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In this Supplementary Material, we present the following items:

• Implementation details for our experiments, include settings for pre-training, image classifi-
cation, object detection and semantic segmentation tasks

• Additional information about different objective function definitions for MIRL pre-training
• Additional visualization examples
• Additional information about the inference speed of deeper ViTs

A Implementation details

A.1 Details for ImageNet experiments

Pre-training. We mostly adopt the pre-training setting in [10], except for that we adopt shorter
fewer training epochs. The default pre-training setting is provided in Table 1. The learning rate
lr=base_lr×batchsize / 256.

Table 1: Pre-training setting.

Pre-training Config. Value

optimizer AdamW
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95
batch size 4096
learning rate schedule cosine decay
warmup epochs 20/40
training epochs 300/800
augmentation RandomResizedCrop

Fine-tuning. The layer-wise learning rate decay [4] factors of the deeper ViTs are set to larger than
those of the shallower ViTs to maintain similar learning rates in the lowest layers for all models.
The fine-tuning setting is provided in Table 2. In our experiment, models are insensitive to the
droppath [11] configuration, and setting it to 0 does not lead to any noticeable differences. We employ
EMA to enhance tuning performance on small datasets consisting of only a few hundred training
samples, such as private industrial datasets. When tuning on these limited-scale datasets, we gravitate
towards loading weights from the ImageNet fine-tuned model instead of the MIM pre-trained model
because the MIM lacks semantic features. In this context, using the EMA-fine-tuned models yields
better tuning accuracy on tiny datasets, especially when picking a non-final checkpoint, compared to
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counterparts without EMA. However, EMA does not significantly impact the fine-tuning accuracy on
ImageNet. The reason could be attributed to the sufficiently long training period (e.g., spanning 800
pre-training epochs + 200/100 fine-tuning epochs). This allows models with or without EMA to likely
converge to the same optimum. Nonetheless, EMA remains crucial for training models from scratch,
as indicated in [1] (e.g., ViT-B achieves 82.3% accuracy with EMA and 82.1% without EMA).

Table 2: Fine-tuning setting.

Fine-tuning Config. Value

optimizer AdamW
base learning rate 7.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay [4] 0.65(S), 0.88(S-54), 0.65(B), 0.65(B-24), 0.88(B-48)
batch size 2048
learning rate schedule cosine decay
warmup epochs 20
training epochs 200(S), 100(S-54), 100(B), 100(B-24), 50(B-48)
augmentation RandAug (9, 0.5) [5]
label smoothing [13] 0.1
mixup [16] 0.8
cutmix [15] 1.0
drop path [11] 0.1(S), 0.1(S-54) 0.1(B), 0.1(B-24) 0.2 (B-48)
exp. moving average 0.9998

A.2 Details for transfer learning experiments

Object detection on COCO. For a fair comparison, we conduct experiments using the Mask R-CNN
framework. We utilize multi-scale training and resize the image with the size of the short side between
480 and 800 and the long side no larger than 1333. we initialize the backbone with the pre-trained
ViT model. During fine-tuning, the batch size is 16 and the learning rate is 1e-4. For ViT-B, the layer
decay rate is 0.75, and the drop path rate is 0.1. For ViT-B-48, the layer decay rate is 0.88, and the
drop path rate is 0.1. Other training configurations are adopted from mmdetection [2]. We do not
use multi-scale testing.

Semantic segmentation on ADE20K. We adopt the UperNet [14] framework for semantic segmen-
tation, following the implementation of [1]. We initialize the backbone with the pre-trained weights
and fine-tune the entire model for 160k iterations with a batch size of 16. The learn rate is set to
0.0002. Different from the implementation of [1], we do not use relative position bias in our models.

B Other pre-training objectives

B.1 Feature-level and VGG losses

Feature-level loss. Regarding the feature-level loss, we employ the InfoNCE loss used in contrastive
learning:

Lfeat = −log
exp(ẑ · z+/τ)

exp(ẑ · z+/τ) +
∑j=B−1

j=1 exp(ẑ · z−/τ)
, (1)

where ẑ is the prediction, τ denotes a temperature parameter. In a batch with B images, (ẑ, z+)
represent a positive pair in which positive sample z+ is a momentum encoder’s output on the same
view of the image as ẑ. The momentum encoder’s parameters are the moving average of the encoder.
(ẑ, z−) represents a negative pair where negative sample z− is generated with an image different
from that of ẑ in the image batch. Previous work in [3, 7] eliminates negative sample comparisons in
their feature-level loss, which emphasizes the importance of positive samples, resembling a BYOL
style [9], but we find that involving in negative samples can slightly improve the accuracy. The
feature-level loss is only calculated at the end of the encoder, by appending two decoding blocks to
predict the masked features.
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Table 3: Comparison between loss L†
g and loss Lg . The encoder is ViT-S-54. ω in L†

g is set to 1. We
adopt a step-wise decay learning rate scheduler.

loss definition pre-training epochs fine-tuning

Lg 100 83.5
L†

g 100 83.5

Lg 300 84.2
L†

g 300 84.0

VGG loss. VGG loss is previously used in generative models [12, 8], eliminating the influence of
pixel shifting for high-quality image synthesis. Specifically, for reconstruction from g-th prediction
head, we replace the reconstructed patches in visible positions with the ground-truth image patches to
ease the optimization difficulty, given x̃ = {x̂i

g : i ∈ M}Ni=1 ∪ {xi : i /∈ M}Ni=1. The mixed fake
image x̃ and growth-truth image x are forwarded to a fixed, lightweight VGG model, and the VGG
loss is calculated by measuring the difference between their VGG activations from multiple layers,
which is formulated as:

Lvgg =
∑
ℓ∈S

1

CℓHℓWℓ
∥fℓ(x)− fℓ(x̂g)∥22 , (2)

where fℓ(x̃) denotes the activations of the ℓ-th layer of the VGG network by inputting x̃; CℓHℓWℓ

represents the dimensions of the activation feature map, S denotes a set of layers from which the
VGG features are extracted. Concurrent work [6] also experiments with VGG loss.

B.2 An alternative definition of loss Lg

One of our early attempts regarding the form of reconstruction loss is defined as:

L†
g =

1

|M|
∑
i∈M

1

2P 2C

(
ω∥ξig∥22 + ∥ξig − ξ̂ig∥22

)
=

1

|M|
∑
i∈M

1

P 2C

(
ω∥xi − x̂i

g∥22 + ∥xi − x̂i
g − ξ̂ig∥22

)
=

1

|M|
∑
i∈M

1

P 2C
ω∥xi − x̂i

g∥22 + Lg,

(3)

where Lg is reconstruction loss defined in Eq. (6) from the main paper, ω refers to the regularization
weight to loss term ∥ξig∥22. This variant L†

g minimize the similarity between the original image x

and the reconstructed image x̂g with reference to the first loss term, ∥xi − x̂i
g∥22. By minimizing

the second loss term, ∥xi − x̂i
g − ξ̂ig∥22, the deeper segment explicitly learn the image residual. In

Table 3, we compare the results generated by using loss Lg and loss L†
g. When setting ω from

Eq. (3) to 1, we observe that the two different loss definitions generate similar results in a shorter
pre-training period (e.g., 100 epochs). However, when we pre-train the model for a longer period
(e.g., 300 epochs), training with loss Lg defined in Eq. (6) from the main paper can provide better
results than loss L†

g . We give the reason that L†
g determinedly minimize the distance between x and

x̂, which could result in a very small residual. As the residual is the optimization target for those
deeper segments, such a small residual due to the ∥xi − x̂i

g∥22 term could corrupt the training in the
deeper segments. Alternatively, by setting ω to a smaller value (e.g., 0.1), we achieve a smoother
optimization experience; nonetheless, the results are similar to those obtained when optimizing Lg

alone.

C More Visualization
In Figure 2, we provide gradient norm visualization for MIRL and MAE. We observe that when
employing MIRL for pre-training, the gradient magnitudes of Transformer blocks are larger than
those when using MAE. This suggests that MIRL provides a more stable gradient flow that benefits
the model optimization.

In Figure 1, we provide more visualization about image reconstruction.
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Figure 1: Example results on ImageNet validation images. For each quintuplet, we show the
ground-truth, masked image, reconstruction, residual and the main component.

D Inference Speed

Although we have shown deeper ViTs can gain accuracy from stacking more Transformer blocks, we
also notice that deeper ViTs provide lower inference speed due to the series connections between
blocks. The inference speed measurement is provided in Table 4.
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Figure 2: Example visualization of gradient norm. Original is MIRL, while gray is MAE. From
top to bottom, we visualize the gradient norms in 19-22 Transformer blocks in ViT-B-24. Each row
contains the gradients of attention qkv, mlp, layer norm and fc weights.

Table 4: Inference speed, measuring the throughput (images/sec) on a single V100 GPU, where the
batch size is set to 256.

model depth #params FLOPs throughput (imgs/s)

ViT-S 12 22M 4.2G 751
ViT-S-54 54 96M 18.8G 257
ViT-B 12 86M 16.8G 488
ViT-B-24 24 171M 33.5G 285
ViT-B-48 48 341M 67.0G 160

Table 5: Comparison between MIRL and truncated MIRL. For both truncated MIRL and truncated
MAE, 3 blocks are not involved in pre-training, and the 5th block solely focuses on recovering the
masked content.

encoder method ft accuracy (%)

ViT-S MIRL 82.3
ViT-S truncated MIRL 82.0
ViT-S MAE 81.0
ViT-S truncated MAE 81.7

E Whether the phenomenon in observation II still exists in MIRL?

We devise an additional model named "truncated MIRL". The concept is akin to the truncated MAE
depicted in Figure 1(b) from the main paper. It involves pre-training the early encoding blocks
using MIRL, while the subsequent blocks are randomly initialized. As detailed in Table 5, MIRL
outperforms truncated MIRL by 0.3%. This demonstrates that MIRL effectively pre-trains the deeper
layers, outperforming random initialization. This also suggests that the phenomenon observed in
Observation II does not exist in the MIRL method.
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