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1 DATASET

Dataset construction. To ensure that each map offers full accessibility for various robotic platforms
such as unmanned aerial vehicles (UAVs) and wheeled robots, we configure all doors and windows
to remain open during map generation. However, we observe that Obsidian does not consistently
guarantee accessibility to all areas. To resolve this, we manually edited each scene to ensure the
traversability of windows, doors, and hidden passages.

Dataset statistic. To calculate navigation complexity, we sampled location pairs from four envi-
ronments ranging in difficulty from simple to insane, at rates of 1%, 0.1%, 0.05%, and 0.02%,
constrained by computational resource limitations. Consequently, our data effectively represents a
lower bound of navigation complexity. Despite this conservative sampling approach, our dataset
remains the most complex one, offering a significant challenge for future research.

Figure [T presents more examples of maps from our dataset, showcasing various levels and diverse
scenarios.

2 DETAILS OF MAPPING PROCESS ENCODER

We provide more details of the Mapping Process Encoder of our proposed approach in this section.

The mapping encoding is predicted from both the current reconstruction progress and historical tra-
jectory data. At each time step ¢ > 0, we construct and refine a surface point cloud P; by integrating
information from newly captured depth map D; :  — R™ and merging it with our existing recon-
structed point cloud. For each camera pose ¢; = (¢}, ci®"), we transform the correspondlng depth
map D, into a set of 3D points. This transformation makes use of the camera’s intrinsic matrix

K € R3*3 and the pose matrix T; € SFE(3), derived from the 6D pose c¢;:
_ T
Pourface (s 0) = Ty - (Dy(w,v) - K- fuvl]T), (u,0) €9, (1)

where Q C R? represents the domain of the depth map. We accumulate points over time:
Pr = Pi—1 U{Psurface(u,v) | (u,v) € Q, Dy(u,v) > 0}. )

To enhance scalability and generalization, we introduce a slice mapping approach that transforms
the point cloud into a set of K images. We begin by filtering the point cloud based on the camera’s
position:

Pf ={p= (pamp?ﬁpZ) € Pt | |pe — x| <rand|p, — 2z, | <7}, (3)
where r is the radius of our observation window and (z.,, ye, , th) is the current camera position.
We then divide Pf into n equal vertical slices along the Y-axis, ¥min and Ymmaer come from a
defined exploratlon bounding box, as|Guédon et al.|(2023)) did:

ct,j = {P = (pz7py7pz) eP Ct | Ymin + (] - l)hslice < Py < Ymin +jhslice} y 4

where hgice = (Ymax — Ymin)/m and j € 1,...,n. Each slice S, ; is mapped to an image I, ; of
size H x W using a projection function ¢ : R? — R?:

¢(p>:Q(pm—xcﬂrr)'WJ7{(pz—zct+7")'HJ>. 5)

2r 2r
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Figure 1: More maps from our dataset. Rows from top to bottom represent increasing scene
complexity, categorized into four levels: Simple, Normal, Hard, Insane.

This projection centres the camera in the middle of the image. Finally, we calculate the point density
for each pixel (u, v) in the image I, ;:

Ly j(u,0) = /S 5(6(p) — (u,v))dp ©)

ctsJ

Here, §(-) is the Dirac delta function and p represents points from the slice Sc;, j. This process
yields n density images I, 1, ..., I, n for each time step ¢, effectively transforming 3D point cloud
data into 2D representations.

In addition, we apply a similar approach to project the camera’s historical trajectory, resulting in a
single 2D image. We filter the camera’s historical positions based on their proximity to the current
camera position in the XZ-plane, using the same threshold 7, ,:

th ={A” = (xp, yr, 21) | k < t,|2p — 24| < 7o and |2, — 2| < 702} - @)

We then map these filtered positions onto a single image H,, of the same size H x W:
HCt (u7 ’U) = Z 5(¢)<0208) - (U’a U)) (8)
ciosectf

This results in a single-density image H,, representing the camera’s historical trajectory near its
current position. To synthesize the information obtained, we define a set £, encapsulating the
entirety of the current exploration embedding: &, = {I., 1, .., 1¢, n, He, }-
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Comp. (%) 1 Comp. (cm) |
Scene Rooms | Random FBE UPEN OccAnt ANM NBP (ours) Random FBE UPEN OccAnt ANM NBP (ours)
GdvgF* 6 68.45 81.78 8239 80.24 80.99 87.80 11.67 548 5.14 5.66 5.69 4.92
87617 1 29.81 81.01 8296 82.02 80.68 89.91 4648 7.06 6.14 6.19 7.43 331
HxpKQ* 8 4693 58.71 52770 60.50 48.34 66.28 19.10 11.75 1411 11.75 1596 8.12
pLedw 2 3292 66.09 66.76 67.13 76.41 71.34 30.79  12.78 11.82 11.51 8.03 9.53
YmJkq 4 5026 68.32 60.47 6870 79.35 81.57 24.61 11.85 1577 1190 8.46 8.01
mean 4 45.67 71.18 69.06 71.72 73.15 79.38 26.53 9.78 10.60  9.40 9.11 6.78

Table 1: Evaluation results for each test scene on MP3D dataset.

AiMDoom Simple AiMDoom Normal

Seen Unseen Seen Unseen
Final Cov. AUC Final Cov. AUC Final Cov. AUC Final Cov. AUC

Random Walk 0362  0.306 0323  0.270 0.198  0.159  0.190  0.152
£0.175 20156 #0.156  0.135  #0.125  0.104  0.124  20.103

FBE 0770  0.628  0.760  0.605  0.564 0423 0565 0415
£0.163  0.147  #0.174  20.171  #0.171  0.127  #0.139  20.109
SCONE 0597 0482 0577 0483 0421 0315 0412 0.313

£0.177  20.158  #0.173  0.138  #0.138  0.102  0.114  20.087
MACARONS 0.600 0483 0599 0479 0442 0332 0418 0314
£0.176  0.145 #0200  0.172  #0.135  0.104  £0.120  +0.088
NBP (Ours) 0870  0.697 0879 0.692 0.746 0538 0.734  0.526
£0.121  20.134  #0.142  20.156  #0.152  0.142  #0.142  20.112

Table 2: Evaluation results on AiMDoom dataset (Simple and Normal).

3 EXPERIMENTS

Detailed quantitative results. Table [2| and Table. 3| show our superior performance on both the
AiMDoom training set and the test set. Furthermore, we offer detailed results for each test scene in
MP3D, as illustrated in Table [T}

Qualitative results. We provide additional visual comparisons between our method and the state-
of-the-art NBV-based method: MACARONS (Guédon et al, 2023), from Figure. 2} Figure. [3and
Figure[d These comparisons demonstrate that our trajectories consistently exhibit superior perfor-
mance, whether in simple or complex scenarios. Both methods start from the same pose, indicated
by a deep blue colour in the visualizations of trajectories.

AiMDoom Hard AiMDoom Insane

Seen Unseen Seen Unseen
Final Cov. AUC Final Cov. AUC Final Cov. AUC Final Cov. AUC
Random Walk 0.121 0.086 0.124 0.088 0.070 0.048 0.074 0.050

+0.081 0062 0082 #0060  +0.049 0038 0048  0.035
FBE 0426 0310 0425 0311 0313 0226 0330 0239

£0.119 20091  #0.114 20080  #0.082 0066  +0.097  20.079
SCONE 0271 0199 0290 0.210 0204 0.146  0.196  0.140

+0.100 +0.172 +0.093 +0.072 +0.069 +0.052 +0.079 +0.060
MACARONS 0.316 0.202  0.302 0.218 0.201 0.143 0.192 0.139

£0.106 20074  #0.097 20070  *0.068  0.051 0078  20.058
NBP (Ours) 0.627 0430 0.618 0432 0486 0315 0472 0312
£0.144 20111 #0153 20.115  #0.106  20.047  #0.095  20.073

Table 3: Evaluation results on AiMDoom dataset (Hard and Insane).



Under review as a conference paper at ICLR 2025

(2) MACARONS (b) NBP (Ours)

Figure 2: Comparison 1: In complex and narrow spaces, the NBV (next-best-view) based method
can easily get trapped in a local area. Although our method did not manage to reconstruct all areas
in this complex scene, it covered most of the areas.

(a) MACARONS (b) NBP (Ours)

Figure 3: Comparison 2: The NBV-based method can easily “assume” that an area has been fully
explored, as it focuses solely on local optimal solutions, similar to this sample. In complex indoor
environments, it is often necessary to skip some locally optimal poses.

(a) MACARONS (b) NBP (Ours)

Figure 4: Comparison 3: In relatively simple scenes with some obstacles, the NBV exploration can
also become trapped in one area.
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As Figure. 5] and Figure. [f] illustrated, we also show that in very complex environments, we could
only achieve about 65% coverage. This is because, in complex environments, our method prioritizes
the exploration of areas with multiple valuable goals, ignoring places of lesser current value. After
the initial exploration is complete, it is likely to explore other regions, overlooking previously en-
countered areas with higher value. Consequently, developing methods that aim to achieve a global
optimum is a promising and valuable direction for future research.

(a) Ground truth mesh (b) NBP (Ours)

Figure 5: Failure case 1: Our method initially prioritizes the exploration of high-value areas, inad-
vertently neglecting regions of secondary importance. Thus, it results in incomplete reconstruction
in the initial area of the beginning trajectory.

(a) Ground truth mesh (b) NBP (Ours)

Figure 6: Failure case 2: This scene contains multiple narrow areas, prompting our method to
depend more heavily on our precise prediction of obstacles. Under these challenging conditions,
our approach may overlook exploring this area.

REFERENCES

Antoine Guédon, Tom Monnier, Pascal Monasse, and Vincent Lepetit. Macarons: Mapping and
Coverage Anticipation with RGB Online Self-Supervision. In Conference on Computer Vision
and Pattern Recognition, 2023.



	Dataset
	Details of mapping process encoder
	Experiments

