
A Appendix

A.1 Dynamics Definitions

Delta Action Space. Define an agent’s current state information as s = (x, y, θ, vx, vy), which
includes the x, y positions in the coordinate space, and the yaw angle θ, and the velocities in
the X and Y directions. Given the action (∆x,∆y,∆θ), which accounts for the change in the
positions and yaw angle of the agent, and given the time step length for one step ∆t, the next state
s′ = (x′, y′, θ′, v′x, v

′
y) can be expressed as,

x′ = x+ ∆x

y′ = y + ∆y

θ′ = θ + ∆θ

v′x = (x′ − x)/∆t

v′y = (y′ − y)/∆t.

(1)

The inverse kinematics can be used to calculate the actions for behavior cloning purpose. It can be
described as ∆x = x′ − x,∆y = y′ − y,∆θ = θ′ − θ.

Bicycle Action Space. With the Bicycle action space, we propose a model to approximate the vehicle
dynamics with the goal of minimizing the discrepancy between the predicted vehicle states and
the recorded vehicle states. More specifically, define the vehicle’s coordinates as x, y in the global
coordinate system, and the predicted coordinates as x̂, ŷ, the goal is to minimize (x− x̂)2 + (y− ŷ)2.
Define the current vehicle’s state information as s, which includes the coordinates of the vehicle in
the global coordinate system (x, y), the vehicle’s yaw angle θ, the vehicle’s speed in the x and y
direction vx, vy . Given the acceleration a, and steering curvature κ, the time length for one step ∆t,
the vehicle’s next state is calculated using the following forward dynamics.

x′ = x+ vx∆t+
1

2
a cos(θ)∆t2

y′ = y + vy∆t+
1

2
a sin(θ)∆t2

θ′ = θ + κ ∗ (
√
v2x + v2y∆t+

1

2
a∆t2)

v′ =
√
v2x + v2y + a∆t

v′x = v′ cos (θ′)

v′y = v′ sin (θ′).

(2)

For the inverse kinematics, given the state information of two consecutive states s = (x, y, θ, vx, vy)
and s′ = (x′, y′, θ′, v′x, v

′
y), we estimate the acceleration a and steering curvature κ using the

following equation.

a = (v′ − v)/∆t

= (
√
v′2x + v′2y −

√
v2x + v2y)/∆t

κ = (arctan
v′x
v′y

− θ)/(
√
v2x + v2y∆t+

1

2
a∆t2).

(3)

Using arctan
v′
x

v′
y

instead of θ′ empirically achieves smaller prediction error. Other previous environ-
ments use a variant of the bicycle model. The steering wheel angle θwheel is related with the steering
curvature κ:

κ =
sin(θwheel/STEER_RATIO)

L
, (4)

where L is the axel length of the vehicle, and STEER_RATIO is a constant depicting the
connection between the front wheel steer angle θf and steering wheel angle θwheel: θf =
θwheel/STEER_RATIO.

14



A.2 Training Details

Behavior Cloning Training Details We re-use the encoder portion of the Wayformer [35] architec-
ture followed by a 4-layer residual MLP (with all hidden layer sizes set to 128) to maximize the log
likelihood of the expert actions. For continuous actions, we used a 10-component Gaussian Mixture
Model Tanh squashed distribution head. For discrete actions, we used a softmax layer to compute
action probabilities. We used Adam with learning rate 1e− 4 and batch size 256.

DQN Training Details We used the Acme [19] implementation of prioritized replay double
DQN [45]. We used the same architecture as in discrete BC for the Q-network, interpreting the logits
of the model as Q-values for each possible action. We used a discount of γ = 0.99, learning rate
5 ∗ 10−5, 1-step Q-learning, a samples-to-insertion ratio of 8, and batch size 64. We trained for 30
million actor steps.

Hyperparameter Selection We performed hyperparameter selection for all learned benchmark
agents (BC, DQN) outlined in Table 3 via a grid search. For BC, we performed grid search over the
learning rate on the values (3 ∗ 10−5, 1 ∗ 10−4, 3 ∗ 10−4) and on the action space (Bicycle, Delta,
Bicycle-Discrete, Delta-Discrete). For DQN, we performed only grid search over the action space
(Bicycle-Discrete, Delta-Discrete).

A.3 Ablation Study: Runtime and Memory with Number of Objects

We perform an ablation study analyzing the relationship between runtime, memory, and the number
of objects simulated. For this ablation study, in the CPU configuration we used a machine with an
AMD EPYC 7B12 processor and 64GB RAM. For the GPU configuration we used an Nvidia V100
GPU.

Device BS-1 BS-16 Objects Reset Transition Metrics RolloutExpert Peak Memory
CPU 3 8 0.194 0.191 0.773 121.492 5.409
CPU 3 16 0.184 0.176 1.431 190.357 5.590
CPU 3 32 0.197 0.223 2.428 378.926 5.956
CPU 3 64 0.225 0.221 4.468 637.125 6.652
CPU 3 128 0.286 0.274 9.831 1159.158 8.036
CPU 3 8 1.741 2.004 10.689 n/a 84.066
CPU 3 16 1.744 1.894 20.069 n/a 86.805
CPU 3 32 2.084 2.414 33.002 n/a 92.283
CPU 3 64 2.575 2.648 66.486 n/a 103.239
CPU 3 128 2.837 3.080 124.530 n/a 125.151
GPU 3 8 0.250 0.265 0.159 27.010 -
GPU 3 16 0.253 0.267 0.158 28.041 -
GPU 3 32 0.258 0.268 0.208 30.488 -
GPU 3 64 0.260 0.276 0.157 33.206 -
GPU 3 128 0.246 0.257 0.152 36.856 -
GPU 3 8 0.264 0.266 0.154 n/a -
GPU 3 16 0.258 0.264 0.175 n/a -
GPU 3 32 0.251 0.268 0.221 n/a -
GPU 3 64 0.280 0.289 0.301 n/a -
GPU 3 128 0.262 0.272 0.469 n/a -

Table 6: Runtime and memory ablation study over number of objects simulated. All runtimes are
reported in milliseconds, and peak memory reported in MB. BS-1 refers to a batch size of 1, and
BS-16 refers to a batch size of 16.

15



(a) CPU runtime, batch size 1. (b) CPU runtime, batch size 16.

(c) GPU runtime, batch size 1. (d) GPU runtime, batch size 16.

Figure 4: Runtime in milliseconds (y-axis) plotted against number of objects simulated (x-axis). The
runtime reported is the sum of Reset + Transition + Metrics. Note that while CPU runtime scales
linearly with the number of objects simulated, GPU performance is not saturated under the same
experimental parameters.

(a) CPU memory, batch size 1. (b) CPU memory, batch size 16.

Figure 5: Memory usage in megabytes (y-axis) plotted against number of objects simulated (x-axis).
The runtime reported is sampled during the execution of the rollout function. Memory usage has a
fixed cost then scales roughly linearly with the number of objects

16


	Appendix
	Dynamics Definitions
	Training Details
	Ablation Study: Runtime and Memory with Number of Objects


