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1 DATASET

Dataset construction. To ensure that each map offers full accessibility for various robotic platforms
such as unmanned aerial vehicles (UAVs) and wheeled robots, we configure all doors and windows
to remain open during map generation. However, we observe that Obsidian does not consistently
guarantee accessibility to all areas. To resolve this, we manually edited each scene to ensure the
traversability of windows, doors, and hidden passages.

Dataset statistic. To calculate navigation complexity, we sampled location pairs from four envi-
ronments ranging in difficulty from simple to insane, at rates of 1%, 0.1%, 0.05%, and 0.02%,
constrained by computational resource limitations. Consequently, our data effectively represents a
lower bound of navigation complexity. Despite this conservative sampling approach, our dataset
remains the most complex one, offering a significant challenge for future research.

Figure 1 presents more examples of maps from our dataset, showcasing various levels and diverse
scenarios.

2 DETAILS OF MAPPING PROCESS ENCODER

We provide more details of the Mapping Process Encoder of our proposed approach in this section.

The mapping encoding is predicted from both the current reconstruction progress and historical tra-
jectory data. At each time step t ≥ 0, we construct and refine a surface point cloud Pt by integrating
information from newly captured depth map Dt : Ω → R+ and merging it with our existing recon-
structed point cloud. For each camera pose ct = (cpos

t , crot
t ), we transform the corresponding depth

map Dt into a set of 3D points. This transformation makes use of the camera’s intrinsic matrix
K ∈ R3×3 and the pose matrix Tt ∈ SE(3), derived from the 6D pose ct:

psurface(u, v) = Tt ·
(
Dt(u, v) ·K−1 · [u v 1]

⊤
)
, (u, v) ∈ Ω , (1)

where Ω ⊂ R2 represents the domain of the depth map. We accumulate points over time:

Pt = Pt−1 ∪ {psurface(u, v) | (u, v) ∈ Ω, Dt(u, v) > 0} . (2)

To enhance scalability and generalization, we introduce a slice mapping approach that transforms
the point cloud into a set of K images. We begin by filtering the point cloud based on the camera’s
position:

Pf
ct = {p = (px, py, pz) ∈ Pt | |px − xct | ≤ r and |pz − zct | ≤ r} , (3)

where r is the radius of our observation window and (xct , yct , zct) is the current camera position.
We then divide Pf

ct into n equal vertical slices along the Y-axis, ymin and ymmax come from a
defined exploration bounding box, as Guédon et al. (2023) did:

Sct,j = {p = (px, py, pz) ∈ Pf
ct | ymin + (j − 1)hslice ≤ py < ymin + jhslice} , (4)

where hslice = (ymax − ymin)/n and j ∈ 1, . . . , n. Each slice Sct,j is mapped to an image Ict,j of
size H ×W using a projection function ϕ : R3 → R2:

ϕ(p) =

(⌊
(px − xct + r) ·W

2r

⌋
,

⌊
(pz − zct + r) ·H

2r

⌋)
. (5)
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Figure 1: More maps from our dataset. Rows from top to bottom represent increasing scene
complexity, categorized into four levels: Simple, Normal, Hard, Insane.

This projection centres the camera in the middle of the image. Finally, we calculate the point density
for each pixel (u, v) in the image Ict,j :

Ict,j(u, v) =

∫
Sct,j

δ(ϕ(p)− (u, v))dp . (6)

Here, δ(·) is the Dirac delta function and p represents points from the slice Sct, j. This process
yields n density images Ict,1, . . . , Ict,n for each time step t, effectively transforming 3D point cloud
data into 2D representations.

In addition, we apply a similar approach to project the camera’s historical trajectory, resulting in a
single 2D image. We filter the camera’s historical positions based on their proximity to the current
camera position in the XZ-plane, using the same threshold τxz:

Cf
t = {cposk = (xk, yk, zk) | k < t, |xk − xt| ≤ τxz and |zk − zt| ≤ τxz} . (7)

We then map these filtered positions onto a single image Hct of the same size H ×W :

Hct(u, v) =
∑

cposk ∈Cf
t

δ(ϕ(cposk )− (u, v)) (8)

This results in a single-density image Hct representing the camera’s historical trajectory near its
current position. To synthesize the information obtained, we define a set Ect encapsulating the
entirety of the current exploration embedding: Ect = {Ict,1, . . . , Ict,n, Hct}.
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Comp. (%) ↑ Comp. (cm) ↓
Scene Rooms Random FBE UPEN OccAnt ANM NBP (ours) Random FBE UPEN OccAnt ANM NBP (ours)

GdvgF* 6 68.45 81.78 82.39 80.24 80.99 87.80 11.67 5.48 5.14 5.66 5.69 4.92
gZ6f7 1 29.81 81.01 82.96 82.02 80.68 89.91 46.48 7.06 6.14 6.19 7.43 3.31
HxpKQ* 8 46.93 58.71 52.70 60.50 48.34 66.28 19.10 11.75 14.11 11.75 15.96 8.12
pLe4w 2 32.92 66.09 66.76 67.13 76.41 71.34 30.79 12.78 11.82 11.51 8.03 9.53
YmJkq 4 50.26 68.32 60.47 68.70 79.35 81.57 24.61 11.85 15.77 11.90 8.46 8.01
mean 4 45.67 71.18 69.06 71.72 73.15 79.38 26.53 9.78 10.60 9.40 9.11 6.78

Table 1: Evaluation results for each test scene on MP3D dataset.

AiMDoom Simple AiMDoom Normal

Seen Unseen Seen Unseen

Final Cov. AUC Final Cov. AUC Final Cov. AUC Final Cov. AUC

Random Walk 0.362 0.306 0.323 0.270 0.198 0.159 0.190 0.152
±0.175 ±0.156 ±0.156 ±0.135 ±0.125 ±0.104 ±0.124 ±0.103

FBE 0.770 0.628 0.760 0.605 0.564 0.423 0.565 0.415
±0.163 ±0.147 ±0.174 ±0.171 ±0.171 ±0.127 ±0.139 ±0.109

SCONE 0.597 0.482 0.577 0.483 0.421 0.315 0.412 0.313
±0.177 ±0.158 ±0.173 ±0.138 ±0.138 ±0.102 ±0.114 ±0.087

MACARONS 0.600 0.483 0.599 0.479 0.442 0.332 0.418 0.314
±0.176 ±0.145 ±0.200 ±0.172 ±0.135 ±0.104 ±0.120 ±0.088

NBP (Ours) 0.870 0.697 0.879 0.692 0.746 0.538 0.734 0.526
±0.121 ±0.134 ±0.142 ±0.156 ±0.152 ±0.142 ±0.142 ±0.112

Table 2: Evaluation results on AiMDoom dataset (Simple and Normal).

3 EXPERIMENTS

Detailed quantitative results. Table 2 and Table. 3 show our superior performance on both the
AiMDoom training set and the test set. Furthermore, we offer detailed results for each test scene in
MP3D, as illustrated in Table 1.

Qualitative results. We provide additional visual comparisons between our method and the state-
of-the-art NBV-based method: MACARONS (Guédon et al., 2023), from Figure. 2, Figure. 3 and
Figure.4. These comparisons demonstrate that our trajectories consistently exhibit superior perfor-
mance, whether in simple or complex scenarios. Both methods start from the same pose, indicated
by a deep blue colour in the visualizations of trajectories.

AiMDoom Hard AiMDoom Insane

Seen Unseen Seen Unseen

Final Cov. AUC Final Cov. AUC Final Cov. AUC Final Cov. AUC

Random Walk 0.121 0.086 0.124 0.088 0.070 0.048 0.074 0.050
±0.081 ±0.062 ±0.082 ±0.060 ±0.049 ±0.038 ±0.048 ±0.035

FBE 0.426 0.310 0.425 0.311 0.313 0.226 0.330 0.239
±0.119 ±0.091 ±0.114 ±0.080 ±0.082 ±0.066 ±0.097 ±0.079

SCONE 0.271 0.199 0.290 0.210 0.204 0.146 0.196 0.140
±0.100 ±0.172 ±0.093 ±0.072 ±0.069 ±0.052 ±0.079 ±0.060

MACARONS 0.316 0.202 0.302 0.218 0.201 0.143 0.192 0.139
±0.106 ±0.074 ±0.097 ±0.070 ±0.068 ±0.051 ±0.078 ±0.058

NBP (Ours) 0.627 0.430 0.618 0.432 0.486 0.315 0.472 0.312
±0.144 ±0.111 ±0.153 ±0.115 ±0.106 ±0.047 ±0.095 ±0.073

Table 3: Evaluation results on AiMDoom dataset (Hard and Insane).
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(a) MACARONS (b) NBP (Ours)

Figure 2: Comparison 1: In complex and narrow spaces, the NBV (next-best-view) based method
can easily get trapped in a local area. Although our method did not manage to reconstruct all areas
in this complex scene, it covered most of the areas.

(a) MACARONS (b) NBP (Ours)

Figure 3: Comparison 2: The NBV-based method can easily ”assume” that an area has been fully
explored, as it focuses solely on local optimal solutions, similar to this sample. In complex indoor
environments, it is often necessary to skip some locally optimal poses.

(a) MACARONS (b) NBP (Ours)

Figure 4: Comparison 3: In relatively simple scenes with some obstacles, the NBV exploration can
also become trapped in one area.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

As Figure. 5 and Figure. 6 illustrated, we also show that in very complex environments, we could
only achieve about 65% coverage. This is because, in complex environments, our method prioritizes
the exploration of areas with multiple valuable goals, ignoring places of lesser current value. After
the initial exploration is complete, it is likely to explore other regions, overlooking previously en-
countered areas with higher value. Consequently, developing methods that aim to achieve a global
optimum is a promising and valuable direction for future research.

(a) Ground truth mesh (b) NBP (Ours)

Figure 5: Failure case 1: Our method initially prioritizes the exploration of high-value areas, inad-
vertently neglecting regions of secondary importance. Thus, it results in incomplete reconstruction
in the initial area of the beginning trajectory.

(a) Ground truth mesh (b) NBP (Ours)

Figure 6: Failure case 2: This scene contains multiple narrow areas, prompting our method to
depend more heavily on our precise prediction of obstacles. Under these challenging conditions,
our approach may overlook exploring this area.
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