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Figure B reports the distribution of class labels across each linguistic property. For the probing tasks
(i) Sentence Length: 3-classes (<5, 5-8 and >9), (ii) TreeDepth: 3-classes (5, 6-7 and >8), and

such as Sentence Length, Tree Depth, and Top Constituents, we balance the number of classes to
TopConstituents: 2-classes (1, >2).
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Figure 5: Distribution of class labels across each linguistic property. For the probing tasks such as
Sentence Length, Tree Depth, and Top Constituents, we balance the number of classes to overcome
the imbalance problem.

Figure[6]displays the common samples between class labels of pair of probing tasks. This reports
whether the cells are balanced across class labels of different probing tasks.
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Figure 6: Number of common samples between pair of class labels across probing tasks.

B INLP Projection vs. Our Method

We also implemented the Iterative Null-Space Projection (INLP) method (Ravfogel et al., 2020) to
verify whether our removal method performance is similar to previously proposed method. We found
the results to be similar. Results using our method are in Table[d] Results using the INLP method are
below.
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Table 4: Word-Level: INLP Projection Method vs Our Removal Method: Probing task accuracy for
each BERT layer after removal of each linguistic property using the 215 year stimuli.

Layers Sentence Length | TreeDepth | TopConstituents | Tense | Subject Number | Object Number

1 38.23 57.92 49.36 50.75 50.50 50.89

2 37.03 34.36 41.47 44.13 47.61 49.20

3 37.20 28.94 36.76 59.12 48.37 47.73

4 38.71 28.54 54.72 40.81 48.04 56.03

5 39.18 41.17 47.27 41.54 60.27 54.48

6 37.96 33.19 46.97 34.82 48.24 50.88

7 39.43 35.97 36.94 45.68 50.09 60.27

8 38.85 27.32 36.94 48.77 58.09 47.18

9 37.00 27.99 49.46 64.99 60.50 48.65

10 38.87 36.69 36.94 45.28 56.16 47.75

11 36.15 42.68 51.93 36.27 57.65 62.87

12 38.14 51.33 55.19 31.19 49.81 47.04

Avg (INLP) 38.06 37.17 45.32 45.27 52.94 5191
Avg (Ours) 45.30 41.77 46.30 46.36 51.75 50.24
Chance (Probability) 42.76 50.39 53.63 66.31 83.24 80.78

B.1 Probing Analysis While Removing Information about a Property and Testing Another

We run the probing analysis while removing information about a property and testing another, to
see if only information specific about a task is being removed at a time. The detailed result of each
probing task is presented Tables[5][6] [71 8] [0l and[T0] We observe that removal of a task (property)
does not affect the performance for other tasks except for TreeDepth and TopConstituents.

Table 5: Layer-wise Probing task performance for Sentence Length task. Note in tables below
AR=After Removal and BR=before removal.

Layers | BR Sentence Length | AR Sentence Length | AR TreeDepth | AR TopConstituents | AR Tense | AR SubjNum | AR ObjNum
1 74.67 43.28 69.47 72.37 72.24 71.52 73.58
2 69.83 42.44 70.37 73.09 73.28 73.04 74.18
3 72.31 46.19 71.22 72.85 73.94 73.22 74.12
4 71.34 46.43 71.64 71.52 73.40 74.00 73.52
5 72.67 46.97 71.10 74.37 76.24 74.06 76.54
6 70.38 44.37 69.89 72.91 74.61 74.00 74.79
7 72.98 46.55 71.22 71.52 75.03 74.12 74.30
8 72.67 44.67 70.07 70.98 74.06 74.73 72.73
9 70.50 45.28 70.07 69.35 72.31 73.16 71.83
10 72.91 47.93 68.92 70.92 71.89 71.95 72.49
11 70.07 46.67 67.35 70.49 73.06 71.64 71.83
12 71.77 42.93 66.92 68.62 70.31 71.64 71.40

Avg 71.84 45.30 64.01 71.58 73.36 73.09 73.44

Table 6: Layer-wise Probing task performance for TreeDepth task. Note in tables below AR=After
Removal and BR=before removal.

Layers | BR TreeDepth | AR TreeDepth | AR SentenceLength | AR TopConstituents | AR Tense | AR SubjectNumber | AR ObjectNumber
1 76.30 42.93 76.84 77.62 77.69 75.93 76.78
2 76.72 38.88 76.48 76.96 76.90 71.63 76.54
3 75.76 40.33 71.97 76.42 79.62 76.84 75.57
4 75.94 38.63 71.20 77.08 78.42 71.38 75.82
5 76.00 40.88 76.48 76.36 78.11 77.67 76.23
6 79.02 41.89 76.17 76.60 78.11 76.30 77.81
7 71.93 41.23 71.14 71.56 71.50 71.50 77.81
8 76.07 40.08 76.05 76.66 76.36 76.06 76.84
9 71.15 42.62 76.90 77.08 71.93 78.47 7138
10 76.90 41.78 76.05 76.54 74.84 76.29 76.42
11 7127 45.47 75.15 76.42 76.17 71.56 77.14
12 76.39 46.61 75.99 76.23 71.75 75.09 76.01

Average 76.79 41.77 76.56 76.70 7175 75.09 76.70

C Layer-wise Whole Brain Analysis before/after removal of linguistic
properties.

In Figure[7} we report the layer-wise performance for pretrained BERT before and after the removal
of each of the linguistic properties. Similar to previous work (Toneva & Wehbe| 2019)), we observe
that pretrained BERT has best brain alignment in the middle layers across all properties. We further
observe that the alignment after removing the linguistic property is significantly worse mainly for
middle to late layers. Note that the layers at which there is a significant difference are indicated with a
red dot. This pattern holds across all of the linguistic properties that we tested. These results provide
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Table 7: Layer-wise Probing task performance for TopConstituents task. Note in tables below
AR=After Removal and BR=before removal.

Layers | BR TopConstituents | AR TopConstituents | AR SentenceLength | AR TreeDepth | AR Tense | AR SubjectNumber | AR ObjectNumber
1 77.15 47.28 78.17 78.11 76.72 77.39 77.81
2 78.60 42.75 77.69 78.54 78.41 77.81 77.93
3 77.81 48.85 76.36 77.15 77.15 77.69 71.75
4 78.36 48.00 77.69 77.03 77.81 78.23 77.69
5 78.60 45.28 77.87 78.42 78.35 77.93 78.36
6 80.23 43.47 78.71 79.20 77.21 78.54 78.65
7 80.23 46.43 78.65 78.66 77.39 79.02 79.38
8 78.90 46.86 77.63 78.36 78.41 79.08 79.44
9 79.87 44.55 71.76 78.30 78.71 79.87 78.89
10 78.17 47.76 77.81 717.87 78.41 78.96 78.42
11 77.69 45.77 78.42 78.84 77.03 78.00 78.00
12 78.29 48.67 76.36 78.78 75.21 78.30 78.36

Average 78.66 46.30 71.76 78.27 78.16 78.40 78.39

Table 8: Layer-wise Probing task performance for Tense task. Note in tables below AR=After
Removal and BR=before removal.

Layers | BR Tense | AR Tense | AR SentenceLength | AR TreeDepth | AR TopConstituents | AR SubjectNumber | AR ObjectNumber
1 87.00 59.25 87.00 86.22 85.91 85.07 86.82
2 87.18 48.25 88.15 87.06 87.54 86.22 86.64
3 87.42 44.26 87.55 87.30 87.48 87.55 87.18
4 88.09 42.56 87.42 87.49 86.82 87.36 87.73
5 88.39 44.26 88.03 88.08 87.73 87.12 87.67
6 87.17 44.44 86.33 86.70 86.22 87.42 86.46
7 88.69 42.62 86.52 88.33 88.09 87.30 87.79
8 87.42 44.56 86.82 87.24 86.64 86.52 84.95
9 88.27 47.22 87.79 87.84 87.73 87.67 87.48
10 88.94 45.47 88.75 88.21 86.15 87.90 88.21
11 87.24 48.43 86.88 87.42 86.94 87.00 86.46
12 86.88 45.10 86.40 86.64 85.31 85.97 86.40

Average | 87.72 46.36 87.30 87.38 86.88 86.93 86.98

Table 9: Layer-wise Probing task performance for Subject Number task. Note in tables below
AR=After Removal and BR=before removal.

Layers | BR SubjectNumber | AR SubjectNumber | AR SentenceLength | AR TreeDepth | AR TopConstituents | AR Tense | AR ObjectNumber
1 87.00 59.25 87.57 87.76 87.88 87.56 71.61
2 92.32 55.50 86.40 86.57 86.45 86.15 69.82
3 93.04 48.55 86.84 86.94 86.77 86.91 70.17
4 93.50 50.12 86.56 86.52 86.68 86.97 70.84
5 94.05 49.88 87.78 87.87 87.59 87.70 70.07
6 94.98 55.08 87.59 87.77 87.76 87.88 70.96
7 95.88 50.24 87.84 87.94 87.56 87.76 70.66
8 96.10 50.24 87.35 87.65 87.04 86.85 71.13
9 96.38 52.78 87.52 87.55 87.32 87.09 70.50
10 96.06 53.68 87.78 8.07 87.80 87.31 70.91
11 96.94 53.44 87.29 87.49 87.47 86.97 70.81
12 94.03 51.45 87.44 87.55 87.64 87.23 70.84

Average 94.19 51.75 87.33 87.46 87.33 87.20 70.69

Table 10: Layer-wise Probing task performance for Object Number task. Note in tables below
AR=After Removal and BR=before removal.

Layers | BR ObjectNumber | AR ObjectNumber | AR SentenceLength | AR TreeDepth | AR TopConstituents | AR Tense | AR SubjectNumber
1 93.28 47.31 86.63 86.68 86.77 86.83 71.45
2 93.47 54.59 86.55 86.61 86.63 86.55 70.20
3 93.80 49.76 86.88 86.84 86.85 86.62 70.15
4 94.90 50.06 85.81 85.87 85.87 85.79 71.14
5 93.59 51.45 86.17 86.42 86.48 86.48 70.05
6 94.50 54.17 86.27 86.45 86.19 86.74 70.61
7 94.62 47.58 86.38 86.42 86.33 86.39 71.00
8 95.10 50.18 85.86 85.79 85.79 85.57 70.76
9 94.56 49.27 85.63 85.61 85.55 85.46 70.20
10 94.50 50.30 86.21 86.16 86.21 86.16 70.73
11 94.92 49.52 84.94 84.95 84.90 85.01 70.33
12 93.95 48.73 85.49 85.33 85.65 85.30 70.49

Average 94.27 50.24 86.07 86.11 86.10 86.09 70.59

direct evidence that these linguistic properties in fact significantly Figure [/| affect the alignment
between fMRI recordings and pretrained BERT.
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D Layer-wise Language ROIs Analysis before/after removal of linguistic
properties.

Here, we examine the effect on the alignment specifically in a set of regions of interest (ROI) that are
thought to underlie language comprehension (Fedorenko et al., 2010; |[Fedorenko & Thompson-Schill,
2014) and word semantics (Binder et al., 2009). We find that across language regions, the alignment
is significantly decreased by the removal of the linguistic properties across all layers, as shown in

Figure[§]

E Layer-wise Language sub-ROIs Analysis before/after removal of linguistic
properties.

We further investigate the language sub-regions, such as 44, 45, IFJa, IFSp, STGa, STSdp, STSda,
A5, PSL, and STV and find that they also align significantly worse after the removal of the linguistic
properties from pretrained BERT (see Figure [9).

Each language brain region is not necessarily homogeneous in function across all voxels it contains.
Therefore, an aggregate analysis across an entire language region may mask some nuanced effects.
We thus further analyze several important language sub-regions that are thought to exemplify the
variety of functionality across the broader language regions (Rolls et al.,[2022)): STGa, STSda, 44,
45, 55b, STV, SFL, PFm, PGi, PGs, IFJa and IFSp in the main paper. Here we extend this analysis
to more sub-regions: PSL, STV, SFL, PFm, PGs, PGi. We demonstrate the correlations for each
language brain sub-region separately in Table [3|in the main paper.
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Figure 7: Balanced Classes: Model trained on pretrained BERT features and removal of different
linguistic properties. Each plot compares the layer-wise performance of pretrained BERT and removal
of each probing task. Bottom plot displays the pretrained BERT vs. removal of all tasks. A red * at a
particular layer indicates that the alignment from the pretrained model is significantly reduced by the
removal of this linguistic property at this particular layer.
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Figure 8: Avg Pearson correlations for language regions AG, ATL, PTL, IFG, MFG, IFGOrb, PCC
and dmPFC. Model trained on pretrained BERT features and removal of different linguistic properties
(shown only for important properties for clarity). Each plot compares the layer-wise performance of
pretrained BERT and removal of each probing task.

F Probing Results: GPT2

Like the probing experiments with BERT in the main paper, we also perform experiments with
GPT2. We find the results to be similar to BERT, i.e., a rich hierarchy of linguistic signals: initial
to middle layers encode surface information, middle layers encode syntax, middle to top layers
encode semantics. Table [TT|reports the result for each probing task, before and after removal of the
linguistic property from pretrained GPT2. We verify that the removal of each linguistic property
from GPT?2 leads to reduced task performance across all layers, as expected. We also report the
layer-wise performance for pretrained GPT2 before and after the removal of one representative
linguistic property (TopConstituents) in Fig.[TT] We observe that the brain alignment is reduced
significantly across all layers after the removal of the linguistic property (indicated with red cross in
the figure).
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Figure 9: We extend analyses in Fig. [7]to some language sub-regions 45, IFJa, IFSp, 55b, STGa, A5,
PSL, TPOJ1, STSda, STSdp and STV. Please refer to caption of Fig.[7|for detailed understanding of

each plot.

Table 11: Word-Level Probing task performance for each GPT2 layer before and after removal of

Layer Depth

each linguistic property using the 21°? year stimuli.

Layer Depth

Layers|Sentence Length| TreeDepth |TopConstituents| Tense  [Subject Number|Object Number
3-classes 3-classes 2-classes 2-classes 2-classes 2-classes
(Surface) (Syntactic) (Syntactic) (Semantic) (Semantic) (Semantic)
before| after |before| after [before| after |before| after [before| after |before| after
1 54.11| 30.48 [65.7832.78/60.88| 45.56 [76.59(49.78|83.57| 49.90 |87.17| 50.89
2 54.00| 32.50 [66.62|33.65/60.52| 44.55 |77.57(50.79|87.87| 50.91 [87.60| 50.88
3 53.02| 32.51 |66.26(33.67/60.46| 49.63 [77.97(50.78|87.94| 50.91 |87.97| 5091
4 52.90| 33.54 |67.38|34.64/60.94| 49.63 [77.98(50.78|88.84| 50.51 |88.10| 52.12
5 52.94| 32.53 |67.7833.46/61.43| 42.34 |77.85(50.39|89.03| 51.05 |88.42| 51.87
6 52.47| 33.55 |68.14|33.23/62.21| 48.62 |78.17(50.79/89.50| 50.90 |88.81| 50.31
7 52.24| 33.53 |68.68(34.55|61.43| 48.38 |78.02(51.68/89.89| 50.95 [88.98| 50.88
8 52.00| 33.52 |68.0831.22/61.43| 49.39 [78.21(51.81/89.81| 51.81 |89.10| 52.12
9 53.03| 32.53 |67.47|33.01|61.19| 49.62 [78.22(51.17|/90.23| 50.91 |89.14| 52.75
10 52.47| 32.52 |67.5333.67|61.37| 48.61 |78.20(49.57|/90.17| 49.39 |89.09| 51.73
11 52.53| 32.50 |67.47|34.64/61.19| 48.63 [77.96(50.78/90.56| 51.63 |89.08| 52.53
12 52.83| 33.53 |66.4434.27/61.06| 48.61 [77.62]49.78/90.10| 51.07 |89.06| 54.34
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discovery rate (FDR) correction using the Benjamini—-Hochberg (BH) pro- cedure.
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Figure 11: Comparison of layer-wise performance of pretrained GPT2 and removal of one linguistic
property—TopConstituents.

Removal of All Tasks

Figure 12: Voxel-wise correlations across layers between brain alignment of pretrained BERT before
and after removing all linguistic properties.

22



	Distribution of Class Labels Across Each Probing Task
	INLP Projection vs. Our Method
	Probing Analysis While Removing Information about a Property and Testing Another

	Layer-wise Whole Brain Analysis before/after removal of linguistic properties.
	Layer-wise Language ROIs Analysis before/after removal of linguistic properties.
	Layer-wise Language sub-ROIs Analysis before/after removal of linguistic properties.
	Probing Results: GPT2

