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Abstract

This study presents a novel two-level SVM001
(Support Vector Machine) model for the au-002
tomatic (early) detection of Alzheimer’s Dis-003
ease (AD) using language markers that are in-004
dependent of lexical semantics. We avoid lex-005
ical semantic features because they are sub-006
ject to high individual variation, thus limiting007
their predictive power for unseen data. Instead,008
we focus on morphosyntactic, syntactic, and009
sentence-level features, which are more stable010
and potentially allow for easier generalization011
of the model to other datasets, languages, and012
individuals. We constructed SVMs at both013
the sentence level and the subject level, ap-014
plying language features extracted from auto-015
matically parsed transcriptions from the Pitt016
and Delaware corpora in DementiaBank. Our017
model demonstrated that the subject-level SVM018
significantly improved classification accuracy.019
The model yields high performance across all020
evaluation metrics on the test set for both AD021
and Mild Cognitive Impairment statuses.022

1 Introduction023

Language markers have been used as an inexpen-024

sive, non-invasive, accessible, and fast test for the025

early detection of Alzheimer’s Disease (AD) (Os-026

trand and Gunstad 2021, Vigo et al. 2022; see Luz027

et al. 2021a for an overview of relevant studies).028

This approach enables the creation of platforms029

such as chatbot applications for identifying AD pa-030

tients (e.g., de Arriba-Pérez et al. 2023, BT and031

Chen 2024), potentially leading to treatments that032

can preserve the cognitive functions of AD patients033

for a longer time (Stern 2006, Lautenschlager et al.034

2008).035

Previous studies have shown that integrating dif-036

ferent language markers with machine learning037

leads to superior performance (Luz et al. 2021a).038

Recently, there has been a special focus on ex-039

tracting prosodic and phonetic features for pre-040

diction purposes (Szatloczki et al. 2015, König041

et al. 2015), with the best models usually utiliz- 042

ing subject-related information (e.g., Sadeghian 043

et al. 2021, Mahajan and Baths 2021). However, 044

data collection methods, such as those used in chat- 045

bot applications for initial filtering purposes, may 046

not always be able to gather subject demographic 047

information such as age, education, gender, and 048

language background. To make these applications 049

most accessible for data collection and to lever- 050

age possible storage space limitations—especially 051

when the application is used for a large popula- 052

tion—text information may be the most accessible 053

format (e.g., Snowdon 1997). A form of text that is 054

readily available might be the (auto) transcription 055

of the participants’ speech. 056

In this study, we are searching for language 057

markers for the detection of AD and Mild Cog- 058

nitive Impairment (MCI), a major precursor of AD 059

(Rosenberg et al. 2013). These language markers 060

should not require extensive data collection and 061

avoid collecting sensitive personally identifiable 062

information. Consequently, some of the previously 063

developed models may not be applicable to this 064

particular requirement without significant adjust- 065

ment. In this study, we will minimize the informa- 066

tion from the potential patients to transcription of 067

speech available in DementiaBank ((Lanzi et al., 068

2023)). We provide modeling results with subjec- 069

tive information that is available from Dementia- 070

Bank for the purpose of comparison with previous 071

studies. In addition, for models that were built off 072

lexical-related language features, targeting the spe- 073

cific words that have been used (or any features that 074

are directly determined by the word forms), will 075

likely give rise to high variability in prediction (An- 076

tonsson et al. 2021). This pitfall can be concealed 077

when applying classifier models, such as Support 078

Vector Machines (SVMs), to train and test set that 079

are not split according to the subjects but according 080

to the data points: the model may capture some 081

individual-level lexical use preference instead of 082
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a linguistic pattern that is generalizable to other083

subjects (Hoang et al., 2023).084

In sum, this study intends to provide effective085

language markers under the restriction of data for-086

mat and information type, by achieving the follow-087

ing three goals: (i) the language indices are exclu-088

sively extracted from parsed text transcriptions; and089

(ii) we focus on syntactic indices which are poten-090

tially more stable properties across languages, (iii)091

constructing a model with high predictive power092

without resorting to subject demographic informa-093

tion. The first two goals are challenging as previous094

studies have reported that speech-related features095

give better results than text-related features (He096

et al. 2023). In addition, it has been observed that097

lexical semantics and verbal fluency are affected098

in the initial stages of AD, whereas syntax is more099

preserved (Kempler et al. 1987). Conversely, more100

recent studies also reveal syntactic simplification in101

AD patients (Kemper et al. 2001b), which are more102

pronounced in their written responses (Croisile103

et al. 1996).Individuals who have a lower score104

on grammatical complexity would more likely de-105

velop dementia later in their lives (Kemper et al.,106

2001a). The third goal is important for promot-107

ing the widespread application of computational108

methods in filtering tests for AD.109

In this study, we track lexical-independent mor-110

phosyntactic and syntactic features, along with sur-111

prisal values extracted from large language models.112

We extracted morphosyntactic and syntactic fea-113

tures from transcription texts that are parsed by a114

Universal Dependency parser, i.e., UDPipe (Zeman115

et al. 2023, Straka et al. 2016). Generally, the UD-116

Pipe parser can be applied to transcriptions and has117

the potential to obtain more stable language mark-118

ers across speakers, including those from different119

language backgrounds. In past studies, researchers120

have suggested syntactic changes in AD and MCI,121

including syntactic simplification, elliptical and122

segmental sentences, phrase repetition, phrasing se-123

lection problems, and verb agreement errors (Cross-124

ley et al. 2007, Sajjadi et al. 2012, Eyigoz et al.125

2020, Chapin et al. 2022, Varlokosta et al. 2024).126

Based on this foundation, we listed language fea-127

tures derived from syntactic-level changes in de-128

mentia after a comprehensive review of existing129

literature. These language features are integrated130

with machine learning models. With the selected131

morphosyntactic and syntactic features, this inte-132

gration aims to analyze the diagnostic accuracy of133

predicting potential AD and MCI patients. The 134

analysis can help researchers in the process of data 135

collection and the early detection of AD. 136

For data structuring, our project collects sen- 137

tences from the DementiaBank database, the Pitt 138

(Becker et al., 1994) and Delaware (DE) corpora 139

(Lanzi et al., 2023), and uses the automatic analy- 140

sis tool UDPipe for universal dependencies parsing 141

(Zeman et al. 2023, Straka et al. 2016). Our goal is 142

to compile a set of relevant syntactic and sentence 143

processing features and test their efficiency and 144

accuracy in the early automatic detection of AD. 145

2 Data and Models 146

2.1 Data sets and language features extraction 147

We included data of 232 subjects from the Pitt 148

corpus, with 66 healthy controls (HCs), 11 MCI 149

patients, and 147 AD patients; with a few subjects 150

appearing in more than one category because of 151

their health status changes. Only subjects who have 152

completed the Cookie Theft task were included. 153

Given that many of the subjects are retested in one 154

year or longer, we consider the results from each 155

test as an independent subject. This makes the 156

total number of subjects 400, with 149 HCs, 21 157

MCI patients, and 220 AD patients. Given that the 158

amount of MCI patients is small, we excluded them 159

from the models. For the DE corpus, we extracted 160

data from 73 subjects, with 26 HCs and 47 MCI 161

patients. 162

We removed special annotation texts and ex- 163

tracted all sentences produced by the subjects in 164

Pitt and DE corpora. Specifically, we extracted 165

sentences from the Cookie Theft task in Pitt and 166

the multiple picture descriptions in DE. Figure 1 167

and 2 show the number of sentences per subject 168

is relatively small but stable in Pitt, whereas each 169

subject in DE has more sentences, due to the reason 170

that the data were collected with multiple picture 171

description tasks. 172

We collected a list of language features by re- 173

viewing existing literature with a focus on mor- 174

phosyntactic, syntactic, and phrase/sentence-level 175

features. Previous studies have shown that AD 176

patients exhibit sentence processing difficulties at 177

the syntax level as well as memory-related seman- 178

tic deficits (e.g., naming difficulties) (Chapin et al. 179

2022, Hernández-Domínguez et al. 2018, Eyigoz 180

et al. 2020, Ostrand and Gunstad 2021). These 181

features are obtained by running Python scripts 182

(see Appendix) over the transcriptions from the Pitt 183
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Figure 1: Number of sentences from each subject in Pitt

Figure 2: Number of sentences from each subject in DE

and DE corpora, which are parsed by a Universal184

Dependency parser provided by the UDPipe.185

Examples of syntactic features include the types186

and amount of clauses, the types and amount of187

adjuncts, the amount of tense and aspect markers,188

transitive and intransitive verbs, repeating articles,189

etc. The morphosyntactic features, namely, the190

amount of derivational and inflectional morphemes,191

are based on a morphological analysis using the192

English morpheme database from the unimorph193

package (Kirov et al. 2018). For sentence process-194

ing features, we obtained the surprisal values for195

each word in each sentence (as annotated by UD-196

Pipe) from the full GPT-2 model in Hugging Face.197

With the surprisal values, we calculated the mean,198

minimum, and maximum surprisal for each sen-199

tence. However, including all these surprisal values200

in the SVM model led to high multicollinearity201

(measured by the Variance Inflation Factor, VIF).202

Therefore, we included only the minimum and max-203

imum surprisal values, which produce the best out-204

come with their VIFs kept below 5. Overall, 40205

syntactic/sentence-related features are included in206

the models.207

To ensure that the language features are extracted208

as expected, we constructed a gold standard file209

with 100 selected sentences from our data sources. 210

Of these 100 samples, 50 are identified as AD pa- 211

tients, and the remaining 50 from individuals with 212

MCI. This gold standard serves as a reference to 213

determine the accuracy of the Python code used 214

for extracting and counting language features from 215

universal dependency annotations. 216

2.2 Data preprocessing 217

To preprocess the data, sentences with a total token 218

number(including punctuation) less than or equal 219

to 4 were excluded. Additionally, subjects who 220

were diagnosed with MCI were excluded from the 221

Pitt corpus due to its small sample size. Lastly, 222

missing data in any language features, 0.4% from 223

Pitt and 0.2% from DE, were excluded from the 224

following modeling. 225

We standardized and scaled the extracted nu- 226

meric features using the StandardScaler function 227

from Scikit-learn and transformed the categorical 228

features (subject demographic information) with 229

one-hot encoding. The data was split into train and 230

test sets by subject IDs to ensure the train and test 231

sets were not from the same subjects. This method 232

also excludes the possibility that the model is learn- 233

ing particular speech patterns of individual subjects 234

(e.g., the use of particular lexical items or linguistic 235

expressions). Some of the data collected are from 236

individual subjects at different time periods. On 237

average, there was at least a one-year gap between 238

two data collection processes. In the model, we 239

treat the data collected at different time periods 240

as data collected from different individuals. As a 241

result, our model will make independent predic- 242

tions for a potential patient even if the subject takes 243

the test every year. Furthermore, combining the 244

data collected at different periods together for the 245

subject-level SVM produces a better performance. 246

2.3 A two-level SVM model 247

Previous studies have suggested that SVM models 248

are among the machine learning methods that yield 249

the best evaluation matrices in predicting the diag- 250

nosis of AD (Antonsson et al. 2021, Balagopalan 251

et al. 2021, Luz et al. 2021a; see Vigo et al. 2022 252

for a review). Below we explore the integration 253

of SVM models: (1) a sentence-level SVM model 254

that predicts the diagnostic label for each sentence 255

based on the language features of the sentence; (2) 256

since each subject produced multiple sentences in 257

the corpora, a subject-level SVM model taking the 258

percentage of a particular predicted label from the 259
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sentence-level model as input and the diagnostic260

label as the output to predict the final diagnostic;261

and (3) a subject-level SVM that has additional262

subject-related information such as age, gender, ed-263

ucation years as input, whose performance will be264

more comparable to the previous models.265

Two levels of the SVM model were built to es-266

timate the prediction of a subject’s diagnosis. The267

first is at the sentence level and the second is at the268

subject level. The separation of the sentence and269

subject level is quite unique among the previous270

models we have seen, with (Hoang et al., 2023)271

as a notable exception. Sentence-based organiza-272

tion of the data is ideal for automatic parsing with273

Universal Dependency parser. We extract the fea-274

tures from each sentence in the dialogue between275

the patient and the interviewer. Occasionally, the276

dialogue was longer than one sentence, in which277

case UDPipe will process them as a sentence with278

clauses connected with dependency relations.279

For each sentence, the sentence-level SVM280

model outputs a diagnosis prediction. With regard281

to prediction, the output is expected to involve con-282

siderable noise because not every sentence is infor-283

mative for the diagnostics. Both the patients and284

HCs may produce similar sentences. To reduce the285

effect of noise, we built a subject-level SVM for286

the diagnosis prediction of each subject by taking287

the percentage of a particular prediction label from288

the sentence-level SVM as input and their diagnos-289

tic as the target to train on. This level of SVM is290

important and is novel as previous studies either291

built a single SVM for each subject, or used a gaug-292

ing technique to explore which percentage level293

may serve as a threshold for the final diagnostic.294

At the subject level, an important advantage of the295

SVM model is that it can identify less informative,296

noise sentences and exclude them when making its297

prediction. By adjusting the hyperparameters (C298

and gamma), the model determines the amount of299

outliers to be excluded at the sentence-level. We300

identify the optimal hyperparameters using grid301

search. We demonstrate that the subject-level SVM302

yields superior performance, which indicates that303

the SVM model has identified a refined hyperplane304

such that some level of the noise carried from the305

sentence-level SVM can be correctly identified and306

handled properly at the subject-level SVM model.307

2.4 Model training 308

The training and testing of the model was carried 309

out with the Scikit-learn package in python (Pe- 310

dregosa et al. 2011). We split the data into train 311

and test sets, with the test set comprising data from 312

20% of the subjects in both corpora. The split was 313

based on subject IDs rather than individual data 314

points to prevent the model from simply learning 315

particular subjects’ patterns of language use, and 316

instead, focus on predicting the occurrence of AD 317

and MCI in unseen subjects. Below, we present the 318

performance of the SVM models on the test set. 319

To ensure that the model does not overfit the 320

data, K-Fold Cross Validation, with K set to 10, 321

was applied to the train set to generate an average 322

evaluation metrics matrix to mitigate the effects 323

produced by some potential variations due to sam- 324

pling bias. In addition, to avoid multicollinearity, 325

we examined the VIF of each linguistic feature 326

and excluded linguistic features that have high VIF 327

values. For example, mean surprisal was not in- 328

cluded in the models because it highly correlates 329

with both maximum and minimum surprisal. Ab- 330

normally superior performance was observed with 331

the sentence-level SVMs if we include the mean 332

surprisal in addition to maximum and minimum 333

suprisals. The VIF of these three features all ex- 334

ceeded 5, signaling multicollinearity issues. In 335

addition, we added minor noise to the data from a 336

Gaussian distribution with the mean = 0 and stan- 337

dard deviation = 0.01 in each of the models to 338

test whether the performance of the models will 339

be significantly altered. If the model has a severe 340

multicollinearity problem, small noise may change 341

the performance significantly. No alarming signs 342

of multicollinearity were observed. 343

Lastly, the model was tested with varying ran- 344

dom state values (100 random states in total), for 345

data splitting between the train and test set, to deter- 346

mine the average evaluation matrix across all ran- 347

dom states. We report the average matrices across 348

all random states in Table 1. 349

A special challenge in modeling the DE corpus 350

is the imbalance between the data from patients and 351

HCs. In this corpus, the number of MCI subjects is 352

almost twice that of HCs. Additionally, the number 353

of sentences produced by each subject varies dra- 354

matically (see Figure 2). Together with the small 355

sample size, the imbalanced data can significantly 356

deteriorate the model’s performance, leading to a 357

specificity value close to 0. To overcome this limita- 358
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Pitt Corpus DE Corpus
SVM level Score w/o subj-info w/ subj-info w/o subj-info w/ subj-info
Sentence F1 0.64 ± 0.03 0.71 ± 0.04 0.54 ± 0.02 0.61 ± 0.10

Precision 0.65 ± 0.03 0.72 ± 0.04 0.62 ± 0.11 0.73 ± 0.14
Recall 0.64 ± 0.03 0.71 ± 0.04 0.52 ± 0.03 0.66 ± 0.09
Accuracy 0.64 ± 0.03 0.71 ± 0.04 0.52 ± 0.03 0.66 ± 0.09
Specificity 0.58 ± 0.06 0.73 ± 0.10 0.57 ± 0.07 0.84 ± 0.11

Subject F1 0.90 ± 0.18 0.92 ± 0.05 0.82 ± 0.10 0.68 ± 0.14
Precision 0.91 ± 0.14 0.92 ± 0.04 0.85 ± 0.05 0.76 ± 0.14
Recall 0.90 ± 0.16 0.92 ± 0.05 0.82 ± 0.11 0.68 ± 0.12
Accuracy 0.90 ± 0.16 0.92 ± 0.05 0.82 ± 0.11 0.68 ± 0.12
Specificity 0.84 ± 0.34 0.89 ± 0.09 0.80 ± 0.18 0.84 ± 0.18

Table 1: Mean and standard deviation of evaluation matrices across random states from the sentence- and subject-
level SVM models with or without subject demographic information.

tion, we applied several methods to minimize the ef-359

fects of an imbalanced dataset. First, we identified360

the subjects who produced more than one standard361

deviation (=41) above the mean (=91). Using this362

threshold, we randomly selected 132 (=41+91) sen-363

tences from sentences that each subject produced.364

In addition, we applied SMOTE (Synthetic Minor-365

ity Over-sampling Technique, Chawla et al. 2002)366

as implemented in the imbalanced-learn package367

(LemaÃŽtre et al. 2017) for training to oversam-368

ple the minority. Finally, we applied a balanced369

scoring metric for grid search. Using grid search,370

we determine the optimal hyperparameters that pri-371

oritize balanced evaluation metrics (accuracy, F1,372

precision, and recall scores) rather than individual373

measurements. We found that if we prioritize accu-374

racy, the models yield a higher accuracy level, yet375

with a very low specificity value, indicating that the376

report of full evaluation metrics, including speci-377

ficity, is necessary for a comprehensive assessment378

of the model’s performance.379

To compare with the results from previous stud-380

ies (e.g., Luz et al. 2021b, Luz et al. 2021a) that381

integrated subject information from Pitt into the382

model, we also included modeling results with383

the subject demographic information in both the384

sentence-level and subject-level SVMs. The sub-385

ject demographic information includes age, gender,386

race, and years of education.387

2.5 Results388

Table 1 displays the evaluation metrics for the389

sentence-level and subject-level SVM models ap-390

plied to the Pitt and DE corpora. The models were391

evaluated both with and without the inclusion of 392

subject demographic information, providing the 393

models’ performance under different conditions. 394

At the sentence level, both the Pitt and DE cor- 395

pora achieve relatively lower performance. This 396

outcome is anticipated as both patients and HC are 397

likely to produce normal sentences that do not show 398

any signals of morphosyntactic or syntactic deficits. 399

The Pitt corpus yields higher performance com- 400

pared to DE. The inclusion of subject demographic 401

information resulted in an increase in evaluation 402

metrics on the sentence-level SVMs. 403

Crucially, at the subject level, the SVM mod- 404

els demonstrate a significant improvement in their 405

prediction performance. This underscores the effec- 406

tiveness of integrating a higher-level SVM model 407

based on the sentence-level predictions. Both the 408

Pitt and DE corpora showed remarkably high met- 409

rics, with the Pitt corpus’s SVM model accuracy 410

scores reaching up to 90%, and the DE corpus’s ac- 411

curacy scores reaching 82%. In particular, the high 412

specificity values (84% for Pitt, 80% for DE) high- 413

light the model’s ability to reduce false positives. 414

Although the sentence-level model performed bet- 415

ter with subject demographic information, this im- 416

provement was not as significant at the subject level. 417

The Pitt corpus showed a higher performance with 418

more consistency in comparison to the DE corpus. 419

2.6 Discussion 420

In this study, we track a small number of com- 421

pletely automatically extracted morphosyntactic, 422

syntactic, and surprisal features. These set of lan- 423

guage features are promising stable features appli- 424
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cable to different languages and different individual425

speakers, and they are available when data is re-426

stricted to the text format. In addition, a smaller427

number of features reduces the risk of overfitting428

and multicollinearity (Martinc and Pollak, 2020),429

and the current study used various methods such430

as keeping VIF low and adding noise to detect and431

prevent overfitting and multicollinearity.432

With these features, we built a two-level SVM433

model to predict the diagnosis of MCI and AD434

subjects using corpora from Pitt and DE. Given435

its longer history, previous studies have examined436

Pitt to a greater extent, achieving 70-93% accu-437

racy (e.g., Di Palo and Parde 2019, Mahajan and438

Baths 2021) using diagnostics based on blood-439

based biomarkers and imaging methods (Chen et al.440

2021, Chávez-Fumagalli et al. 2021). Our re-441

sults reach comparable performance with, or even442

outperform, these benchmarks, achieving a bal-443

anced high-profile evaluation matrix without using444

lexical-semantic features and subject demographic445

information.446

The two-level SVM model is the key to improv-447

ing the performance of predictions with observed448

significance at the subject level. On the sentence449

level, it is difficult to distinguish between HCs and450

patients due to the high level of noise in the data.451

Therefore, the sentence-level SVM model will not452

achieve a high-level performance. An SVM model453

that performs well solely on sentence level could454

be prone to overfitting. With the added layer of455

the subject level, the SVM model can gauge the456

percentage of misclassification of sentence-level457

models and ensure that a threshold must be met for458

a subject to be classified as a patient. Furthermore,459

with the added information from the subject level,460

the model can learn about this threshold according461

to the data.462

At the subject level, we did not observe a con-463

sistent significant difference in performance with464

or without subject demographic information for465

both corpora. This result is unexpected because466

adding subject demographic information on sen-467

tence level improved the predictions. Since this468

result is observed for both corpora, it indicates that469

the subject-level SVM training on the features ex-470

tracted is sufficient to make predictions for patients.471

The inclusion of subject demographic information472

is no longer necessary to achieve high performance.473

The differences in the performance between the474

Pitt and DE models in both the sentence-level and475

subject-level SVMs are probably due to several 476

reasons. The detection of MCI is essentially more 477

difficult than AD (Luz et al., 2021a). In addition, 478

the Pitt corpus includes more subjects. In the DE 479

model, although the confusion matrix shows a high 480

performance, the number of subjects in the test set 481

is small (see the Appendix). A much more promi- 482

nent problem of imbalance was detected with the 483

DE corpus. If none of the previously mentioned 484

methods were applied to properly handle the im- 485

balance problem, the model returned a specificity 486

approaching 0, indicating a lack of detection of true 487

negatives and false positives. Additionally, there 488

may be a side effect of repetitive tests for Pitt, as 489

Pitt includes data from multiple tests for an individ- 490

ual subject: this could result in the model learning 491

the patterns of language use for individual subjects. 492

Overall, these findings suggest that the subject- 493

level SVM can significantly improve the perfor- 494

mance of the model for effectively distinguishing 495

HCs from AD and MCI patients. This is partic- 496

ularly valuable as it makes it possible to collect 497

large-scale data free of privacy concerns due to the 498

collection, storage, and use of sensitive personally 499

identifiable information. 500

3 Conclusions 501

In this study, we built a two-level SVM model 502

trained on a small set of morphosyntactic, syntactic, 503

and surprisal features extracted from transcriptions. 504

This model achieves high performance across all 505

evaluation metrics, especially for the Pitt corpus. 506

The subject-level SVM has demonstrated its capac- 507

ity to significantly improve the evaluation metrics 508

for both the Pitt and DE corpora. Crucially, with the 509

two-level SVM model, the inclusion of subject de- 510

mographic information becomes unnecessary and 511

does not contribute to further improvement of the 512

model. This paves the way for large-scale imple- 513

mentation of the NLP-based model for effective 514

automatic AD screening tests, with data collection 515

requiring only a few dozen sentences. 516

Limitations 517

One of the limitations of the current study is that 518

the data we are analyzing is not collected from a 519

chatbot application, although our goal is to extend 520

the model for the analysis of such data in the future. 521

The transcriptions we analyzed are provided by 522

DementiaBank, which has been manually checked. 523

This ensures transcription’s accuracy and therefore 524
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increases the model’s potential to reach high perfor-525

mance. For chatbot applications, auto-transcription526

may involve more errors. It is to be evaluated how527

the Universal Dependency parsing and surprisal528

calculation will be affected by inaccurate transcrip-529

tions. Fortunately, the recent chatbot application530

built in ChatGPT 4.0 achieves a high-level accuracy.531

Our next step is to implement auto-transcription532

from DementiaBank audios and test the stability of533

our model.534

Although it is one of our long-term goals, an-535

other limitation of this study is the current method536

has not been tested with data collected from bilin-537

gual speakers and speakers of other languages.538

Cross-language data is important for the robust539

and stability assessment of the method presented540

in this paper.541
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