special focus on ex-
tracting prosodic and phonetic features for pre-
diction purposes (Szatloczki et al. 2015, Konig

et al. 2015), with the best models usually utiliz-
ing subject-related information (e.g., Sadeghian
et al. 2021, Mahajan and Baths 2021). However,
data collection methods, such as those used in chat-
bot applications for initial filtering purposes, may
not always be able to gather subject demographic
information such as age, education, gender, and
language background. To make these applications
most accessible for data collection and to lever-
age possible storage space limitations—especially
when the application is used for a large popula-
tion—text information may be the most accessible
format (e.g., Snowdon 1997). A form of text that is
readily available might be the (auto) transcription
of the participants’ speech.

In this study, we are searching for language
markers for the detection of AD and Mild Cog-
nitive Impairment (MCI), a major precursor of AD
(Rosenberg et al. 2013). These language markers
should not require extensive data collection and
avoid collecting sensitive personally identifiable
information. Consequently, some of the previously
developed models may not be applicable to this
particular requirement without significant adjust-
ment. In this study, we will minimize the informa-
tion from the potential patients to transcription of
speech available in DementiaBank ((Lanzi et al.,
2023)). We provide modeling results with subjec-
tive information that is available from Dementia-
Bank for the purpose of comparison with previous
studies. In addition, for models that were built off
lexical-related language features, targeting the spe-
cific words that have been used (or any features that
are directly determined by the word forms), will
likely give rise to high variability in prediction (An-
tonsson et al. 2021). This pitfall can be concealed
when applying classifier models, such as Support
Vector Machines (SVMs), to train and test set that
are not split according to the subjects but according
to the data points: the model may capture some
individual-level lexical use preference instead of



a linguistic pattern that is generalizable to other
subjects (Hoang et al., 2023).

In sum, this study intends to provide effective
language markers under the restriction of data for-
mat and information type, by achieving the follow-
ing three goals: (i) the language indices are exclu-
sively extracted from parsed text transcriptions; and
(i1) we focus on syntactic indices which are poten-
tially more stable properties across languages, (iii)
constructing a model with high predictive power
without resorting to subject demographic informa-
tion. The first two goals are challenging as previous
studies have reported that speech-related features
give better results than text-related features (He
et al. 2023). In addition, it has been observed that
lexical semantics and verbal fluency are affected
in the initial stages of AD, whereas syntax is more
preserved (Kempler et al. 1987). Conversely, more
recent studies also reveal syntactic simplification in
AD patients (Kemper et al. 2001b), which are more
pronounced in their written responses (Croisile
et al. 1996).Individuals who have a lower score
on grammatical complexity would more likely de-
velop dementia later in their lives (Kemper et al.,
2001a). The third goal is important for promot-
ing the widespread application of computational
methods in filtering tests for AD.

In this study, we track lexical-independent mor-
phosyntactic and syntactic features, along with sur-
prisal values extracted from large language models.
We extracted morphosyntactic and syntactic fea-
tures from transcription texts that are parsed by a
Universal Dependency parser, i.e., UDPipe (Zeman
et al. 2023, Straka et al. 2016). Generally, the UD-
Pipe parser can be applied to transcriptions and has
the potential to obtain more stable language mark-
ers across speakers, including those from different
language backgrounds. In past studies, researchers
have suggested syntactic changes in AD and MCI,
including syntactic simplification, elliptical and
segmental sentences, phrase repetition, phrasing se-
lection problems, and verb agreement errors (Cross-
ley et al. 2007, Sajjadi et al. 2012, Eyigoz et al.
2020, Chapin et al. 2022, Varlokosta et al. 2024).
Based on this foundation, we listed language fea-
tures derived from syntactic-level changes in de-
mentia after a comprehensive review of existing
literature. These language features are integrated
with machine learning models. With the selected
morphosyntactic and syntactic features, this inte-
gration aims to analyze the diagnostic accuracy of

predicting potential AD and MCI patients. The
analysis can help researchers in the process of data
collection and the early detection of AD.

For data structuring, our project collects sen-
tences from the DementiaBank database, the Pitt
(Becker et al., 1994) and Delaware (DE) corpora
(Lanzi et al., 2023), and uses the automatic analy-
sis tool UDPipe for universal dependencies parsing
(Zeman et al. 2023, Straka et al. 2016). Our goal is
to compile a set of relevant syntactic and sentence
processing features and test their efficiency and
accuracy in the early automatic detection of AD.

2 Data and Models

2.1 Data sets and language features extraction

We included data of 232 subjects from the Pitt
corpus, with 66 healthy controls (HCs), 11 MCI
patients, and 147 AD patients; with a few subjects
appearing in more than one category because of
their health status changes. Only subjects who have
completed the Cookie Theft task were included.
Given that many of the subjects are retested in one
year or longer, we consider the results from each
test as an independent subject. This makes the
total number of subjects 400, with 149 HCs, 21
MCI patients, and 220 AD patients. Given that the
amount of MCI patients is small, we excluded them
from the models. For the DE corpus, we extracted
data from 73 subjects, with 26 HCs and 47 MCI
patients.

We removed special annotation texts and ex-
tracted all sentences produced by the subjects in
Pitt and DE corpora. Specifically, we extracted
sentences from the Cookie Theft task in Pitt and
the multiple picture descriptions in DE. Figure 1
and 2 show the number of sentences per subject
is relatively small but stable in Pitt, whereas each
subject in DE has more sentences, due to the reason
that the data were collected with multiple picture
description tasks.

We collected a list of language features by re-
viewing existing literature with a focus on mor-
phosyntactic, syntactic, and phrase/sentence-level
features. Previous studies have shown that AD
patients exhibit sentence processing difficulties at
the syntax level as well as memory-related seman-
tic deficits (e.g., naming difficulties) (Chapin et al.
2022, Herndndez-Dominguez et al. 2018, Eyigoz
et al. 2020, Ostrand and Gunstad 2021). These
features are obtained by running Python scripts
(see Appendix) over the transcriptions from the Pitt
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Figure 2: Number of sentences from each subject in DE

and DE corpora, which are parsed by a Universal
Dependency parser provided by the UDPipe.

Examples of syntactic features include the types
and amount of clauses, the types and amount of
adjuncts, the amount of tense and aspect markers,
transitive and intransitive verbs, repeating articles,
etc. The morphosyntactic features, namely, the
amount of derivational and inflectional morphemes,
are based on a morphological analysis using the
English morpheme database from the unimorph
package (Kirov et al. 2018). For sentence process-
ing features, we obtained the surprisal values for
each word in each sentence (as annotated by UD-
Pipe) from the full GPT-2 model in Hugging Face.
With the surprisal values, we calculated the mean,
minimum, and maximum surprisal for each sen-
tence. However, including all these surprisal values
in the SVM model led to high multicollinearity
(measured by the Variance Inflation Factor, VIF).
Therefore, we included only the minimum and max-
imum surprisal values, which produce the best out-
come with their VIFs kept below 5. Overall, 40
syntactic/sentence-related features are included in
the models.

To ensure that the language features are extracted
as expected, we constructed a gold standard file

with 100 selected sentences from our data sources.
Of these 100 samples, 50 are identified as AD pa-
tients, and the remaining 50 from individuals with
MCI. This gold standard serves as a reference to
determine the accuracy of the Python code used
for extracting and counting language features from
universal dependency annotations.

2.2 Data preprocessing

To preprocess the data, sentences with a total token
number(including punctuation) less than or equal
to 4 were excluded. Additionally, subjects who
were diagnosed with MCI were excluded from the
Pitt corpus due to its small sample size. Lastly,
missing data in any language features, 0.4% from
Pitt and 0.2% from DE, were excluded from the
following modeling.

We standardized and scaled the extracted nu-
meric features using the StandardScaler function
from Scikit-learn and transformed the categorical
features (subject demographic information) with
one-hot encoding. The data was split into train and
test sets by subject IDs to ensure the train and test
sets were not from the same subjects. This method
also excludes the possibility that the model is learn-
ing particular speech patterns of individual subjects
(e.g., the use of particular lexical items or linguistic
expressions). Some of the data collected are from
individual subjects at different time periods. On
average, there was at least a one-year gap between
two data collection processes. In the model, we
treat the data collected at different time periods
as data collected from different individuals. As a
result, our model will make independent predic-
tions for a potential patient even if the subject takes
the test every year. Furthermore, combining the
data collected at different periods together for the
subject-level SVM produces a better performance.

2.3 A two-level SVM model

Previous studies have suggested that SVM models
are among the machine learning methods that yield
the best evaluation matrices in predicting the diag-
nosis of AD (Antonsson et al. 2021, Balagopalan
et al. 2021, Luz et al. 2021a; see Vigo et al. 2022
for a review). Below we explore the integration
of SVM models: (1) a sentence-level SVM model
that predicts the diagnostic label for each sentence
based on the language features of the sentence; (2)
since each subject produced multiple sentences in
the corpora, a subject-level SVM model taking the
percentage of a particular predicted label from the



sentence-level model as input and the diagnostic
label as the output to predict the final diagnostic;
and (3) a subject-level SVM that has additional
subject-related information such as age, gender, ed-
ucation years as input, whose performance will be
more comparable to the previous models.

Two levels of the SVM model were built to es-
timate the prediction of a subject’s diagnosis. The
first is at the sentence level and the second is at the
subject level. The separation of the sentence and
subject level is quite unique among the previous
models we have seen, with (Hoang et al., 2023)
as a notable exception. Sentence-based organiza-
tion of the data is ideal for automatic parsing with
Universal Dependency parser. We extract the fea-
tures from each sentence in the dialogue between
the patient and the interviewer. Occasionally, the
dialogue was longer than one sentence, in which
case UDPipe will process them as a sentence with
clauses connected with dependency relations.

For each sentence, the sentence-level SVM
model outputs a diagnosis prediction. With regard
to prediction, the output is expected to involve con-
siderable noise because not every sentence is infor-
mative for the diagnostics. Both the patients and
HCs may produce similar sentences. To reduce the
effect of noise, we built a subject-level SVM for
the diagnosis prediction of each subject by taking
the percentage of a particular prediction label from
the sentence-level SVM as input and their diagnos-
tic as the target to train on. This level of SVM is
important and is novel as previous studies either
built a single SVM for each subject, or used a gaug-
ing technique to explore which percentage level
may serve as a threshold for the final diagnostic.
At the subject level, an important advantage of the
SVM model is that it can identify less informative,
noise sentences and exclude them when making its
prediction. By adjusting the hyperparameters (C
and gamma), the model determines the amount of
outliers to be excluded at the sentence-level. We
identify the optimal hyperparameters using grid
search. We demonstrate that the subject-level SVM
yields superior performance, which indicates that
the SVM model has identified a refined hyperplane
such that some level of the noise carried from the
sentence-level SVM can be correctly identified and
handled properly at the subject-level SVM model.

2.4 Model training

The training and testing of the model was carried
out with the Scikit-learn package in python (Pe-
dregosa et al. 2011). We split the data into train
and test sets, with the test set comprising data from
20% of the subjects in both corpora. The split was
based on subject IDs rather than individual data
points to prevent the model from simply learning
particular subjects’ patterns of language use, and
instead, focus on predicting the occurrence of AD
and MCI in unseen subjects. Below, we present the
performance of the SVM models on the test set.

To ensure that the model does not overfit the
data, K-Fold Cross Validation, with K set to 10,
was applied to the train set to generate an average
evaluation metrics matrix to mitigate the effects
produced by some potential variations due to sam-
pling bias. In addition, to avoid multicollinearity,
we examined the VIF of each linguistic feature
and excluded linguistic features that have high VIF
values. For example, mean surprisal was not in-
cluded in the models because it highly correlates
with both maximum and minimum surprisal. Ab-
normally superior performance was observed with
the sentence-level SVMs if we include the mean
surprisal in addition to maximum and minimum
suprisals. The VIF of these three features all ex-
ceeded 5, signaling multicollinearity issues. In
addition, we added minor noise to the data from a
Gaussian distribution with the mean = 0 and stan-
dard deviation = 0.01 in each of the models to
test whether the performance of the models will
be significantly altered. If the model has a severe
multicollinearity problem, small noise may change
the performance significantly. No alarming signs
of multicollinearity were observed.

Lastly, the model was tested with varying ran-
dom state values (100 random states in total), for
data splitting between the train and test set, to deter-
mine the average evaluation matrix across all ran-
dom states. We report the average matrices across
all random states in Table 1.

A special challenge in modeling the DE corpus
is the imbalance between the data from patients and
HC:s. In this corpus, the number of MCI subjects is
almost twice that of HCs. Additionally, the number
of sentences produced by each subject varies dra-
matically (see Figure 2). Together with the small
sample size, the imbalanced data can significantly
deteriorate the model’s performance, leading to a
specificity value close to 0. To overcome this limita-



Pitt Corpus DE Corpus

SVM level Score w/o subj-info w/ subj-info w/o subj-info w/ subj-info

Sentence  F1 0.64 +0.03 0.71 £0.04 0.54 +0.02 0.61 +=0.10
Precision  0.65 + 0.03 072 +0.04 0.62+0.11 0.73+£0.14
Recall 0.64 +0.03 0.71 £0.04 0.52 +0.03 0.66 + 0.09
Accuracy 0.64 + 0.03 0.71 +£0.04 0.52+0.03 0.66 + 0.09
Specificity 0.58 4+ 0.06 0.73 £0.10 0.57 +0.07 0.84 +0.11

Subject F1 0.90 +£0.18 092+0.05 0.82+0.10 0.68 +0.14
Precision 091 +0.14 092 +0.04 0.85+0.05 0.76 + 0.14
Recall 0.90 +0.16 0.92 £0.05 0.82 +£0.11 0.68 +=0.12
Accuracy 0.90 +0.16 092+0.05 0.82+0.11 0.68 +0.12
Specificity 0.84 4+ 0.34 0.89 £0.09 0.80 +0.18 0.84 +0.18

Table 1: Mean and standard deviation of evaluation matrices across random states from the sentence- and subject-
level SVM models with or without subject demographic information.

tion, we applied several methods to minimize the ef-
fects of an imbalanced dataset. First, we identified
the subjects who produced more than one standard
deviation (=41) above the mean (=91). Using this
threshold, we randomly selected 132 (=41+91) sen-
tences from sentences that each subject produced.
In addition, we applied SMOTE (Synthetic Minor-
ity Over-sampling Technique, Chawla et al. 2002)
as implemented in the imbalanced-learn package
(LemaAZtre et al. 2017) for training to oversam-
ple the minority. Finally, we applied a balanced
scoring metric for grid search. Using grid search,
we determine the optimal hyperparameters that pri-
oritize balanced evaluation metrics (accuracy, F1,
precision, and recall scores) rather than individual
measurements. We found that if we prioritize accu-
racy, the models yield a higher accuracy level, yet
with a very low specificity value, indicating that the
report of full evaluation metrics, including speci-
ficity, is necessary for a comprehensive assessment
of the model’s performance.

To compare with the results from previous stud-
ies (e.g., Luz et al. 2021b, Luz et al. 2021a) that
integrated subject information from Pitt into the
model, we also included modeling results with
the subject demographic information in both the
sentence-level and subject-level SVMs. The sub-
ject demographic information includes age, gender,
race, and years of education.

2.5 Results

Table 1 displays the evaluation metrics for the
sentence-level and subject-level SVM models ap-
plied to the Pitt and DE corpora. The models were

evaluated both with and without the inclusion of
subject demographic information, providing the
models’ performance under different conditions.

At the sentence level, both the Pitt and DE cor-
pora achieve relatively lower performance. This
outcome is anticipated as both patients and HC are
likely to produce normal sentences that do not show
any signals of morphosyntactic or syntactic deficits.
The Pitt corpus yields higher performance com-
pared to DE. The inclusion of subject demographic
information resulted in an increase in evaluation
metrics on the sentence-level SVMs.

Crucially, at the subject level, the SVM mod-
els demonstrate a significant improvement in their
prediction performance. This underscores the effec-
tiveness of integrating a higher-level SVM model
based on the sentence-level predictions. Both the
Pitt and DE corpora showed remarkably high met-
rics, with the Pitt corpus’s SVM model accuracy
scores reaching up to 90%, and the DE corpus’s ac-
curacy scores reaching 82%. In particular, the high
specificity values (84% for Pitt, 80% for DE) high-
light the model’s ability to reduce false positives.
Although the sentence-level model performed bet-
ter with subject demographic information, this im-
provement was not as significant at the subject level.
The Pitt corpus showed a higher performance with
more consistency in comparison to the DE corpus.

2.6 Discussion

In this study, we track a small number of com-
pletely automatically extracted morphosyntactic,
syntactic, and surprisal features. These set of lan-
guage features are promising stable features appli-



cable to different languages and different individual
speakers, and they are available when data is re-
stricted to the text format. In addition, a smaller
number of features reduces the risk of overfitting
and multicollinearity (Martinc and Pollak, 2020),
and the current study used various methods such
as keeping VIF low and adding noise to detect and
prevent overfitting and multicollinearity.

With these features, we built a two-level SVM
model to predict the diagnosis of MCI and AD
subjects using corpora from Pitt and DE. Given
its longer history, previous studies have examined
Pitt to a greater extent, achieving 70-93% accu-
racy (e.g., Di Palo and Parde 2019, Mahajan and
Baths 2021) using diagnostics based on blood-
based biomarkers and imaging methods (Chen et al.
2021, Chavez-Fumagalli et al. 2021). Our re-
sults reach comparable performance with, or even
outperform, these benchmarks, achieving a bal-
anced high-profile evaluation matrix without using
lexical-semantic features and subject demographic
information.

The two-level SVM model is the key to improv-
ing the performance of predictions with observed
significance at the subject level. On the sentence
level, it is difficult to distinguish between HCs and
patients due to the high level of noise in the data.
Therefore, the sentence-level SVM model will not
achieve a high-level performance. An SVM model
that performs well solely on sentence level could
be prone to overfitting. With the added layer of
the subject level, the SVM model can gauge the
percentage of misclassification of sentence-level
models and ensure that a threshold must be met for
a subject to be classified as a patient. Furthermore,
with the added information from the subject level,
the model can learn about this threshold according
to the data.

At the subject level, we did not observe a con-
sistent significant difference in performance with
or without subject demographic information for
both corpora. This result is unexpected because
adding subject demographic information on sen-
tence level improved the predictions. Since this
result is observed for both corpora, it indicates that
the subject-level SVM training on the features ex-
tracted is sufficient to make predictions for patients.
The inclusion of subject demographic information
is no longer necessary to achieve high performance.

The differences in the performance between the
Pitt and DE models in both the sentence-level and

subject-level SVMs are probably due to several
reasons. The detection of MCI is essentially more
difficult than AD (Luz et al., 2021a). In addition,
the Pitt corpus includes more subjects. In the DE
model, although the confusion matrix shows a high
performance, the number of subjects in the test set
is small (see the Appendix). A much more promi-
nent problem of imbalance was detected with the
DE corpus. If none of the previously mentioned
methods were applied to properly handle the im-
balance problem, the model returned a specificity
approaching 0, indicating a lack of detection of true
negatives and false positives. Additionally, there
may be a side effect of repetitive tests for Pitt, as
Pitt includes data from multiple tests for an individ-
ual subject: this could result in the model learning
the patterns of language use for individual subjects.

Overall, these findings suggest that the subject-
level SVM can significantly improve the perfor-
mance of the model for effectively distinguishing
HCs from AD and MCI patients. This is partic-
ularly valuable as it makes it possible to collect
large-scale data free of privacy concerns due to the
collection, storage, and use of sensitive personally
identifiable information.

3 Conclusions

In this study, we built a two-level SVM model
trained on a small set of morphosyntactic, syntactic,
and surprisal features extracted from transcriptions.
This model achieves high performance across all
evaluation metrics, especially for the Pitt corpus.
The subject-level SVM has demonstrated its capac-
ity to significantly improve the evaluation metrics
for both the Pitt and DE corpora. Crucially, with the
two-level SVM model, the inclusion of subject de-
mographic information becomes unnecessary and
does not contribute to further improvement of the
model. This paves the way for large-scale imple-
mentation of the NLP-based model for effective
automatic AD screening tests, with data collection
requiring only a few dozen sentences.

Limitations

One of the limitations of the current study is that
the data we are analyzing is not collected from a
chatbot application, although our goal is to extend
the model for the analysis of such data in the future.
The transcriptions we analyzed are provided by
DementiaBank, which has been manually checked.
This ensures transcription’s accuracy and therefore



increases the model’s potential to reach high perfor-
mance. For chatbot applications, auto-transcription
may involve more errors. It is to be evaluated how
the Universal Dependency parsing and surprisal
calculation will be affected by inaccurate transcrip-
tions. Fortunately, the recent chatbot application
built in ChatGPT 4.0 achieves a high-level accuracy.
Our next step is to implement auto-transcription
from DementiaBank audios and test the stability of
our model.

Although it is one of our long-term goals, an-
other limitation of this study is the current method
has not been tested with data collected from bilin-
gual speakers and speakers of other languages.
Cross-language data is important for the robust
and stability assessment of the method presented
in this paper.
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are used for modeling in this study, as well as the
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