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A Limitations544

We highlight a few key limitations to our results that may be relevant for future work to look at:545

1. Our visualizations focus on student-teacher deviations in the top-1 class of the teacher.546

While this already reveals a systematic pattern across various datasets, this does not capture547

richer deviations that may occur in the teacher’s lower-ranked classes. Examining those548

would shed light on the “dark knowledge” hidden in the non-target classes.549

2. Although we demonstrate the exaggerated bias of Theorem 4.1 in MLPs (Sec D, Fig 20)550

and CNNs (Sec D, Fig 21), we do not formalize any higher-order effects that may emerge551

in such multi-layer models. It is possible that the same eigenspace regularization effect552

propagates down the layers of a network. We show some preliminary evidence in Sec D.7.553

3. We do not exhaustively characterize when the underlying exaggerated bias of distillation is554

(in)sufficient for improved generalization. One example where this relationship is arguably555

sufficient is in the case of noise in the one-hot labels (Fig 3). One example where this is556

insufficient is when the teacher does not fit the one-hot labels perfectly (Fig 3b). A more557

exhaustive characterization would be practically helpful as it may help us predict when it is558

worth performing distillation.559

4. The effect of the teacher’s top-1 accuracy (Sec 5.2) has a further confounding factor which560

we do not address: the “complexity” of the dataset. For CIFAR-100, the teacher’s labels561

are more helpful than the one-hot labels, even for a mildly-non-interpolating teacher with562

4% top-1 error on training data; for CIFAR100, it is only when there is sufficient lack of563

interpolation that one-hot labels complement the teacher’s labels. For the relatively more564

complex Tiny-Imagenet, the one-hot labels complement teacher’s soft labels even when the565

teacher has 2% top-1 error (Fig 24).566

B Proof of Theorem567

Below, we provide the proof for Theorem 4.1 that shows that the distilled student converges faster568

along the top eigendirections than the teacher.569

Theorem B.1. Let X ∈ Rn×p and y ∈ Rn be the p-dimenionsional inputs and labels of a dataset570

of n examples, where p > n. Assume the Gram matrix XX> is invertible, with n eigenvectors571

v1,v2, . . . ,vn in Rp. Let β(t) ∈ Rp denote a teacher model at time t, when trained with gradient572

flow to minimize 1
2‖Xβ(t) − y‖2, starting from β(0) = 0. Let β̃(t̃) ∈ Rp be a student model at573

time t̃, when trained with gradient flow to minimize 1
2‖Xβ(t)− yte‖2, starting from β̃(0) = 0; here574

yte = Xβ(T te) is the output of a teacher trained to time T te > 0. Let βk(·) and β̃k(·) respectively575

denote the component of the teacher and student weights along the k’th eigenvector of the Gram576

matrix XX> as:577

βk(t) = βk(t) · vk, (8)

and578

β̃k(t̃) = β̃k(t̃) · vk. (9)

Let k1 < k2 be two indices for which the eigenvalues satisfy λk1 > λk2 , if any exist. Consider any579

time instants t > 0 and t̃ > 0 at which both the teacher and the student have converged equally well580

along the top direction vk1 , in that581

βk1(t) = β̃k1(t̃). (10)

Then along the bottom direction, the student has a strictly smaller component than the teacher, as in,582

∣∣∣∣∣
β̃k2(t̃)

βk2(t)

∣∣∣∣∣ < 1. (11)
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Proof. (of Theorem 4.1)583

Recall that the closed form solution for the teacher is given as:584

β(t) = X>(XX>)−1A(t)y (12)

where A(t) := I− e−tXX>
. (13)

Similarly, by plugging in the teacher’s labels into the above equation, the closed form solution for the585

student can be expressed as:586

β̃(t̃) = X>(XX>)−1Ã(t̃)y (14)

where Ã(t̃) := A(t)A(T te). (15)

Let αk(t), α̃k(t̃) be the eigenvalues of the k’th eigendirection in A(t) and Ã(t̃) respectively. We are587

given βk1(t) = β̃k1(t̃). From the closed form expression for the two models in Eq 12 and Eq 14, we588

can infer αk1(t) = α̃k1(t̃). Similarly, from the closed form expression, it follows that in order to589

prove |βk2(t)| > |β̃k2(t̃)|, it suffices to prove αk2(t) > α̃k2(t̃).590

For the rest of the discussion, for convenience of notation, we assume k1 = 1 and k2 = 2 without591

loss of generality. Furthermore, we define α?1 = α1(t) = α̃1(t̃).592

From the teacher’s system of equations in Eq 13, α?1 = 1− e−λ1t. Hence, we can re-write α2(t) as:593

α2(t) = 1− e−λ2t (16)

= 1−
(
e−λ1t

)λ2
λ1 (17)

= 1− (1− α?1)
λ2
λ1 . (18)

Similarly for the student, from Eq 15,594

α?1 = (1− e−λ1 t̃)(1− e−λ1T
te
). (19)

Hence, we can re-write α̃2(t̃) as:595

α̃2(t̃) = (1− e−λ2 t̃) · (1− e−λ2T
te
) (20)

=

(
1−

(
e−λ1 t̃

)λ2
λ1

)
·
(
1−

(
e−λ1T

te
)λ2
λ1

)
(21)

For convenience, let us define a := e−λ1 t̃, b := e−λ1T
te

and κ = λ2/λ1. Then, rewriting Eq 19, we596

get597

α?1 = (1− a)(1− b). (22)

Plugging this into Eq 18,598

α2(t) = 1− (1− (1− a)(1− b))κ. (23)

Similarly, rewriting Eq 21, in terms of a, b, κ:599

α̃2(t̃) = (1− aκ)(1− bκ). (24)
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We are interested in the sign of α2(t)− α̃2(t̃). Let f(u) = uκ + (a+ b− u)κ. Then, we can write600

this difference as follows:601

α2(t)− α̃2(t̃) = aκ + bκ − (ab)κ − (1− (1− a)(1− b))κ (25)
= aκ + bκ − ((ab)κ + (a+ b− ab)κ) (26)
= f(a)− f(a+ b(1− a)) = f(b)− f(b+ a(1− b)). (27)

To prove that last expression in terms of f resolves to a positive value, we make use of the fact602

that when κ ∈ (0, 1), f(u) attains its maximum at u = a+b
2 , and is monotonically decreasing for603

u ∈
[
a+b
2 , a+ b

]
. Note that κ is indeed in (0, 1) because λ2 < λ1. Since t̃ > 0 and T te > 0,604

a ∈ (0, 1) and b ∈ (0, 1). Since f is symmetric with respect to a and b, without loss of generality, let605

a be the larger of {a, b}.606

Since a < 1, and b > 0, we have a+ b(1− a) > a. Also since a is the larger of the two, we have607

a > a+b
2 . Combining these two, a + b > a + b(1 − a) > a > a+b

2 . Thus, from the monotonic608

decrease of f for u ∈
[
a+b
2 , a+ b

]
, f(a) > f(a+ b(1− a)). Thus,609

α2(t)− α̃2(t̃) > 0, (28)

proving our claim.610

611
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Table 1: Summary of training settings on image data.

Hyperparameter CIFAR10* v1 CIFAR100 v2 Tiny-ImageNet ImageNet
(based on) Tian et al. [49] Cho and Hariharan [7]

Weight decay 5 · 10−4 5 · 10−4 5 · 10−4 10−4

Batch size 1024 64 128 1024

Epochs 450 240 200 90

Peak learning rate 1.0 0.05 0.1 0.4

Learning rate warmup epochs 15 1 5 5

Learning rate decay factor 0.1 0.1 0.1 Cosine schedule
Nesterov momentum 0.9 0.9 0.9 0.9

Distillation weight 1.0 1.0 1.0 0.1

Distillation temperature 4.0 4.0 4.0 4.0

Gradual loss switch window 1k steps 1k steps 10k steps 1k steps

C Further experiments on student-teacher deviations612

C.1 Details of experimental setup613

We present details on relevant hyper-parameters for our experiments.614

Model architectures. For all image datasets (CIFAR10, CIFAR100, Tiny-ImageNet, ImageNet),615

we use ResNet-v2 [15] and MobileNet-v2 [46], models. Specifically, for CIFAR, we consider the616

CIFAR ResNet-{56, 20} family and MobileNet-v2 architectures; for Tiny-ImageNet, we consider617

the ResNet-{50, 18} family and MobileNet-v2 architectures; for ImageNet we consider ResNet-18618

family based on the TorchVision implementation. For all ResNet models, we employ standard619

augmentations as per He et al. [16].620

For all text datasets (MNLI, AGNews, QQP, IMDB), we fine-tune a pre-trained RoBERTa [31] model.621

We consider combinations of cross-architecture- and self-distillation with RoBERTa -Base, -Medium622

and -Small architectures.623

Training settings. We train using minibatch SGD applied to the softmax cross-entropy loss. For624

all image datasets, we follow the settings in Table 1. For the noisy CIFAR dataset, for 20% of the625

data we randomly flip the one-hot label to another class. Also note that, we explore two different626

hyperparameter settings for CIFAR100, for ablation. For all text datasets, we use a batch size of 64,627

and train for 25000 steps. We use a peak learning rate of 10−5, with 1000 warmup steps, decayed628

linearly. For the distillation experiments on text data, we use a distillation weight of 1.0. We use629

temperature τ = 2.0 for MNLI, τ = 16.0 for IMDB, τ = 1.0 for QQP, and τ = 1.0 for AGNews.630

For all CIFAR experiments in this section we use GPUs. These experiments take a couple of hours.631

We run all the other experiments on TPUv3. The ImageNet experiments take around 6-8 hours,632

TinyImagenet a couple of hours and the RoBERTA-based experiments take ≈ 12 hours. Note that for633

all the later experiments in support of our eigenspace theory (Sec D), we only use a CPU; these finish634

in few minutes each.635

C.2 Scatter plots of probabilities636

In this section, we present additional scatter plots of the teacher-student logit-transformed probabilities637

for the class corresponding to the teacher’s top prediction: Fig 7 (for ImageNet), Fig 5,6 (for638

CIFAR100), Fig 8 (for TinyImagenet), Fig 9 (for CIFAR10), Fig 10 (for MNLI and AGNews settings),639

Fig 11 (for further self-distillation on QQP, IMDB and AGNews) and Fig 12 (for cross-architecture640

distillation on language datasets). Below, we qualitatively describe how confidence exaggeration641

manifests (or does not) in these settings. We attempt a quantitative summary subsequently in Sec C.4.642

Image data. First, across all the 18 image settings, we observe an underfitting of the low-confidence643

points on test data. Note that this is highly prominent in some settings (e.g., CIFAR100, MobileNet644

self-distillation in Fig 5 fourth column, second row), but also faint in other settings (e.g., CIFAR100,645

ResNet56-ResNet20 distillation in Fig 5 second column, second row).646
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Table 2: Summary of train and test performance of various distillation settings.
Dataset Teacher Student Train accuracy Test accuracy

Teacher Student (OH) Student (DIST) Teacher Student (OH) Student (DIST)

CIFAR10 ResNet-56 ResNet-56 100.00 100.00 100.00 93.72 93.72 93.9
ResNet-56 ResNet-20 100.00 99.95 99.60 93.72 91.83 92.94
ResNet-56 MobileNet-v2-1.0 100.00 100.00 99.96 93.72 85.11 87.81
MobileNet-v2-1.0 MobileNet-v2-1.0 100.00 100.00 100.00 85.11 85.11 86.76

CIFAR100 ResNet-56 ResNet-56 99.97 99.97 97.01 72.52 72.52 74.55
ResNet-56 ResNet-20 99.97 94.31 84.48 72.52 67.52 70.87
MobileNet-v2-1.0 MobileNet-v2-1.0 99.97 99.97 99.96 54.32 54.32 56.32
ResNet-56 MobileNet-v2-1.0 99.97 99.97 99.56 72.52 54.32 62.40

(v2 hyperparams.) ResNet-56 ResNet-56 96.40 96.40 87.61 73.62 73.62 74.40

CIFAR100 (noisy) ResNet-56 ResNet-56 99.9 99.9 95.6 69.8 69.8 72.7

ResNet-56 ResNet-20 99.9 91.4 82.8 69.8 64.9 69.2

Tiny-ImageNet ResNet-50 ResNet-50 98.62 98.62 94.84 66 66 66.44
ResNet-50 ResNet-18 98.62 93.51 91.09 66 62.78 63.98
ResNet-50 MobileNet-v2-1.0 98.62 89.34 87.90 66 62.75 63.97
MobileNet-v2-1.0 MobileNet-v2-1.0 89.34 89.34 82.26 62.75 62.75 63.28

ImageNet ResNet-18 ResNet-18 (full KD) 78.0 78.0 72.90 69.35 69.35 69.35
ResNet-18 ResNet-18 (late KD) 78.0 78.0 71.65 69.35 69.35 68.3
ResNet-18 ResNet-18 (early KD) 78.0 78.0 79.1 69.35 69.35 69.75

MNLI RoBERTa-Base RoBERTa-Small 92.9 72.1 72.6 87.4 69.9 70.3

RoBERTa-Base RoBERTa-Medium 92.9 88.2 86.8 87.4 83.8 84.1

RoBERTa-Small RoBERTa-Small 72.1 72.1 71.0 69.9 69.9 69.9

RoBERTa-Medium RoBERTa-Medium 88.2 88.2 85.6 83.8 83.8 83.5

IMDB RoBERTa-Small RoBERTa-Small 100.0 100.0 99.1 90.4 90.4 91.0

RoBERTa-Base RoBERTa-Small 100.0 100.0 99.9 95.9 90.4 90.5

QQP RoBERTa-Small RoBERTa-Small 85.0 85.0 83.2 83.5 83.5 82.5

RoBERTa-Medium RoBERTa-Medium 92.3 92.3 90.5 89.7 89.7 89.0

RoBERTa-Base RoBERTa-Small 93.5 85.0 85.1 90.5 83.5 84.0

AGNews RoBERTa-Small RoBERTa-Small 96.3 96.3 95.7 93.6 93.6 93.3

RoBERTa-Base RoBERTa-Medium 99.2 98.4 97.8 95.2 95.2 94.5

RoBERTa-Base RoBERTa-Small 99.2 96.3 96.0 95.2 93.6 93.6

Second, on the training data, this occurs in a majority of settings (13 out of 18) except CIFAR100647

Mobilenet self-distillation (Fig 5 fourth column) and three of the four CIFAR10 experiments. In all648

the CIFAR100 settings where this occurs, this is more prominent on training data than on test data.649

Third, in a few settings, we also find an overfitting of high-confidence points, indicating a second650

type of exaggeration. In particular, this occurs for our second hyperparameter setting in CIFAR100651

(Fig 6 last column), Tiny-ImageNet with a ResNet student (Fig 8 first and last column).652

Language data. In the language datasets, we find the student-teacher deviations to be different653

in pattern from the image datasets. We find for lower-confidence points, there is typically both654

significant underfitting and overfitting (i.e., |Y −X| is larger for smallX); for high-confidence points,655

there is less deviation, and if any, the deviation is from overfitting (Y > X for large X). One way to656

interpret this as the regularization from distillation deprioritizing the lower-confidence points.657

This behavior is most prominent in four of the settings plotted in Fig 10. We find a weaker manifesta-658

tion in four other settings in Fig 11. Finally in Fig 12, we report the scenarios where we do not find a659

meaningful behavior. Nevertheless, there is deviation in all the above settings.660

Exceptions: In summary, we find patterns in all but the following exceptions:661

1. For MobileNet self-distillation on CIFAR100, and for three of the CIFAR10 experiments,662

we find no underfitting of the lower-confidence points on the training dataset (but they hold663

on test set). Furthermore, in all these four settings, we curiously find an underfitting of the664

high-confidence points in both test and training data.665

2. Our patterns break down in a four of the cross-architecture settings of language datasets. This666

may be because certain cross-architecture effects dominate over the more subtle underfitting667

effect.668
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Figure 5: Teacher-student logit plots for CIFAR100 experiments: We report plots for various
distillation settings involving ResNet56, ResNet20 and MobileNet-v2 (training data on top, test data
in the bottom). We find underfitting of the low-confidence points in the training set in all but the
MobileNet self-distillation setting. Nevertheless, even in the MobileNet self-distillation setting, we
find significant underfitting in the test dataset.

Figure 6: Teacher-student logit plots for more CIFAR100 experiments: We report underfitting
of low-confidence points for a few other CIFAR100 distillation settings. The first column is self-
distillation setting where 20% of one-hot labels are noisy; the second column on the same data, but
cross-architecture; the last column is ResNet-56 self-distillation on the original CIFAR100, but with
another set of hyperparameters specified in Table 1. Here we also find overfitting of high-confidence
points.
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(a) Full KD (b) Late-started KD (c) Early-stopped KD

Figure 7: Teacher-student logit plots for Imagenet experiments: We conduct Imagenet self-
distillation on ResNet18 in three different settings, involving full knowledge distillation, late-started
distillation (from exactly mid-way through one-hot training) and early-stopped distillation (again, at
the midway point, after which we complete with one-hot training). The plots for the training data are
on top, and for test data in the bottom). Note that [7] recommend early-stopped distillation. We find
underfitting of low-confidence points in all the settings, with the most underfitting in the last setting.

Figure 8: Teacher-student logit plots for Tiny-Imagenet experiments: We report plots for various
distillation settings involving ResNet50, ResNet18 and MobileNet-v2 (training data on top, test data
in the bottom). We find underfitting of the low-confidence points in all the settings. We also find
overfitting of the high-confidence points when the student is a ResNet.
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Figure 9: Teacher-student logit plots for CIFAR10 experiments: We report plots for various
distillation settings involving ResNet56, ResNet20 and MobileNet-v2. We find that the underfitting
phenomenon is almost non-existent in the training set (except for ResNet50 to ResNet20 distillation).
However the phenomenon is prominent in the test dataset.

(a) Self-distillation in MNLI (b) Cross-architecture distillation in MNLI and
AGNews

Figure 10: Teacher-student logit plots for MNLI and AGNews experiments: We report plots for
various distillation settings involving RoBERTa models. On the left, in the self-distillation settings
on MNLI, we find significant underfitting of low-confidence points (and also overfitting), while
high-confidence points are significantly overfit. On the right, we report cross-architecture (Base
to Medium) distillation for MNLI and AGNews. Here, to a lesser extent, we see the same pattern.
We interpret this as distillation reducing its “precision” on the lower-confidence points (perhaps by
ignoring lower eigenvectors that provide finer precision).
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Figure 11: Teacher-student logit plots for self-distillation in language datasets (QQP, IMDB,
AGNews): We report plots for various self-distillation settings involving RoBERTa models. Except
for IMDB training dataset, we find both significant underfitting and overfitting for lower-confidence
points (indicating lack of precision), and more precision for high-confidence points. For IMDB test
and AGNews, there is an overfitting of the high-confidence points.

Figure 12: Teacher-student logit plots for cross-architecture distillation in language datasets
(AGNews, QQP, IMDB, MNLI): We report plots for various cross-architecture distillation settings
involving RoBERTa models. While we find significant student-teacher deviations in these settings,
our typical patterns do not apply here. We believe that effects due to “cross-architecture gaps” may
have likely drowned out the underfitting patterns, which is a more subtle phenomenon that shines in
self-distillation settings.
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C.3 Teacher’s predicted class vs. ground truth class669

Recall that in all our scatter plots we have looked at the probabilities of the teacher and the student on670

the teacher’s predicted class i.e., (pte
yte(x), p

st
yte(x)) where yte .

= argmaxy′∈[K] p
te
y′(x). Another natu-671

ral alternative would have been to look at the probabilities for the ground truth class, (pte
y?(x), p

st
y?(x))672

where y? is the ground truth label. We chose to look at yte however, because we are interested in the673

“shortcomings” of the distillation procedure where the student only has access to teacher probabilities674

and not ground truth labels.675

Nevertheless, one may still be curious as to what the probabilities for the ground truth class look like.676

First, we note that the plots look almost identical for the training dataset owing to the fact that the677

teacher model typically fits the data to low training error (we skip these plots to avoid redundancy).678

However, we find stark differences in the test dataset as shown in Fig 13. In particular, we see that679

the underfitting phenomenon is no longer prominent, and almost non-existent in many of our settings.680

This is surprising as this suggests that the student somehow matches the probabilities on the ground681

truth class of the teacher despite not knowing what the ground truth class is.682

We note that previous work [33] has examined deviations on ground truth class probabilities albeit in683

an aggregated sense (at a class-level rather than at a sample-level). While they find that the student684

tends to have lower ground truth probability than the teacher on problems with label imbalance, they685

do not find any such difference on standard datasets without imbalance. This is in alignment with686

what we find above.687

To further understand the underfit points from Sec C.2 (where we plot the probabilities on teacher’s688

predicted class), in Fig 14, we dissect these plots into four groups: these groups depend on which689

amongst the teacher and student model classify the point correctly (according to ground truth). We690

consistently find that the underfit set of points is roughly the union of the set of all points where691

at least one of the models is incorrect. This has two noteworthy implications. First, its attempt to692

deviate from the teacher, the student corrects some of the teacher’s mistakes. But also, the student693

introduces new mistakes the teacher originally did not make. These may correspond to points which694

are inherently fuzzy e.g., they are similar to multiple classes.695
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Figure 13: Scatter plots for ground truth class: Unlike in other plots where we report the proba-
bilities for the class predicted by the teacher, here we focus on the ground truth class. Recall that
the X-axis corresponds to the teacher, the Y -axis to the student, and all the probabilities are log-
transformed. Surprisingly, we observe a much more subdued underfitting here, with the phenomenon
completely disappearing e.g., in CIFAR100 and CIFAR10 ResNet distillation. This suggests that the
student preserves the ground-truth probabilities despite no knowledge of what the ground-truth class
is, while underfitting on the teacher’s predicted class.
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(a) CIFAR100 MobileNet-v2 self-distillation

(b) CIFAR100 ResNet56 self-distillation

(c) TinyImageNet ResNet50 self-distillation

Figure 14: Dissecting the underfit points: Across a few settings on TinyImagenet and CIFAR100,
we separate the teacher-student scatter plots of logit-transformed probabilities (for teacher’s top
predicted class) into four subsets: subsets where both models’ top prediction is correct (titled as
“Both”), where only the student gets correct (“Only_student”), where only the teacher gets correct
(“Only_teacher”), where neither get correct (“Neither”). We consistently find that the student’s
underfit points are points where at least one of the models go wrong.
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Table 3: Quantification of confidence exaggeration for self-distillation settings on image
datasets: Slope greater than 1 implies confidence exaggeration. Slope is computed for bottom
25% by teacher’s confidence.

Dataset Teacher Student Slope
Train Test

CIFAR10 MobileNet-v2-1.0 MobileNet-v2-1.0 0.22 1.37

ResNet-56 ResNet-56 0.87 1.13

CIFAR100 MobileNet-v2-1.0 MobileNet-v2-1.0 0.80 1.22

ResNet-56 ResNet-56 1.26 1.22

(noisy) ResNet-56 ResNet-56 1.55 1.19

(v2 hyperparameters) ResNet-56 ResNet-56 1.25 1.31

Tiny-ImageNet MobileNet-v2-1.0 MobileNet-v2-1.0 1.24 1.22

ResNet-50 ResNet-50 1.97 1.20

ImageNet ResNet-18 ResNet-18 (full KD) 1.27 1.22

ResNet-18 ResNet-18 (late KD) 1.26 1.24

ResNet-18 ResNet-18 (early KD) 1.38 1.37

Table 4: Quantification of confidence exaggeration for cross-distillation settings on image
datasets: Slope greater than 1 implies confidence exaggeration. Slope is computed for bottom
25% by teacher’s confidence.

Dataset Teacher Student Slope
Train Test

CIFAR10 ResNet-56 MobileNet-v2-1.0 0.57 1.18

ResNet-56 ResNet-20 1.05 1.16

CIFAR100 ResNet-56 MobileNet-v2-1.0 0.95 1.03

ResNet-56 ResNet-20 1.26 1.12

(noisy) ResNet-56 ResNet-20 1.50 1.60

Tiny-ImageNet ResNet-50 MobileNet-v2-1.0 1.29 1.08

ResNet-50 ResNet-18 1.69 1.23

C.4 Quantification of exaggeration696

Although we report the exaggeration of confidence levels as a qualitative observation, we attempt697

a quantification for the sake of completeness. To this end, our idea is to fit a least-squares line698

Y = mX + c through the scatter plots of (φ(pte
yte(x)), φ(p

st
yte(x))) and examine the slope of the line.699

If m > 1, we infer that there is an exaggeration of confidence values. Note that this is only a proxy700

measure and may not always fully represent the qualitative phenomenon.701

In the image datasets, recall that this phenomenon most robustly occurred in the teacher’s low-702

confidence points. Hence, we report the values of the slope for the bottom 25%-ile points, sorted703

by the teacher’s confidence φ(pte
yte(x)). Table 3 corresponds to self-distillation and Table 4 to cross-704

architecture. These values faithfully capture our qualitative observations. In all the image datasets,705

on test data, the slope is greater than 1. The same holds on training data in a majority of our settings,706

except for the CIFAR-10 settings, and the CIFAR100 settings with a MobileNet student, where we707

did qualitatively observe the lack of confidence exaggeration.708

For the language datasets, recall that there was both an underfitting and overfitting of low-confidence709

points, but an overfitting of the high-confidence points. To capture this, we report the values of710

the slope for the top 25%-ile points, Table 5 corresponds to self-distillation and Table 6 to cross-711

architecture. On test data, the slope is larger than 1 for 7 out of our 12 settings. However, we note712

that we do not see a perfect agreement between these values and our observations from the plots713

e.g., in IMDB test data, self-distillation of RoBERTa-small, the phenomenon is strong, but this is not714

represented in the slope.715
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Table 5: Quantification of confidence exaggeration for self-distillation settings on language
datasets: Slope greater than 1 implies confidence exaggeration. Slope is computed for top 25%
points by teacher’s confidence.

Dataset Teacher Student Slope
Train Test

MNLI RoBERTa-Small RoBerta-Small 1.28 1.30

RoBERTa-Medium RoBerta-Medium 0.98 1.00

IMDB RoBERTa-Small RoBerta-Small 0.37 0.38

QQP RoBERTa-Small RoBerta-Small 1.02 1.01

RoBERTa-Medium RoBerta-Medium 0.54 0.59

AGNews RoBERTa-Small RoBerta-Small 1.03 1.02

Table 6: Quantification of confidence exaggeration for cross-distillation settings on language
datasets: Slope greater than 1 implies confidence exaggeration. Slope is computed for top 25% of
points by teacher’s confidence.

Dataset Teacher Student Slope
Train Test

MNLI RoBERTa-Base RoBerta-Small 1.69 1.68

RoBERTa-Base RoBerta-Medium 1.10 1.19

IMDB RoBERTa-Base RoBerta-Small −0.70 0.60

QQP RoBERTa-Base RoBerta-Small 23.20 21.53

AGNews RoBERTa-Base RoBerta-Small 0.90 1.10

RoBERTa-Base RoBerta-Medium 0.88 0.88
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Figure 15: Underfitting holds for longer runs and for smaller batch sizes: For the self-distillation
setting in CIFAR100 and TinyImagenet (left two figures), we find that the student underfits teacher’s
low-confidence points even after an extended period of training (roughly 2× longer). On the right,
we find in the CIFAR100 setting that underfitting occurs even for smaller batch sizes.

C.5 Ablations716

We provide some additional ablations in the following section.717

Longer training: In Fig 15 (left two images), we conduct experiments where we run knowledge718

distillation with the ResNet-56 student on CIFAR100 for 2.3× longer (50k steps instead of 21.6k719

steps overall) and with the ResNet-50 student on TinyImagenet for about 2× longer (300k steps over720

instead of roughly 150k steps). We find the resulting plots to continue to have the same underfitting721

as the earlier plots. It is worth noting that in contrast, in a linear setting, it is reasonable to expect the722

underfitting to disappear after sufficiently long training. Therefore, the persistent underfitting in the723

non-linear setting is remarkable and suggests one of two possibilities:724

• The underfitting is persistent simply because the student is not trained sufficiently long725

enough i.e., perhaps, when trained 10× longer, the network might end up fitting the teacher726

probabilities perfectly.727

• The network has reached a local optimum of the knowledge distillation loss and can never fit728

the teacher precisely. This may suggest an added regularization effect in distillation, besides729

the eigenspace regularization.730

Smaller batch size/learning rate: In Fig 15 (right image), we also verify that in the CIFAR100731

setting if we set peak learning rate to 0.1 (rather than 1.0) and batch size to 128 (rather than 1024),732

our observations still hold. This is in addition to the second hyperparameter setting for CIFAR100 in733

Fig 6.734

A note on distillation weight. For nearly all of our students, we fix the distillation weight to be735

1.0 (and so there is no one-hot loss). This is because we are interested in studying deviations under736

the distillation loss; after all, it is most surprising when the student deviates from the teacher when737

trained on a pure distillation loss which disincentivizes any deviations.738

Nevertheless, for ImageNet, we follow Cho and Hariharan [7] and set the distillation weight to739

be small, at 0.1 (and correspondingly, the one-hot weight to be 0.9). We still observe confidence740

exaggeration in this setting in Fig 7. Thus, the phenomenon is robust to this hyperparameter.741

Scatter plot for other metrics: So far we have looked at student-teacher deviations via scatter plots742

of the probabilities on the teacher’s top class, after applying a logit transformation. It is natural to ask743

what these plots would look like under other variations. We explore this in Fig 16 for the CIFAR100744

ResNet-56 self-distillation setting.745

For easy reference, in the top left of Fig 16, we first show the standard logit-transformed probabilities746

plot where we find the underfitting phenomenon. In the second top figure, we then directly plot the747

probabilities instead of applying the logit transformation on top of it. We find that the underfitting748

phenomenon does not prominently stand out here (although visible upon scrutiny, if we examine749

below the X = Y line for X ≈ 0). This illegibility is because small probability values tend to750

concentrate around 0; the logit transform however acts as a magnifying lens onto the behavior of751
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Figure 16: Scatter plots for various metrics: While in the main paper we presented scatter plots
of logit-transformed probabilities, here we present scatter plots for various metrics, including the
probabilities themselves, entropy of the probabilities, and the KL divergence of the student prob-
abilities from the teacher. We find that the KL-divergence plots capture similar intuition as our
logit-transformed probability plots. On the other hand, directly plotting the probabilities themselves
is not as visually informative.

small probability values. For the third top figure, we provide a scatter plot of entropy values of the752

teacher and student probability values to determine if the student distinctively deviates in terms of753

entropy from the teacher. It is not clear what characteristic behavior appears in this plot.754

In the bottom plots, on the Y axis we plot the KL-divergence of the student’s probability from755

the teacher’s probability. Along the X axis we plot the same quantities as in the top row’s three756

plots. Here, across the board, we observe behavior that is aligned with our earlier findings: the757

KL-divergence of the student tends to be higher on teacher’s lower-confidence points, where “lower758

confidence” can be interpreted as either points where its top probability is low, or points where the759

teacher is “confused” enough to have high entropy.760
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Table 7: Summary of the more general training settings used to verify our theoretical claim.

Hyperparameter Noisy-MNIST/RandomFeatures MNIST/MLP CIFAR10/CNN

Width 5000 ReLU Random Features 1000 100

Kernel - - (6, 6)

Max pool - - (2, 2)

Depth 1 2 3

Number of Classes 10 10 10

Training data size 128 128 8192

Batch size 128 32 128

Epochs 40 20 40

Label Noise 25% (uniform) None None
Learning rate 10−3 10−4 10−4

Distillation weight 1.0 1.0 1.0

Distillation temperature 4.0 4.0 4.0

Optimizer Adam Adam Adam

D Further experiments verifying eigenspace regularization761

D.1 Description of settings762

In this section, we demonstrate the theoretical claims in §4 in practice even in situations where our763

theoretical assumptions do not hold good. We go beyond our assumptions in the following ways:764

1. We consider three architectures: a linear random features model, an MLP and a CNN.765

2. All are trained with the cross-entropy loss (instead of the squared error loss).766

3. We consider multi-class problems instead of scalar-valued problems.767

4. We use a finite learning rate with minibatches and Adam.768

5. We test on a noisy-MNIST dataset, MNIST and CIFAR10 dataset.769

We provide exact details of these three settings in Table 7.770

D.2 Observations771

Through the following observations in our setups above, we establish how our insights generalize772

well beyond our particular theoretical setting:773

1. In all these settings, the student fails to match the teacher’s probabilities adequately, as seen774

in Fig 18. This is despite the fact that they both share the same representational capacity.775

Furthermore, we find that there is a systematic underfitting of the low-confidence points.776

2. At the same time, we also observe in Fig 19, Fig 20, Fig 21 that the convergence rate of777

the student is much faster along the top eigendirections when compared to the teacher in778

nearly all the pairs of eigendirections that we randomly picked to examine. See §D.3 for779

how exactly these plots are computed. Note that these plots are shown for the first layer780

parameters (with respect to the eigenspace of the raw inputs). We show some preliminary781

evidence that these can be extended to subsequent layers as well (see Fig 22, 23).782

3. We also confirm the claim we made in Sec 5.1 to connect the exaggeration of confidence783

levels to the exaggeration of bias in the eigenspace. In Fig 18 (left), we see that on the784

mislabeled examples in the NoisyMNIST setting, the teacher has low confidence; the student785

has even lower confidence on these points. For the sake of completeness, we also show that786

these noisy examples are indeed fit by the bottom eigendirections in Fig 17. Thus, naturally,787

a slower convergence along the bottom eigendirections would lead to underfitting of the788

mislabeled data.789
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Figure 17: Bottom eigenvectors help fit mislabeled data: For the sake of completeness, in the
NoisyMNIST setting we report how the accuracy of the model (Y axis) degrades as we retain only
components of the weights along the top K eigendirections (K corresponds to X axis). The accuracy
on the mislabeled data, as expected, degrades quickly as we lose the bottommost eigenvectors, while
the accuracy on clean data is preserved even until K goes as small as 20.

Thus, our insights from the linear regression setting in §4 apply to a wider range of settings. We also790

find that underfitting happens in these settings, reinforcing the connection between the eigenspace791

regularization effect and underfitting.792

D.3 How eigenvalue trajectories are plotted793

How eigendirection trajectories are constructed.794

In our theory, we looked at how the component of the weight vector along a data eigendirection795

would evolve over time. To study this quantity in more general settings, there are two generalizations796

we must make. First, we have to deal with weight matrices or tensors rather than vectors. Next, for797

the hidden weight matrices, it is not clear what corresponding eigenspace we must consider, since its798

corresponding input is not fixed over time.799

Below, we describe how we address these challenges. Our main results in Fig 19, Fig 20, Fig 21800

are focused on the first layer weights, where the second challenge is automatically resolved (the801

eigenspace is fixed to be that of the fixed input data). Later, we show some preliminary extensions to802

subsequent layers.803

How data eigendirections are computed. For the case of the linear model and MLP model, we804

compute the eigendirections v1,v2, . . . ∈ Rd directly from the training input features. Here, p is805

the dimensionality of the (vectorized) data. In the linear model this equals the number of random806

features, and in the MLP model this is the dimensionality of the raw data (e.g., 784 for MNIST).807

For the convolutional model, we first take random patches of the images of the same shape as the808

kernel (say (K,K,C) where C is the number of channels). We vectorize these patches into Rp where809

p = K ·K · C before computing the eigendirections of the data.810

How weight components along eigendirections are computed. First we transform our weights811

into a matrix W ∈ Rp×h. For the linear and MLP model, we let W ∈ Rp×h be the weight matrix812

applied on the p-dimensional data. Here h is the number of outputs of this matrix. In the case of813

random features, h equals the number of classes, and in the case of the MLP, h is the number of814

output hidden units of that layer. For the CNN, we flatten the 4-dimensional convolutional weights815

into W ∈ Rp×h where p = K ·K · C. Here, h is the number of output hidden units of that layer.816

Having appropriately transformed our weights into a matrix W, for any index k, we calculate the817

component of the weights along that eigendirection as WTvk; we further scalarize this as ‖WTvk‖2.818

For the plots, we pick two random eigendirections and plot the projection of the weights along those819

over the course of time.820

How to read the plots. In all the plots, the bottom direction is along the Y axis, the top along the X821

axis. The final weights of either model are indicated by a ?. When we say the model shows “implicit822
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Figure 18: Confidence exaggeration verifying our theory: We plot the logit-logit scatter plots,
similar to §3, for the three settings in §D — these are also the settings where we verify that
distillation exaggerates the implicit bias. Each column corresponds to a different setting, while the
top and bottom row correspond to train and test data respectively. Across all the three settings, we
find low-confidence underfitting, particularly in the training dataset.

bias”, we mean that it converges faster along the top direction in the X axis than the Y axis. This823

can be inferred by comparing what fraction of the X and Y axes have been covered at any point.824

Typically, we find that the progress along X axis dominates that along the Y axis. Intuitively, when825

this bias is extreme, the trajectory would reach its final X axis value first with no displacement along826

the Y axis, and only then take a sharp right-angle turn to progress along the Y axis. In practice, we827

see a softer form of this bias, where the trajectory takes a “convex” shape, informally put. For the828

student however, since this bias is strong, the trajectory tends more towards the sharper turn (and is829

more “strongly convex”).830

Extending to subsequent layers. The main challenge in extending these plots to a subsequent831

layer is the fact that these layers act on a time-evolving eigenspace — one that corresponds to the832

hidden representation of the first layer at any given time. As a preliminary experiment, we fix this833

eigenspace to be that of the teacher’s hidden representation at the end of its training. We then train834

the student with the same initialization as that of the teacher so that there is a meaningful mapping835

between the representation of the two (at least in simple settings, all models originating from the836

same initialization are known to share interchangeable representations.) Note that we enforce the837

same initialization in all our previous plots as well. Finally, we plot the student and the teacher’s838

weights projected along the fixed eigenspace of the teacher’s representation.839

D.4 Verifying eigenspace regularization for random features on NoisyMNIST840

Please refer Fig 19.841

D.5 Verifying eigenspace regularization for MLP on MNIST842

Please refer Fig 20.843

D.6 Verifying eigenspace regularization for CNN on CIFAR10844

Please refer Fig 21.845
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Figure 19: Eigenspace convergence plots verifying the eigenspace theory for NoisyMNIST-
RandomFeatures setting: In all these plots, the X axis corresponds to the top eigenvector and
the Y axis to the bottom eigenvector (see §D for how they are randomly picked). Each plot shows the
trajectory projected onto the two eigendirections with the ? corresponding to the final parameters. In
all but one case we find that both the student and the teacher converge faster to their final X value,
than to their Y value showing that both have a bias towards higher eigendirections. But importantly,
this bias is exaggerated for the student in all cases (except the one case in top row, second column),
proving our main theoretical claim in §4 in a more general setting with multi-class cross-entropy loss,
finite learning rate etc., See §D for discussion.

D.7 Extending to intermediate layers846

Please refer Fig 22 and Fig 23.847
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Figure 20: Eigenspace convergence plots verifying the eigenspace theory for MNIST-MLP set-
ting : In all cases (except one), we find that the student converges faster to the final X value of the
teacher than it does along the Y axis; in the one exceptional case (row 2, col 4), we do not see any
difference. This demonstrates our main theoretical claim in §4 in a neural network setting. See §D
for discussion.
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Figure 21: Eigenspace convergence plots verifying the eigenspace theory for CIFAR10-CNN
setting: In all cases, we find that the student converges faster to the final X value of the teacher than
it does along the Y axis. This demonstrates our main theoretical claim in §4 in a convolutional neural
network setting. See §D for discussion.
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Figure 22: Eigenspace convergence plots providing preliminary verification the eigenspace
theory for the intermediate layer in the MNIST-MLP setting: In all cases (except top row, fourth),
we find that the student converges faster to the final X value of the teacher than it does along the Y
axis. This demonstrates our main theoretical claim in §4 in an hidden layer of a neural network. Note
that these plots are, as one would expect, less well-behaved than the first-layer plots in Fig 20. See
§D for discussion.
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Figure 23: Eigenspace convergence plots providing preliminary verification of the eigenspace
theory for the intermediate layer CIFAR-CNN setting: Here, we find that in a majority of the
slices (indexed as 1,2,3,4,6,7,12 and 13 in row-major order), the student has an exaggerated bias than
the teacher; in 5 slices (indexed as 2,5,8,9 and 12), there is little change in bias; in 4 slices the student
shows a de-exaggerated bias than the teacher. Note that these plots are, as one would expect, less
well-behaved than the first-layer plots in Fig 21. See §D for discussion.
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E Further experiments on loss-switching848

In the main paper, we presented results on loss-switching between one-hot and distillation inspired849

by prior work [7, 58, 21] that has proposed switching from distillation to one-hot. We specifically850

demonstrated the effect of this switch and the reverse, in a controlled CIFAR100 experiment, one851

with an interpolating and another with a non-interpolating teacher. Here, we present two more results:852

one with an interpolating CIFAR100 teacher in different hyperparameter settings (see v1 setting in853

§C.1) and another with a non-interpolating TinyImagenet teacher. These plots are shown in Fig 24.854

We also present how the logit-logit plots of the student and teacher evolve over time for both settings855

in Fig 4 and Fig 25.856

We make the following observations for the CIFAR100 setting:857

1. Corroborating our effect of the interpolating teacher in CIFAR100, we again find that858

switching to one-hot in the middle of training surprisingly hurts accuracy.859

2. Remarkably, we find that for CIFAR100 switching to distillation towards the end of training,860

is able to regain nearly all of distillation’s gains.861

3. Fig 25 shows that switching to distillation is able to introduce the confidence exaggeration862

behavior even from the middle of training; switching to one-hot is able to suppress this863

behavior.864

Note that here training is supposed to end at 21k steps, but we have extended it until 30k steps to865

look for any long-term effects of the switch.866

In the case of TinyImagenet,867

1. For a distilled model, switching to one-hot in the middle of training increases accuracy868

beyond even the purely distilled model. This is in line with our hypothesis that such a switch869

would be beneficial under a non-interpolating teacher.870

2. Interestingly, for a one-hot-trained model, switching to distillation is helpful enough to871

regain a significant fraction of distillation’s gains. However, it does not gain as much872

accuracy as the distillation-to-onehot switch.873

3. Both the one-hot-trained model and the model which switched to one-hot, suffer in accuracy874

when trained for a long time. This suggests that any switch to one-hot must be done only for875

a short amount of time.876

4. Fig 4 shows that switching to distillation is able to introduce the confidence exaggeration877

behavior; switching to one-hot is able to suppress this deviation.878
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Figure 24: Trajectory of test accuracy for loss-switching over longer periods of time: We grad-
ually change the loss for our self-distillation settings in CIFAR100 and TinyImagenet and extend
training for a longer period of time. Note that the teacher for the CIFAR100 setting is interpolating
while that for the TinyImagenet setting is not. This results in different effects when the student
switchs to a one-hot loss, wherein it helps under the non-interpolating teacher and hurts for the
interpolating teacher.

(a) One-hot and self-distillation. (b) Loss-switching to distillation/one-hot at 15k steps.

Figure 25: Evolution of logit-logit plots over various steps of training for CIFAR100 ResNet56
self-distillation setup: On the left, we present plots for one-hot training (top) and distillation
(bottom). On the right, we present similar plots the loss switched to distillation (top) and one-hot
(bottom) at 15k steps, as discussed in §5.2. From the last two visualized plots in each, observe that
switching to distillation introduces (a) underfitting of low-confidence points (b) while switching to
one-hot curiously undoes this to an extent.
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