
Introduction

To navigate the vast chemical space, computer-assisted drug design approaches 
necessitate molecular representations that can be correlated with biological activity. 
We are interested in creating a single representation that can be used for multiple 
downstream tasks such as quantitative structure–activity relationship (QSAR), virtual 
screening and de novo molecular design.

Recent advances in molecular representation learning using chemical 
language models and geometric deep learning approaches have 
shown promising results towards finding chemical foundation model. 
Here, we combine the best of both worlds and present Graph Infused 
Representation Assembled From a multi-Faceted variational 
auto-Encoder (GIRAFFE). GIRAFFE uses a graph attention neural 
network1 as encoder and a RNN with LSTM cells2 as decoder, 
constructed as a variational autoencoder (VAE)3 with property learning.

Conclusions
In the current study, we have achieved the following:

● Fusion of graph attention neural networks with LSTM and properties in a 
variational autoencoder framework for molecular representation learning.

● Disentanglement of latent space through cyclical annealing of 𝛃 in VAE loss.

● Competitive performance of latent space as descriptor in QSAR benchmarks6.

● High validity and drug-likeness of randomly sampled molecules.

● Recreation of chemical space used for training measured as structural similarity 
and calculated properties.

● Robustness for linear latent space interpolation between points of interest.
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Outlook
● Benchmarking the obtained representation on additional datasets.

● Optimization of the presented approach by using additional property 
endpoints, such as biological assay readouts and physicochemical 
measurements.

● Employing the GIRAFFE latent space as descriptor to cluster compounds for 
the organization of compound libraries.

● Incorporating additional priors and constraints to condition the generation of 
structures on desired scaffolds and properties.

● Getting constructive feedback from the community!

July 2024

Methods

Dataset: 10M SMILES strings randomly 
extracted from PubChem with a maximum length 
of 128 characters.

Batch size: 256 molecules, randomly sampled 
from the full 10M in each step.

Graph features: AttentiveFP1, adapted to 32 
atom and 10 bond features.

Reconstruction task: random parent SMILES 
string in every step.

Property prediction task: 125 calculated RDKit 
properties (scaled [0, 1]).

Optimizer: Adam4, with initial learning rate of 
0.001 and a step-wise decay of 0.75 every 10 
epochs.

Epochs: max. 150, with 1000 steps per epoch

VAE: sampling latent vector 𝔃 from 𝛍 and 𝝈

Loss: 

𝛃: cyclical annealing5 to initially focus on prior.

Results

Figure 1: Network architecture of GIRAFFE with GNN encoder, LSTM decoder and property MLP.

Table 1: Regression benchmark6 RMSE results. Table 2: Classification benchmark6 AUROC results.

Figure 4: Similarity of sampled molecules during 
linear interpolation from Amoxicillin to Diazepam.

Figure 3: Properties of sampled molecules 
during linear interpolation in latent space.

Figure 2: AttentiveFP1 attention 
mechanism and best performing cyclical 
annealing schedules for factor 𝛃.

Figure 6: ECFP4 Tanimoto similarity of sampled 
molecules in GIRAFFE latent space compared to 
their “parent” compound from the training data.
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Figure 5: PCA of the GIRAFFE latent space 
using selected calculated properties 
relevant for drug discovery projects.
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*our models; others: Ref. 7-9. 


