
Under review as a conference paper at ICLR 2023

MULTI-VIEW INDEPENDENT COMPONENT ANALYSIS
WITH SHARED AND INDIVIDUAL SOURCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Independent component analysis (ICA) is a blind source separation method for
linear disentanglement of independent latent sources from observed data. We in-
vestigate the special setting of noisy linear ICA where the observations are split
among different views, each receiving a mixture of shared and individual sources.
We prove that the corresponding linear structure is identifiable, and the shared
sources can be recovered, provided that sufficiently many diverse views and data
points are available. To computationally estimate the sources, we optimize a con-
strained form of the joint log-likelihood of the observed data among all views.
We show empirically that our objective recovers the sources in high dimensional
settings, also in the case when the measurements are corrupted by noise. Finally,
we apply the proposed model in a challenging real-life application, where the
estimated shared sources from two large transcriptome datasets (observed data)
provided by two different labs (two different views) lead to a more plausible rep-
resentation of the underlying graph structure than existing baselines.

1 INTRODUCTION

We consider a linear multi-view blind source separation (BSS) problem in the context of independent
component analysis (ICA) where the different views share latent sources but also have view-specific
ones. The modeling strategy presented in this work is inspired by applications from the biomedi-
cal domain where linear BSS problems have often been encountered due to the nature of the data
(Vigário et al., 1997; McKeown & Sejnowski, 1998; Sompairac et al., 2019).

Linear multi-view BSS solutions, such as Group ICA (Calhoun et al., 2001), independent vector
analysis (IVA) and its corresponding variations (Lee et al., 2008; Anderson et al., 2011; 2014; Eng-
berg et al., 2016; Vı́a et al., 2011), have been widely used for analyzing fMRI and EEG data. Typical
applications include multi-subject studies for unraveling group-level brain activity patterns in the
data (Salman et al., 2019; Huster et al., 2015; Congedo et al., 2010; Durieux & Wilderjans, 2019;
Congedo et al., 2010). The main assumption in all those models is that each view (e.g., subject data)
is a linear mixture of brain activity patterns shared across views (e.g., the group-level brain activity
pattern). However, there is a growing tendency in neuroscience to shift the focus from group-level
inference to extracting individual-specific signals (Dubois & Adolphs, 2016). For instance, one can
be interested in investigating the individual (individual-specific brain functions) and shared (behav-
ioral phenotypes) patterns in individuals’ brain activity in a natural stimuli experiment (Seghier &
Price, 2018; Bartolomeo et al., 2017; Dubois & Adolphs, 2016). Unfortunately, the aforementioned
multi-view methods cannot be directly applied in this case, unless they are part of a two step pro-
cedure (e.g. (Long et al., 2020)): applying ICA/IVA on the different views followed by statistical
analysis to separate the individual from the shared sources.

Moreover, this particular multi-view task is not only relevant for neuroscience but also for computa-
tional biology, where ICA has been a standard tool for analyzing omics data (Sompairac et al., 2019;
Avila Cobos et al., 2018; Fraunhoffer et al., 2022). For example, in cancer research, one assumes
that the observed measurements of tissue/tumor samples are a linear mixture of cell-type specific
expressions (latent sources) (Avila Cobos et al., 2018). Now, consider the task where we want to
aggregate heterogeneous experimental datasets (e.g., from different labs or modalities) to improve
cancer prediction. By utilizing the prior knowledge that the datasets have shared and experiment-
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specific information, we can transform this data integration task into a linear multi-view BSS as the
one discussed before.
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Figure 1: A graphical representation of 1

Model Summary. To address this and similar appli-
cations, we formalize the stated BSS model as a linear
noisy generative model for a multi-view data regime,
assuming that the mixing matrix and number of in-
dividual sources are view-specific. By requiring that
the sources are non-Gaussian and mutually indepen-
dent, and the linear mixing matrices are with full col-
umn rank we provide identifiability guarantees for the
mixing matrices and latent sources. We adopt a maxi-
mum likelihood approach for the joint log-likelihood of
the observed views, which we use to estimate the mix-
ing matrices. Furthermore, we suggest a novel strategy
for data integration of transcriptome datasets. We show
empirically that our method works well compared to the
baseline methods when the estimated components are used for a graph inference task.

Contributions. Our contribution can be summarized as follows:

1. We provide theoretical guarantees for the identifiability of the recovered linear structure
and the sources and noise distributions.

2. We propose an optimization procedure based on MLE for estimating the mixing matrices.

2 RELATED WORK

The existing body of work on linear multi-view BSS, inspired by the ICA literature, considers mostly
shared response model applications (i.e., no individual sources), some of them adopting a maximum
likelihood approach (Guo & Pagnoni, 2008; Richard et al., 2020; 2021) to model the noisy views of
the proposed models. Many of these approaches, such as Group ICA (Calhoun et al., 2001), shared
response ICA (SR-ICA) (Zhang et al., 2016), and MultiViewICA, incorporate a dimensionality re-
duction step for every view (CCA (Varoquaux et al., 2009; Richard et al., 2021) or PCA) to extract
the mutual signal between the multiple objects before applying an ICA procedure on the reduced
data. However, there are no guarantees that the pre-processing procedure will entirely remove the
influence of the object-specific sources on the transformed data. Moreover, independent vector anal-
ysis (IVA) relaxes the assumption about the shared sources across views by allowing them to be
dependent (Lee et al., 2008; Anderson et al., 2011; 2014; Engberg et al., 2016; Vı́a et al., 2011).
However, as the previously discussed models, they fix the number of latent sources to be equal
across views. To the best of our knowledge, two existing ICA-based methods exist for extracting
shared and individual sources from data. Maneshi et al. (2016) proposes a heuristic way of using
FastICA for the given task without discussing the identifiability of the results. The other exploits
temporal correlations (Lukic et al., 2002) rather than the non-Gaussianity of the sources and thus is
not applicable in the context we are considering.

A common tool for analyzing multi-view data is canonical correlation analysis (CCA), initially pro-
posed by Hotelling (1936). It finds two datasets’ projections that maximize the correlation between
the projected variables. Gaussian-CCA (Bach & Jordan, 2005), its kernelized version (Bach & Jor-
dan, 2002) and deep learning (Andrew et al., 2013) formulations of the classical CCA problem aim
to recover shared latent sources of variations from the multiple views. There are extensions of CCA
that model the observed variables as a linear combination of group-specific and dataset-specific
latent variables. (Klami et al., 2013) estimated with Bayesian inference methods or exponential
families with MCMC inference (Virtanen, 2010). However, most of them assume that the latent
sources are Gaussian or non-linearly related to the observed data (Wang et al., 2016) and thus lack
identifiability results.

Existing non-linear multiview versions such as (Tian et al., 2020; Federici et al., 2020) cannot re-
cover both shared and individual signals across multiple measurements, and do not assure the iden-
tifiability of the proposed generative models. There are identifiable deep non-linear versions of

2



Under review as a conference paper at ICLR 2023

ICA which can be employed for this task. However, they make stronger assumptions to achieve
identifiability which are hard to be satisfied in real-life applications (e.g. (Hyvärinen et al., 2019)).

3 PROBLEM FORMALIZATION

Consider the following D-view multivariate linear BSS model

xd = Ad(s̃d + ϵd) = Ad0s0 +Ad1sd +Adϵd, d ∈ {1, . . . , D}, (1)

where we assume that for d = 1, . . . , D

• xd ∈ Rkd is a random vector with E[xd] = 0,

• s̃d = (s⊤0 , s
⊤
d )

⊤ are latent random sources with and s0 ∈ Rc and sd ∈ Rkd−c being the
shared and individual sources and E[s̃d] = 0 and Var[s̃d] = Ikd

,

• Ad ∈ Rkd×kd is a mixing matrix with full column rank, Ad0 and Ad1 are the columns
corresponding to the shared and individual sources,

• ϵd ∼ N (0, σ2Ikd
) is Gaussian noise, or measurement error, on the sources (similar to

(Richard et al., 2020; 2021)).

Additionally, we assume that the variables s01, . . . , s0c, s11, . . . , s1(k1−c), . . . , sD1, . . . , sD(kD−c),
ϵ11, . . . , ϵ1k1 , . . . , ϵD1, . . . , ϵDkD

are mutually independent. Thus, we require that the noise vari-
ables do not influence the latent signal and vice versa. In this work, we aim to estimate the mixing
matrices Ad from given observations of xd, d = 1, . . . , D. Note that for D = 1 the model becomes
a standard linear BSS model with non-Gaussian latent sources z := s̃1 + ϵ1 (see (Comon, 1994;
Hyvärinen & Oja, 2000; Bell & Sejnowski, 1995)).

4 IDENTIFIABILITY RESULTS

In unsupervised machine learning methods, the reliability of the algorithm cannot be directly verified
outside of simulations due to the non-existence of labels. For this reason, theoretical guarantees are
necessary to trust that the algorithm estimates the quantities of interest. For a BSS problem solution,
such as ICA, we want the sources and mixing matrices to be (up to certain equivalence relations)
unambiguously determined (or identifiable) by the data, at least in the large sample limit.

Identifiability results for noiseless single-view ICA are proved by (Comon, 1994). It turns out that if
at most one of the latent sources is normal and the mixing matrix is invertible, then both the mixing
matrix and sources can be recovered almost surely up to permutation, sign and scaling. However,
this result does not hold in the general additive noise setting. Davies (2004) shows that if the mixing
matrix has a full column rank, then the structure is identifiable, but not the latent sources. In the
following we extend Comon (1994); Davies (2004); Kagan et al. (1973) results for the noisy setting
inspired from our model (see 1). Compared to previous work, we provide identifiability guarantees
for the sources and noise distributions.

Theorem 4.1. Let x1, . . . , xD for D ≥ 2 be random vectors with the following two representations:

A
(1)
d

([
s
(1)
0

s
(1)
d

]
+ ϵ

(1)
d

)
= xd = A

(2)
d

([
s
(2)
0

s
(2)
d

]
+ ϵ

(2)
d

)
, d ∈ {1, . . . , D},

with the following properties for i = 1, 2

1. A
(i)
d ∈ Rpd×k

(i)
d is a (non-random) matrix with full column rank, i.e. rank(A(i)

d ) = k
(i)
d ,

2. ϵ
(i)
d ∈ Rk

(i)
d and ϵ

(i)
d ∼ N (0, σ

(i)2
d I

k
(i)
d

) is a k
(i)
d -variate normal random variable,

3. s̃
(i)
d = (s

(i)⊤
0 , s

(i)⊤
d )⊤ with s

(i)
0 ∈ Rc(i) and s

(i)
d ∈ Rk

(i)
d −c(i) is a random vector such that:
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(a) the components of s̃(i)d are mutually independent and each of them is a.s. a non-
constant random variable,

(b) s̃
(i)
d is non-normal with 0 mean and unit variance.

4. ϵ
(i)
d is independent from s

(i)
0 and s

(i)
d : ϵ(i)d |= s

(i)
0 and ϵ

(i)
d |= s

(i)
d .

Then, c(1) = c(2) =: c and for all d = 1, . . . , D we get that k(1)d = k
(2)
d =: kd, and there exist a

sign matrix Γd and a permutation matrix Pd ∈ Rkd×kd such that:

A
(2)
d = A

(1)
d PdΓd,

and furthermore the sources and noise distributions are identifiable, i.e.[
s
(2)
0

s
(2)
d

]
∼ Γ−1

d P−1
d

[
s
(1)
0

s
(1)
d

]
, σ

(2)
d = σ

(1)
d .

Theorem 4.1, proved in Appendix A, assures the identifiability of the mixing matrices and sources
and noise distributions up to sign and permutation for a multi-view (D ≥ 2) noisy ICA model.
This is a more general case than 1 since here the noise distribution can be view-specific and the
mixing matrices can be non-square. We also provide identifiability results for the a more general
single-view setting (see Theorem A.2). In the single-view case compared to the multiview one, we
get similar but weaker results, i.e. the source and noise distributions are identifiable only if the latent
sources do not have normal components. This means that for any of the latent sources variables j

in both equivalent representations in Theorem A.2, if we have s̃
(i)
j ∼ v + w with v |= w, then v and

w are non-normal. Recent works by Richard et al. (2020; 2021); Anderson et al. (2014) provide
identifiability results for a shared response modeling by imposing different assumptions to the one
in Theorem 4.1. For example, under additional assumptions about the noise covariance matrices, the
requirement about the non-Gaussianity of the sources in the ShICA model can be relaxed (Richard
et al., 2021). Similar results about the shared sources are provided in Theorem A.4 by imposing
additional requirements about the sources variance that are not covered by our model assumptions.

5 OPTIMIZATION

Here, we derive the joint log-likelihood of the observed views which we use for estimating the
mixing matrices. Let zd := Wdxd = s̃d + ϵd, and z

(1)
d := s0 + ϵd0 ∈ Rc and z

(2)
d := sd + ϵd1 ∈

Rkd−c, i.e. zd = (z
(1)⊤
d , z

(2)⊤
d )⊤. Furthermore, let p

Z
(2)
d

be the probability distribution of z(2)d and
|Wd| = |detWd|. Then the data log-likelihood of 1 for N observed samples per view is given by

L(W1, . . . ,WD) =

N∑
i=1

log f(s̄i0) +

N∑
i=1

D∑
d=1

log p
Z

(2)
d

(z
(2)i
d ) +N

D∑
d=1

log |Wd| (2)

− 1

2σ2

( D∑
d=1

trace(Z
(1)
d Z

(1)⊤
d )− 1

D

D∑
d=1

D∑
l=1

trace(Z
(1)
d Z

(1)⊤
l )

)
+ C

where Z
(1)
d ∈ Rc×N for d = 1, . . . , D is the data matrix that stores N observations of z(1)d and

s̄i0 =
∑D

d=1 z
(1)i
d /D and f(s̄0) =

∫
exp

(
− D∥s0 − s̄0∥2

2σ2

)
pS0(s0)ds0.

We further simplify the loss function by assuming that the data matrices X1 ∈ Rk1×N , . . . , XD ∈
RkD×N are whitened. That consists of centering and linearly transforming the random variables’
realizations xd such that the resulting variable x̃d = Kdxd has unit variance, E[x̃dx̃

⊤
d ] = Ikd

,
where Kd is the whitening matrix. Thus, from the last equation we get that Ikd

= E[x̃dx̃
⊤
d ] =

(1 + σ2)KdAdA
⊤
d K

⊤
d . It follows that the matrix (1 + σ2)

1
2KdAd is orthogonal, which we estimate

by the matrix Wd. After training we set Âd = K−1
d Wd which differs from the true one by (1+σ2)

1
2 .
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Due to the orthogonal constraints the objective function becomes

L(W1, . . . ,WD) ∝
N∑
i=1

log fσ(s̄
i
0) +

N∑
i=1

D∑
d=1

log p
Z

(2)
d

(z
(2)i
d ) +

1 + σ2

2Dσ2

D∑
d=1

D∑
l=1

trace(Z
(1)
d Z

(1)⊤
l )

(3)

where here fσ(s̄0) =
∫
exp

(
−D∥s0 − (1 + σ2)

1
2 s̄0∥2

2σ2

)
pS0

(s0)ds0. This results from the fact that

after whitening we have trace(Z(1)
d Z

(1)⊤
d ) = c and |Wd| = 1. All proofs can be found in Appendix

B; the proof of equation 2 extends the one in (Richard et al., 2020). Note that in our optimization
procedure, both fσ(s̄0) and p

Z
(2)
d

, we approximate by the negative of a nonlinear function g(s), e.g.

g(s) = log cosh(s) for super-Gaussian or g(s) = −e−s2/2 for sub-Gaussian sources. Moreover,
since we do not estimate σ2 we treat it as a Lagrange multiplier via the relation λ = 1+σ2

σ2 .

For the parameter estimation of the orthogonal unmixing matrices, we use the transformation
framework proposed in (Lezcano-Casado, 2019; Lezcano-Casado & Martınez-Rubio, 2019)). The
framework developed in (Lezcano-Casado, 2019) allows us to transform manifold optimization
problems to unconstrained (Euclidean) optimization problems. To accomplish the transforma-
tion, the scheme uses trivializations, ϕ : V → M, which are smooth, surjective mappings be-
tween Euclidean spaces (e.g. V) to the manifold (denoted by M) (Lezcano-Casado, 2019). Thus,
the optimization problem defined in 3 maxW1,...,Wd∈M L(W1, . . . ,WD) becomes equivalent to
maxy1,...,yD∈V L(ϕ(y1), . . . , ϕ(yD)) for M being the Stiefel manifold and ϕ a trivialization as the
one described above. Subsequently, we can apply L-BFGS or (stochastic) gradient descent to com-
pute approximate minimizers to our parameter estimation problem. Note that an alternative opti-
mization approach is Riemannian optimization (Sato, 2021; Boumal et al., 2014). Moreover, there
are other L-BFGS based methods, such as Ablin et al. (2018) that develop optimization solver for
ICA under orthogonal constraints which relies on the Lie exponential map parametrization.

6 EXPERIMENTS

Preprocessing. Before running any of the ICA-based methods (our or the baselines) we whiten each
single view by performing PCA to speed up computation.

Figure 2: Comparison of the comput-
ing time (x-axis) and Amari distance
(y-axis). The data is generated accord-
ing to a shared response model with
5 views, 5 sources and 1000 samples
and noise with the variance σ = 1.
The addition ”O” to the model’s name
refers to learning with orthogonal con-
straints.

Model Implementation. We used the python library
pytorch (Paszke et al., 2017) to implement our method. We
model each view with a separate unmixing matrix. To impose
orthogonality constraints on the unmixing matrices, we made
use of the geotorch library, which is an the extension of
pytorch (Lezcano-Casado, 2019). The stochastic gradient
based method applied for training is L-BFGS.

Initialization. We estimate the mixing matrix up to scale
(due to the whitening) and permutation (see Sections 4 and
5). To force the algorithm to output the shared sources in the
same order across all views we initialize the unmixing ma-
trices by means of CCA. This follows from the fact that the
CCA weights are orthogonal matrices due to whitening, and
the transformed views’ components are paired and ordered
across views such that the first pair correspond to the largest
singular value from the singular value decomposition of the
cross correlation matrix.

Training. For all conducted experiments we fixed the param-
eter λ from equation 3 to 1. In the simulated data experiments
we conducted each experiment 50 times and based on that we
provided error bars in all figures where applicable. For the computational specifics of the real-life
data experiment please refer to Section 6.2.

Baselines Implementation. We compare our method to the standard single-view ICA method In-
fomax (picard library (Ablin et al., 2018)). To adopt it to the multi-view setting, we run Infomax
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(a) Noiseless views according to 1 (b) Noisy views in shared response model

Figure 3: We compare the performance of our method, ShICA, Infomax, GroupICA, MultiViewICA and
ShICA-ML Amari distance (the lower the better) for different number of shared sources (x-axis). The error
bars correspond to 95% confidence intervals based on 50 independent runs of the experiment. Figure 3a: The
datasets come from two different views with total number of sources 100 and sample size 1000. We vary the
number of shared sources from 10 to 100. Figure 3b: The data is generated according to a model, where no
individual sources are present and the noise per view is uniformly sampled from the interval [1, 2]. The number
of views is set to 10 and the sample size is 1000. We vary the number of sources from 10 to 50 (y-axis).

on each view separately and then we apply the Hungarian algorithm (Kuhn & Yaw, 1955) to match
components from different views based on their cross-correlation.

For the shared response model settings, we compare it to related methods such as MultiViewICA
Richard et al. (2020), ShiCA, ShICA-ML Richard et al. (2021), and GroupICA as proposed by
Richard et al. (2020). The latter involves a two-step pre-processing procedure, first whitening the
data in the single views and then dimensionality reduction on the joint views. The code for the latter
models is based on https://github.com/hugorichard/multiviewica (Richard et al.,
2020) and for ShICA-ML https://github.com/hugorichard/ShICA (Richard et al.,
2021).

For the data integration experiment we use a method based on partial least squares estimation,
closely related to CCA, that extracts between-views correlated components and view-specific ones.
This method is provided by the OmicsPLS R package Bouhaddani et al. (2018) and is especially
developed for data integration task for omics data. We refer to this method as PLS. We also make use
of IVA-L-SOS (Bhinge et al., 2019) as a representative of the independent vector analysis methods
which aligns well with this task. This method assumes a linear noiseless model xd = Adsd, d ∈
{1, . . . , D} with Laplacian independent sources sd ∈ Rk per view where the following between
view dependence holds: (s1i, . . . , sDi) ∼ Laplace(0,Σ) with sdi being the i−th component of
sd. The implementation of this method is provided by the independent-vector-analysis
package provided by (Lehmann et al., 2022).

6.1 SYNTHETIC EXPERIMENTS

Data Simulation. We simulated the data using the Laplace distribution exp(− 1
2 |x|), and the mixing

matrices are sampled with normally distributed entries with mean 1 and 0.1 standard deviation. The
realizations of the observed views are obtained according to the proposed model. In the different
scenarios described below we vary the noise distribution.

Evaluation. The quality of the mixing matrix estimation is measured with the Amari distance
(Amari et al., 1995), which cancels if the estimated matrix differs from the ground truth one up to
scale and permutation. More experiments than the one stated below are provided in Appendix D.2

Noiseless views. In Figure 3a, we consider a noiseless view setting, where we fixed the dimension
to be 100 and we vary the number of shared sources from 10 to 100 in a two view setting. We can
see that as soon as the ratio of shared sources to individual sources gets around 1:1 we can recover
almost all shared and individual sources compared to the baseline methods which cannot perform
well in higher dimensions. The reason of the performance drop of our method is insufficient number
of samples for the learning task. See Appendix D.2 for additional experiments in the noisy case.
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Table 1: Shared Sources Recovery Performance

Views σ = 0.1 σ = 0.5 σ = 1 σ = 2

2 0.975± 0.002 0.940± 0.003 0.812± 0.003 0.281± 0.01
5 0.981± 0.001 0.967± 0.001 0.922± 0.003 0.5± 0.04

10 0.980± 0.002 0.972± 0.002 0.95± 0.003 0.741± 0.08

Robustness to model misspecification in a shared response model application. Here we apply
our method to a shared response setting, i.e. no individual sources are available. For this experiment
the views have view-specific variance uniformly sampled from [1, 2]. Our method shows similar
performance to the competitor model MultiViewICA in this special (see Figure 3b) .

Computing time. Figure 2 the computing times of response models trained on the same datasets.
The experiment was carried out on a local machine using 8 CPU cores in parallel. It seems that
MultiViewICA has a similar performance as ShICA-ML but much faster. Our method is faster than
ShICA-ML and shows similar mean perfromance as the Infomax method.

Mean cross correlation (MCC) of shared sources. We explore how well our method recovers
shared sources. We estimate them by taking their average across views and compute the mean cross
correlation (MCC) between the estimates and the ground truth. That involves matching estimated
with the ground truth components by using the Hungarian algorithm and then computing the mean
over all correlations between the aligned pairs. In this experiment, we fixed the total number of
sources to be 60 and the shared to be 30. We investigated four cases corresponding to a different
noise standard deviation σ = 0.1, 0.5, 1, 2. and reported the mean MMC and its standard deviation
from 50 runs in Table 1. As expected by increasing the number of views we get better estimates of
the shared sources, i.e. the MMC score increases.

6.2 DATA FUSION OF TRANSCRIPTOME DATA

Background. Transcriptome datasets are relevant for the field of genomics. After preprocessing
they have the form of random data matrices, where each row correspond to a gene and each column
refers to an experiment. Based on these datasets, scientists try to infer gene-gene interactions in the
genome.

Legend
Selected
regulon genes

Genes not part of
the regulon

Undirected
graph

True positive edges
from other regulons 
Possibly false positive
edges  

True positive edges
from selected regulon 

Figure 4: Induced subgraph with vertices from a selected
regulon (in the main text denoted by R) (not dotted nodes)
and its neighbors (dotted nodes). The green edges belong
to the ground truth and the red one are possibly false pos-
itives.

Co-regulation Inference. Since the
transcriptome datasets are in the high-
dimension-low-sample-size regime (number
of genes>number of samples), usually
graphical lasso (Friedman et al., 2007) is
well-suited for inferring graphical structure
from the observed data. More precisely
in this application, we want to estimate an
undirected graph with nodes referring to the
genes and with edges connecting genes with
a common regulator.

Data Integration Task. To boost the graphi-
cal lasso performance, we would like to com-
bine as many experiments as possible. Since
the datasets usually come from different labs
there is non-biological noise present. There-
fore, just pooling the two datasets together for
performing downstream tasks can lead to sub-
optimal results. The goal of the data integration task is to ”denoise” the datasets, such that the trans-
formed data can be used as samples for the graph inference task. In this kind of application usually
a dimensionality reduction step is required. This is done by a dimensionality reduction step fol-
lowed by a feature extracting algorithm, such as IVA-L-SOS, or combined dimensionality reduction
method and a feature extractor such as PLS. We follow the latter approach for both, our method and
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(a) True Positive vs False Positive pairs (b) F1 score

Figure 5: After the proposed hyperparameter tuning, we compare the top ten EBIC glasso models with our
model, PLS, Infomax, and IVA-L-SOS. We order the edges from the selected networks according to their
strength. In Figure 5a we count the true positives (y-axis) and possibly false positive edges in the first 100,
200,... edges (x-axis). It seems that our method and PLS outperform the other two methods, and for our
method, the true positive/false positive rate increases faster than for PLS. In Figure 5b, we compute the average
regulon F1 score (y-axis) from the selected edges (x-axis). Our method seems to perform better than PLS but
worse than IVA-L-SOS and Infomax. That might result from the proposed F1 score prioritizing sparse graphs.

Infomax, and directly optimize for unmixing matrices Wd of dimension cd × kd with cd ≤ kd for
d = 1, . . . , D. That means that by minimizing the loss function with respect to possibly non-square
W1, . . . ,WD we directly extract cd features, which are then used for the graph inference task.

Data Assumptions. We do a one-to-one translation to our proposed model by assuming that each
experiment is a noisy linear combination of independent gene pathways and that some pathways are
active for both datasets (shared sources).

Datasets. In this example, we consider the bacterium B. subtilis, for which a very rich collection
of the discovered gene-gene interactions are publicly available, which we use as our ground truth
model. For this data integration task we use two vast publicly available datasets (Arrieta-Ortiz et al.,
2015; Nicolas et al., 2012). Each of the datasets contain gene expression levels of about 4000 genes
measured across more than 250 experimental outcomes. For detailed description of the datasets we
refer to Appendix C.

Experiment. As in most real-life applications, the number of latent sources per dataset is
unknown. We treat it as a hyperparameter for each model, i.e., we perform grid search on
{50, 60, 70, . . . , 200}2, for the total number of sources for both datasets. Note that for IVA-L-
SOS the number of sources in both datasets should coincide. The number of shared sources for our
method and PLS varies between 10, 20, 30, and 40. We fit 30 graphical lasso models for different
penalization parameters on the estimated components. We select the top 10 models by employing
a statistical goodness-of-fit measure, called EBIC, for each combination of hyperparameters (see
Appendix C for more details). Then, the hyperparameter setting is selected, yielding the best true
positive/false positive ratio curves (as the ones shown in Figure 5a). The resulting hyperparameter
settings are IVA-L-SOS (130 latent sources), Our Method (50 for dataset 1, 60 for dataset 2, 40
shared sources), PLS (180 for dataset 1, 80 for dataset 2, 10 shared sources), and Infomax (200 for
dataset 1, 50 for dataset 2).

True Positives vs False Positives. The below-described evaluation is used for our hyperparameter
selection. The output graph from the graphical lasso for each pre-processing method is compared
to the ground truth one. The evaluation strategy is as follows. For each estimated graph, we order
the edges according to their strength. Then we count the true positive and false positive edges
in the first 100, 200, . . . edges. Then for each method separately, we select the hyperparameter
combination for which the graphical lasso has the best true positive/false positive ratio curves. The
results are depicted in Figure 5, where the best models for each method are compared. We can
conclude that our model boosts the graphical lasso’s performance compared to the others. We also
run the graphical lasso on the pooled data without any pre-processing. Surprisingly, the method
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Figure 6: F1 score curves per model (left) and best model F1 regulon performance (right) for two groups of
regulons depending on their size (between 10 and 50, and between 50 and 400). In the first group all methods
show comperable results. In the second case (regulon size > 50) it seems that our method shows better F1
score for the large regulons.

outputs an empty graph, i.e., the goodness-of-fit measure we use evaluates the empty graph as the
best model describing the data.

F1 score. We are also interested if the output graph resembles the known regulon structure. A
regulon is a set of genes that are controlled as a unit by the same regulator. The species of interest
has 225 known regulons, which form cliques in our ground truth graph. We compute the precision
and recall per regulon from the graphical lasso output in the following way. First, we select a
subgraph induced by the regulon genes denoted by R and their neighbors as depicted in Figure 4.
The precision is the ratio of the true positive edges and the total number of edges in the selected
subgraph. The recall is the ratio of the number of nodes in the biggest connected component with
vertices in R and the cardinality of R. Note that the recall score does not incorporate any information
about the connectivity of the selected subgraph. In Figure 5b we order the edges according to their
strength and from the first 100, 200, . . . edges we the F1 score per regulon from the corresponding
precision and recall. It seems that IVA-L-SOS and Infomax outperform the other methods. The
reason is that the output graphs are sparser in both cases and recover smaller regulons better (most
of the regulons have size < 10). Due to the overlapping structure of regulons, i.e. larger regulons
encompass smaller ones, we want to compare the aggregated F1 scores for the larger regulons.
From Figure 6, we can see that our method can recover very large regulons with higher F1 scores
than the other methods. In medium size regulon group Infomax, IVA-L-SOS and our method show
comparable results.

7 DISCUSSION

We proposed a novel noisy linear ICA approach that utilizes the prior knowledge that the different
views share information to infer both shared and view-specific sources. Compared to other models
from related fields, our model does not assume that all views have the same dimensionality. We
provided theoretical guarantees for the identifiability of the model’s linear structure and the latent
sources in distribution. We adopted a maximum likelihood strategy for estimating the unmixing ma-
trices by maximizing the joint log-likelihood of the observed views. Our empirical results showed
that our model performs well in high-dimensional data regimes that often resemble real-life applica-
tions. We also suggested a novel strategy for combining transcriptome data and empirically showed
that our model improves the performance of a graphical inference model chosen for the particular
task. In future work, we would like to address some possible extensions to our model, such as the
case when the noise has an arbitrary covariance matrix. Moreover, to state the identifiability re-
sults of our model, we assumed that the individual sources from the different views are mutually
independent. That might not be the case in real-life applications like the one considered above.

9
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8 ETHICS STATEMENT

Our model can be used in many scientific domains such as neuroscience, genomics, physics,
medicine, causal discovery, etc., where the proposed model assumptions hold. Therefore, its so-
cietal impact is tied to the ethical concerns of the domains it is applied to.

9 REPRODUCIBILITY STATEMENT

The code and transcriptome data and ground truth model can be found under https://
anonymous.4open.science/r/shindica-C497/ . We provided detailed proofs of the
theorem and other theoretical results stated in the main paper. Furthermore, all synthetic experi-
ments are run multiple times with different random seeds and the reported results are in terms of
mean and 95% confidence interval. Additional information regarding the data integration exper-
iment, such as pseudo code of algorithm and explanation of the main steps are provided in the
appendix.
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A IDENTIFIABILITY RESULTS

Theorem A.1 ((Kagan et al., 1973, Theorem 10.3.1)). Let x = Af and x = Bg be two represen-
tations of a p-dimensional random vector x, where A and B are (non-random) matrices of orders
p × r and p × s respectively, and f = (f1, . . . , fr) and g = (g1, . . . , gs) are random vectors with
non-degenerate (i.e. non-constant) independent components. Then the following assertions hold.

1. If the i-th column of A is not proportional to any column of B, then fi is normal.

2. If the i-th column of A is proportional to the j-th column of B, then the logarithms of the
characteristic functions (c.f.) of fi and gj differ by a polynomial in a neighborhood of the
origin.

Theorem A.2 (Identifiability of the single view ICA model 1). Let x ∈ Rp be a random variable.
Assume that we have the following two representations of x:

A(1)(y(1) + ϵ(1)) + b(1) = x = A(2)(y(2) + ϵ(2)) + b(2), (4)

with the following properties for i = 1, 2:

1. A(i) ∈ Rp×k(i)

is a (non-random) matrix with full column rank, i.e. rank(A(i)) = k(i) ≤ p,

2. b(i) ∈ Rp a (non-random) column vector,

3. ϵ(i) ∈ Rk(i)

is an uncorrelated k-variate normal random variable: ϵ(i) ∼ N (µ(i),Σ(i)),
with mean µ(i) ∈ Rk(i)

and a positive-definite diagonal covariance matrix Σ(i) ∈
Rk(i)×k(i)

,

4. y(i) ∈ Rk(i)

is a random variable such that:

(a) its k(i)-components {y(i)1 , . . . , y
(i)

k(i)} are mutually independent,

(b) each of its component y(i)j is a non-constant random variable (a.s.), j = 1, . . . , k(i),

(c) y(i) has no normal components, i.e. if we can write: y(i) ∼ ỹ(i)+ ŷ(i) with ỹ(i) |= ŷ(i),
then ỹ(i) and ŷ(i) are non-normal,

5. ϵ(i) is independent from y(i): ϵ(i) |= y(i).

Then k(1) = k(2) =: k and there exist a permutation matrix P ∈ Rk×k, an invertible diagonal
matrix Λ ∈ Rk×k and a column vector c ∈ Rk such that:

A(2) = A(1)PΛ,

and such that the corresponding random variables have the same distributions:

PΛy(2) + c ∼ y(1), PΛ(ϵ(2) − µ(2)) ∼ ϵ(1) − µ(1), PΛΣ(2)Λ⊤P⊤ = Σ(1).

Proof. 1. In the first part of our proof we show that k(1) = k(2) =: k and A(2) = A(1)PΛ for some
permutation matrix P ∈ Rk×k, an invertible diagonal matrix Λ ∈ Rk×k.

First, for i = 1, 2 we state an equivalent formulation of the linear representation of x given in 4.
According to (Kagan et al., 1973, Lemma 10.2.3), there exist a constant column vector c(2) ∈ Rk(2)

such that b(2) − b(1) = A(2)c(2). It follows that x̃ = x − b(1) = A(1)(y(1) + ϵ(1)) = A(2)(y(2) +
ϵ(2) + c(2)).

Furthermore, note that if y(i) is non-normal, then the random variables g(1) = y(1) + ϵ(1) and
g(2) = y(2) + ϵ(2) + c(2) are also non-normal. This follows from the fact that if g(i) is normal then
both y(i) and ϵ(i) would be normal according to the Lévy-Cramér theorem (Lévy, 1935).

Thus, we can apply Theorem A.1 for the two representations of x̃, x̃ = A(1)g(1) and x̃ = A(2)g(2).
Since every component of g(i) is non-normal, it follows that every column of A(1) is proportional to
a column of A(2) and vice versa.

14



Under review as a conference paper at ICLR 2023

Now assume w.l.o.g that k(1) > k(2). Then, there exist two columns of A(1) that are proportional
to a column of A(2). However, this is a contradiction to assumption 1. that the matrix A(1) has full
column rank.

Thus, it follows that k(1) = k(2) =: k and A(2) = A(1)PΛ for some permutation matrix P ∈ Rk×k,
an invertible diagonal matrix Λ ∈ Rk×k. Moreover,

A(1)(y(1) + ϵ(1)) = A(1)PΛ(y(2) + ϵ(2) + c(2)).

Multiplying with (A(1),⊤A(1))−1A(1),⊤, which gives:

y(1) + ϵ(1) = PΛ(y(2) + ϵ(2) + c(2)).

2. In the remaining we show that there exist a column vector c such that y(1) ∼ PΛ(y(2) + c(2))+ c
and ϵ(1) − µ(1) ∼ PΛ(ϵ(2) − µ(2)) (or equivalently Σ(1) = PΛΣ(2)Λ⊤P⊤). Now, define ỹ(2) =

PΛy(2), c̃(2) = PΛc(2) and ϵ̃(2) = PΛϵ(2) which is normally distributed with mean ˜µ(2) = PΛµ(2)

and a diagonal covariance matrix Σ̃(2) = PΛΣ(2)Λ⊤P⊤.

Define the characteristic functions of y(1), ỹ(2), ϵ(1), ϵ̃(2) as ϕy(1)(·), ϕỹ(2)(·), ϕϵ(1)(·), ϕϵ̃(2)(·) :

Rk → R, from assumption 5. it follows that

ϕϵ(1)(t)ϕy(1)(t) = eit
⊤c̃(2)ϕϵ̃(2)(t)ϕỹ(2)(t)

ϕϵ(1)(t)

k∏
i=1

ϕ
y
(1)
i

(ti) = eit
⊤c̃(2)ϕϵ̃(2)

k∏
i=1

ϕ
ỹ
(2)
i

(ti)

The last equation follows from assumption 4a. Now set ti = 0 for all i ̸= 1. We get for all t1

exp(it1µ
(1)
1 − Σ

(1)
11 t

2
1)ϕy

(1)
1

(t1) = exp(it1c̃
(2)
1 ) exp(it1µ̃

(2)
1 − Σ̃

(2)
11 t

2
1)ϕỹ

(2)
1

(t1).

W.l.o.g. we assume 0 < Σ
(1)
11 < Σ̃

(2)
11 . Thus, the characteristic function given by exp(−(Σ̃

(2)
11 −

Σ
(1)
11 )t

2
1) is a well defined characteristic function of a normally distributed random variable with

mean 0 and variance Σ̃(2)
11 −Σ

(1)
11 . Then, the characteristic function of y(1)1 is proportional to a product

of the characteristic functions of ỹ(2)1 and a Gaussian random variable. This is a contradiction to the
assumption that y(1)1 does not have a normal component (assumption 4c). It follows that, Σ(1)

11 =

Σ̃
(2)
11 and for all t1 ∈ R ϕ

y
(1)
1

(t1) = exp it1(c̃
(2)
1 + µ̃

(2)
1 − µ

(1)
1 )ϕ

ỹ
(2)
1

(t1), i.e. ỹ(2)1 +c1 ∼ y
(1)
1 where

c1 = c̃
(2)
1 + µ̃

(2)
1 − µ

(1)
1 . The remaining statements can be proven analogously.

Theorem A.3. Let x1, . . . , xD for D ≥ 2 be random vectors with the following two representations:

A
(1)
d

([
s
(1)
0

s
(1)
d

]
+ ϵ

(1)
d

)
= xd = A

(2)
d

([
s
(2)
0

s
(2)
d

]
+ ϵ

(2)
d

)
, d ∈ {1, . . . , D},

with the following properties for i = 1, 2

1. A
(i)
d ∈ Rpd×k

(i)
d is a (non-random) matrix with full column rank, i.e. rank(A(i)

d ) = k
(i)
d ,

2. ϵ
(i)
d ∈ Rk

(i)
d and ϵ

(i)
d ∼ N (0, σ

(i)2
d I

k
(i)
d

) is a k
(i)
d -variate normal random variable,

3. s̃
(i)
d = (s

(i)⊤
0 , s

(i)⊤
d )⊤ with s

(i)
0 ∈ Rc(i) and s

(i)
d ∈ Rk

(i)
d −c(i) is a random vector such that:
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(a) the components of s̃(i)d are mutually independent and each of them is a.s. a non-
constant random variable,

(b) s̃
(i)
d is non-normal with 0 mean and unit variance.

4. ϵ
(i)
d is independent from s

(i)
0 and s

(i)
d : ϵ(i)d |= s

(i)
0 and ϵ

(i)
d |= s

(i)
d .

Then, c(1) = c(2) =: c and for all d = 1, . . . , D we get that k(1)d = k
(2)
d =: kd, and there exist a

sign matrix Γd and a permutation matrix Pd ∈ Rkd×kd such that:

A
(2)
d = A

(1)
d PdΓd,

and furthermore the sources and noise distributions are identifiable, i.e.[
s
(2)
0

s
(2)
d

]
∼ Γ−1

d P−1
d

[
s
(1)
0

s
(1)
d

]
, σ

(2)
d = σ

(1)
d .

Proof. First, we can directly apply Theorem A.2 to each single view d, d ∈ {1, . . . , D} which
ensures the identifiability of the mixing matrices up to permutation and scaling, i.e. there exist
a permutation matrix Pd and an invertible diagonal matrix Λd such that A(2)

d = A
(1)
d PdΛd and

rank(A
(2)
d ) = rank(A

(1)
d ) = kd.

W.l.o.g., let c(1) > c(2). That means that the shared sources in representation (1) are more that the
ones in representation (2). It follows according to Theorem A.1, that there exist a component of
the shared sources from (1) and an individual component from (2) in every view such that they are
both proportional. More precisely, for any d ∈ {1, . . . , D} there exist k, l ∈ {1, . . . , kd} such that
s
(1)
0k is a component of the shared sources s(1)0 and s

(2)
dl is a component from the individual sources

s
(2)
d such that s(1)0k + ϵ

(1)
d0k = (Λd)ll(s

(2)
dl + ϵ

(2)
d1l). Let r ̸= d be another view such that there exist

m ∈ {1, . . . , kr} with s
(2)
mr being an individual component and s

(1)
0k + ϵ

(1)
r0k = (Λd)mm(s

(2)
rm+ ϵ

(2)
r1m).

This is contradiction to the assumption that s(2)rm |= s
(2)
dl . It follows that c(1) = c(2).

Furthermore, Var(xd) = σ
(1)2
d A

(1)
d A

(1),⊤
d = σ

(2)2
d A

(2)
d A

(2),⊤
d = σ

(2)2
d A

(1)
d PdΛ

2
dP

⊤
d A

(1),⊤
d . Multi-

plying with A
(1),†
d = (A

(1)⊤
d A

(1)
d )−1A

(1)⊤
d from left and A

(1),†,⊤
d = A

(1)
d (A

(1)⊤
d A

(1)
d )−1 from right

yields σ(1)2
d Ikd

= σ
(2)2
d PdΛ

2
dP

⊤
d . It follows that σ

(2)2
d

σ
(1)2
d

Λ2
d = Ikd

. Computing the covariance between

two different views d, l ∈ {1, . . . , D} gives

Cov(xd, xl) = A
(1)
d0 A

(1),⊤
l0 = A

(2)
d0 A

(2),⊤
l0 = A

(1)
d0 Λd[c, c]Λl[c, c]A

(1),⊤
l0

where Λd[c, c] is an invertible diagonal matrix composed by the first c columns and rows of the
matrix Λd. By multiplying with the left-inverse of A(1)

d0 from the left and right-inverse of A(1),⊤
d

from the right, we get for any d and l Λd[c, c]Λl[c, c] = Ic. It follows that all entries of Λd equal 1

or −1 and therefore σ
(2)2
d

σ
(1)2
d

= 1 for every d.

In the remaining, we will show that the distribution of the sources is identifiable even in the cases
when they have normal components. Let s(1)i be component from s̃

(1)
i . Furthermore, there exist

j ∈ {1, . . . , kd} such that s(1)i + ϵ
(1)
i = s

(2)
j + ϵ

(2)
j . Taking the characteristic functions from both

sides yields
ϕ
s
(1)
i
(t)ϕ

ϵ
(1)
i
(t) = ϕ

s
(2)
j
(t)ϕ

ϵ
(2)
j
(t)

Since σ
(1)2
d = σ

(2)2
d and the noise and sources are with 0 mean, the above equation simplifies to

ϕ
s
(1)
i
(t) = ϕ

s
(2)
j
(t), i.e. ϕ

s
(1)
i
(t) ∼ ϕ

s
(2)
j
(t).

Theorem A.4. Let x1, . . . , xD for D ≥ 3 be random vectors which are generated according to
the model defined in 1. Furthermore, we assume that we have the following two representations of
x1, . . . , xD according to 1:

A
(1)
d0 s

(1)
0 +A

(1)
d1 s

(1)
d +A

(1)
d ϵ

(1)
d = xd = A

(2)
d0 s

(2)
0 +A

(2)
d1 s

(2)
d +A

(2)
d ϵ

(2)
d , d ∈ {1, . . . , D},

Additionally, to the assumptions of 1 it holds that
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1. each of the components s(i)dj of s(i)d for j = 1, . . . , k
(i)
d − c(i) is non-Gaussian.

2. s
(i)
0 can have Gaussian components. Furthermore, if the number of Gaussian components

exceeds 2, for all k, l ∈ {1, . . . , c} with k ̸= l it holds that γ(i)
k ̸= γ

(i)
l , where γ

(i)
k and γ

(i)
l

are the variances of the components s(i)0k and s
(i)
0l

Then, for fixed number of shared sources c and for all d = 1, . . . , D k
(1)
d = k

(2)
d = kd, and there

exist a permutation matrix Pd ∈ Rkd×kd and an ivertible diagonal matrix Λd ∈ Rkd×kd such that

A
(2)
d = A

(1)
d PdΛd

Proof. Theorem A.1 yields that if the individual components are not normal, then for each column
of a(1)j of A(1)

d1 there is a column a
(2)
i of A(1)

d1 such that there exist λ ̸= 0 with a
(2)
j = λa

(1)
j . Since all

mixing matrices have full column rank it follows that there is one-to-one correspondence between
the columns of A(1)

d1 and the columns of A(2)
d1 , and thus k(1)d = k

(2)
d

If at most one of the shared components is normal please refer to Comon (1994). Now consider
the case when at least two components are normal. First the number of normal components in both
representation is the same since c is fixed and the number of non-normal components is identifiable
with the same arguments as above.

Computing the covariance between two different views d, l ∈ {1, . . . , D} yields

Cov(xd, xl) = A
(1)
d0 Γ

(1)A
(1),⊤
l0 = A

(2)
d0 Γ

(2)A
(2),⊤
l0

where Γ(i) is the covariance matrix of s
(i)
0 for i = 1, 2. We define A

γ,(i)
d0 = A

(i)
d0Γ

(i) 1
2 for any

d ∈ {1, . . . , D}. Let Pd = (A
γ,(1),⊤
d0 A

γ,(1)
d0 )−1A

γ,(1),⊤
d0 A

γ,(2)
d0 . Following the proof of Theorem 1

(Richard et al., 2021) we get that PdP
⊤
l = Ic = PdP

⊤
k = PkP

⊤
l for any d, k, l ∈ {1, . . . , D}.

Thus, Pl = Pd = Pk = P and they are orthogonal. Moreover, for all d = 1, . . . , D it holds
s̃
(1)
0 + ϵ̃

(1)
d = P (s̃

(2)
0 + ϵ̃

(2)
d ) where ϵ̃

(i)
d ∼ N (0, σ

(i)2
d Γ(i)−1) and s̃

(i)
0 = Γ(i)− 1

2 s
(i)
0 . From the last

equation it follows that σ(1)2
d Γ(1)−1 = P (σ

(2)2
d Γ(2)−1)P⊤. Lemma 2 (Richard et al., 2021) implies

that P is a sign and permutation matrix.
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B OPTIMIZATION

Lemma B.1. Let W ∈ Rc×k such that WW⊤ = Ic and x1, . . . , xN ∈ Rk such that for every
j = 1, . . . , k, we have

∑N
i=1(x

i
j)

2 = 1 and for every j ̸= k, we have
∑N

i=1 x
i
jx

i
k = 0. Then for

every j = 1, . . . , c, it also holds that
∑N

i=1((Wxi)j)
2 = 1.

Proof. Let Wj be the j−th row of W . Then
N∑
i=1

((Wxi)j)
2 =

N∑
i=1

(

k∑
l=1

Wjlx
i
l)

2 =

N∑
i=1

k∑
l=1

k∑
r=1

Wjlx
i
lWjrx

i
r

=

k∑
l=1

k∑
r=1

WjlWjr

N∑
i=1

xi
lx

i
r =

k∑
l=1

k∑
r=1

WjlWjrδlr =

k∑
r=1

W 2
jr = 1

where δlr = 1 if l = r and 0 otherwise. For the fourth equation we used that
∑N

i=1(x
i
j)

2 = 1 and∑N
i=1 x

i
jx

i
k = 0 for all j ̸= k; and for the last one we used WW⊤ = Ic.

Under the generative model assumptions and optimization constraints stated in 3 it holds

L(W1, . . . ,WD) =

N∑
i=1

log f(s̄i0) +

N∑
i=1

D∑
d=1

log p
Z

(2)
d

(z
(2)i
d ) +N

D∑
d=1

log |Wd| (5)

− 1

2σ2

( D∑
d=1

trace(Z
(1)
d Z

(1)⊤
d )− 1

D

D∑
d=1

D∑
l=1

trace(Z
(1)
d Z

(1)⊤
l )

)
(6)

Proof. Let x = (x⊤
1 , x

⊤
2 , . . . , x

⊤
D)⊤ ∈ RKD , s̃ = (s̃⊤1 , s̃

⊤
2 , . . . , s̃

⊤
D)⊤ ∈ RKD , ϵ =

(ϵ⊤1 , ϵ
⊤
2 , . . . , ϵ

⊤
D)⊤ ∈ RKD , where KD =

∑D
d=1 kd and for Wd = A−1

d define

W =


W1 0 . . . 0 0
0 W2 . . . 0 0

. . .
0 0 . . . WD−1 0
0 0 . . . 0 WD

 , A =


A1 0 . . . 0 0
0 A2 . . . 0 0

. . .
0 0 . . . AD−1 0
0 0 . . . 0 AD

 .

Furthermore, let zd := Wdxd = s̃d + ϵd, and z
(1)
d := s0 + ϵd0 ∈ Rc and z

(2)
d := sd + ϵd1 ∈ Rkd−c,

i.e. zd = (z
(1)
d , z

(2)
d )⊤. Let pX be the joint distribution of x1, . . . , xD, pZ the joint distribution of

z1, . . . , zD, pZ(1) the joint distribution of z(1)1 , . . . , z
(1)
D , pZ(2) the joint distribution of z(2)1 , . . . , z

(2)
D

and p
Z

(2)
d

the probability distribution of z(2)d .

Note that the model in 1 is equivalent to x = Az. By multiplying with the inverse of A (i.e. W)
from the left we get Wx = z. Then for the joint likelihood of x1, . . . , xD we get

pX(x) = pZ(z)|W|

= pz(z)

D∏
d=1

|Wd|

= pZ(1)(z
(1)
1 , . . . , z

(1)
D )pZ(2)(z

(2)
1 , . . . , z

(2)
D )

D∏
d=1

|Wd|

= pZ(1)(z
(1)
1 , . . . , z

(1)
D )

D∏
d=1

p
Z

(2)
d

(z
(2)
d )

D∏
d=1

|Wd|.

1. Second equation: W is a block diagonal matrix and for all d = 1, . . . , D, and Wd ∈
Rkd×kd .
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2. Third equation: z(1)1 , . . . , z
(1)
D |= z

(2)
1 , . . . , z

(2)
D .

3. Fourth equation follows from the fact that z(2)1 , . . . , z
(2)
D are mutually independent since

{s1i}k1−c
i=1 , . . . {sDi}kD−c

i=1 , {ϵ1i}k1
i=1, . . . , {ϵDi}kD

i=1 are mutually independent.

It follows that

pZ(1)(z
(1)
1 , . . . , z

(1)
D ) =

∫
pZ(1)|S0

(z
(1)
1 , . . . , z

(1)
D |s0)pS0(s0)ds0

=

∫ ( D∏
d=1

N (z
(1)
d ; s0, σ

2Ic)
)
pS0(s0)ds0

∝
∫

exp
(
−

D∑
d=1

∥z(1)d − s0∥2

2σ2

)
pS0

(s0)ds0

=

∫
exp

(
−

D∥s0 − s̄0∥2 +
∑D

d=1 ∥z
(1)
d − s̄0∥2

2σ2

)
pS0

(s0)ds0

= exp
(
−

∑D
d=1 ∥z

(1)
d − s̄0∥2

2σ2

)∫
exp

(
− D∥s0 − s̄0∥2

2σ2

)
pS0(s0)ds0

where s̄0 = 1
D

∑D
d=1 z

(1)
d .

• For the second and third equation recall that z(1)d = s0+ϵd0 ∈ Rc, where ϵd0 ∼ N (0, σ2Ic)
and s0 |= ϵd0. This means that z(1)d |s0 ∼ N (s0, σ

2Ic). From the following equations follow

pZ(1)|S0
(z

(1)
1 , . . . , z

(1)
D |s0) =

D∏
d=1

p
Z

(1)
d |s0

(z
(1)
d |S0)

=

D∏
d=1

N (z
(1)
d ; s0, σ

2Ic)

• The fourth equation results from

D∑
d=1

∥z(1)d − s0∥2 =

D∑
d=1

∥z(1)d − s̄0 + s̄0 − s0∥2 =

D∑
d=1

(
∥z(1)d − s̄0∥2 + 2⟨z(1)d − s̄0, s̄0 − s0⟩+ ∥s̄0 − s0∥2

)
=

D∑
d=1

∥z(1)d − s̄0∥2 + 2

D∑
d=1

⟨z(1)d − s̄0, s̄0 − s0⟩+D∥s̄0 − s0∥2

=

D∑
d=1

∥z(1)d − s̄0∥2 + 2
〈 D∑

d=1

z
(1)
d −D · 1

D

D∑
d=1

z
(1)
d , s̄0 − s0

〉
+D∥s̄0 − s0∥2

=

D∑
d=1

∥z(1)d − s̄0∥2 +D∥s̄0 − s0∥2.

We define f(s̄0) =
∫
exp

(
− D∥s0 − s̄0∥2

2σ2

)
pS0

(s0)ds0.

Note that

∥z(1)d − s̄0∥2 = ∥z(1)d ∥2 − 2

D

D∑
l=1

⟨z(1)d , z
(1)
l ⟩+ 1

D2

D∑
l=1

D∑
r=1

⟨z(1)r , z
(1)
l ⟩.

19



Under review as a conference paper at ICLR 2023

Thus, it follows that

D∑
d=1

∥z(1)d − s̄0∥2 =

D∑
d=1

(
∥z(1)d ∥2 − 2

D

D∑
l=1

⟨z(1)d , z
(1)
l ⟩+ 1

D2

D∑
l=1

D∑
r=1

⟨z(1)r , z
(1)
l ⟩

)
=

D∑
d=1

∥z(1)d ∥2 − 2

D

D∑
d=1

D∑
l=1

⟨z(1)d , z
(1)
l ⟩+D

1

D2

D∑
l=1

D∑
r=1

⟨z(1)r , z
(1)
l ⟩

=

D∑
d=1

∥z(1)d ∥2 − 1

D

D∑
d=1

D∑
l=1

⟨z(1)d , z
(1)
l ⟩

Collecting all terms together we get

pX(x) = exp
(
−

∑D
d=1 ∥z

(1)
d ∥2 − 1

D

∑D
d=1

∑D
l=1⟨z

(1)
d , z

(1)
l ⟩

2σ2

)
f(s̄0)

D∏
d=1

p
Z

(2)
d

(z
(2)
d )

D∏
d=1

|Wd|

The data log-likelihood can be expressed as

N∑
i=1

log pX(xi
1, . . . , x

i
D) =

N∑
i=1

(
−

∑D
d=1 ∥z

(1)i
d ∥2 − 1

D

∑D
d=1

∑D
l=1⟨z

(1)i
d , z

(1)i
l ⟩

2σ2

+ log f(s̄i0) +

D∑
d=1

log p
Z

(2)
d

(z
(2)i
d ) +

D∑
d=1

log |Wd|
)

=

N∑
i=1

log f(s̄i0) +

N∑
i=1

D∑
d=1

log p
Z

(2)
d

(z
(2)i
d ) +N

D∑
d=1

log |Wd|

− 1

2σ2

( N∑
i=1

D∑
d=1

∥z(1)id ∥2 − 1

D

N∑
i=1

D∑
d=1

D∑
l=1

⟨z(1)id , z
(1)i
l ⟩

)
=

N∑
i=1

log f(s̄i0) +

N∑
i=1

D∑
d=1

log p
Z

(2)
d

(z
(2)i
d ) +N

D∑
d=1

log |Wd|

− 1

2σ2

( D∑
d=1

trace(Z
(1)
d Z

(1)⊤
d )− 1

D

D∑
d=1

D∑
l=1

trace(Z
(1)
d Z

(1)⊤
l )

)
In the case when the data is pre-whitened, it holds that the unknown unmixing matrices are orthog-
onal, i.e. WdW

⊤
d = W⊤

d Wd = Ikd
and |detWd| = 1, and xd and zd are uncorrelated. Making

similar observations as before we get for the joint probability of the multiple views:

pX(x) = pZ(1)(z
(1)
1 , . . . , z

(1)
D )

D∏
d=1

p
Z

(2)
d

(z
(2)
d )

Note that after whitening z
(1)
d = α(σ)(s0+ϵd0) with α(σ) = (1+σ2)−

1
2 . With similar observations

as above we get

pZ(1)|s0(z
(1)
1 , . . . , z

(1)
D |s0) = pZ(1)|s0(α(σ)(s0 + ϵ10), . . . , α(σ)(s0 + ϵD0)|s0) =

D∏
d=1

p
Z

(1)
d |S0

(α(σ)(s0 + ϵd0)|s0)

=

D∏
d=1

N (α(σ)(s0 + ϵd0); s0, σ
2Ic) =

D∏
d=1

N (z
(1)
d ;α(σ)s0, α(σ)

2σ2Ic)

20



Under review as a conference paper at ICLR 2023

It follows that

pZ(1)(z
(1)
1 , . . . , z

(1)
D ) =

∫
pZ(1)|s0(z

(1)
1 , . . . , z

(1)
D |s0)pS0

(s0)ds0

=

∫ ( D∏
d=1

N (z
(1)
d ;α(σ)s0, α(σ)

2σ2Ic)
)
pS0

(s0)ds0

∝
∫

exp
(
−

D∑
d=1

∥z(1)d − α(σ)s0∥2

2α(σ)2σ2

)
pS0(s0)ds0

=

∫
exp

(
−

D∥α(σ)s0 − s̄0∥2 +
∑D

d=1 ∥z
(1)
d − s̄0∥2

2α(σ)2σ2

)
pS0

(s0)ds0

= exp
(
−

∑D
d=1 ∥z

(1)
d − s̄0∥2

2α(σ)2σ2

)∫
exp

(
− D∥α(σ)s0 − s̄0∥2

2α(σ)2σ2

)
pS0(s0)ds0

where s̄0 = 1
D

∑D
d=1 z

(1)
d . We define fσ(s̄0) =

∫
exp

(
− D∥α(σ)s0 − s̄0∥2

2α(σ)2σ2

)
pS0(s0)ds0 =∫

exp
(
− D∥s0 − (1 + σ2)

1
2 s̄0∥2

2σ2

)
pS0

(s0)ds0. For the data log-likelihood we get

N∑
i=1

log px(x
i
1, . . . , x

i
D) =

N∑
i=1

log fσ(s̄
i
0) +

N∑
i=1

D∑
d=1

log p
Z

(2)
d

(z
(2)i
d )−N ·D · 1

− D · c
2α(σ)σ2

+
1

2Dα(σ)2σ2

D∑
d=1

D∑
l=1

trace(Z
(1)
d Z

(1)⊤
l )

It be easily derived from 5 by making the following observations resulting from whitening

• N
∑D

d=1 log |Wd| = ND since ∀d Wd is orthogonal

• trace(Z
(1)
d Z

(1)⊤
d ) = c due to Lemma B.1

Remark. Let D = 1 and we have the following simple BSS model for k < p:

x = As with x ∈ Rp, s ∈ Rk, A ∈ Rp×k

It follows that s = (A⊤A)−1A⊤x. Define W = (A⊤A)−1A⊤. The density function of ps(s) is
given by (, https://math.stackexchange.com/users/491644/maxim)

ps(s) = det(WW⊤)−
1
2

∫
Wx=s

px(x)dS(x),

where we integrate over a p − k dimensional surface. Thus, in that case we use this representation
for our optimization.
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C REAL DATA EXPERIMENT

C.1 DATA ACQUISITION AND PREPROCESSING

Our analysis is primarily based on two large gene expression data sets, denoted by (in our code)
Dataset11 (Arrieta-Ortiz et al., 2015) with 265 transcriptome datasets obtained from 38 unique ex-
perimental designs and Dataset2 (Nicolas et al., 2012)2 containing 262 samples from 104 different
experimental conditions.

We removed genes with missing values from Dataset 1 and we selected 3994 genes that are present
in both datasets. To evaluate our results, we collect a ground truth network from the online database
SubtiWiki 3 which consists of 5,952 pairs of regulator and regulated gene. Since our method predicts
pairs of co-regulated genes, we transform the ground truth network into an undirected graph that
links genes with a common regulator. Thus, the ground truth network is stored in the form of an
adjacency matrix with entries 1 if the genes are co-regulated and 0 otherwise.

C.2 GENE-GENE INTERACTION PIPELINE

The main steps of our method are presented in Algorithm 1. We infer latent components from
the data as described in Appendix C.2.1. Afterward, we learn a sparse undirected graph from the
estimated independent components (see Appendix C.2.2).

C.2.1 DATA INTEGRATION

Let X ∈ Rn×p be a transcriptome data matrix with n samples (or experimental outcomes) and p
genes. We assume that the transcriptome matrix follows a linear latent model, i.e. there exist a
matrix A ∈ Rn×k and a matrix S ∈ Rk×p such that X = AS. The k components can be represent
gene expression. If a group of genes is either over or under-expressed in a specific component they
are usually assumed to share a functional property in the genome. Additionally, if the components
are independent (i.e. a BSS model) we assume that the components represent independent gene
pathways, i.e. the components’ groups of over/under-expressed genes act independently from each
other given the experimental conditions.

OmicsPLS This baseline is not a BSS model, i.e. the estimated components are not necessarily
independent. We make an additional assumption that the view-specific sources are orthogonal to the
other views. The model is defined by

X1 = A1Y1 +B1Z1 + E1

X2 = A2Y2 +B2Z2 + E2,

where Y1 ∈ Rc×n Y2 ∈ Rc×n are the latent variables that are responsible for the joint variation
between X1 and X2, i.e. Y1 and Y2 are obtained by solving a CCA problem, and Zi ∈ Rki−c×n

represent the components that are orthogonal to Xj with j ̸= i, and Ei is the noise (or residuals). In
our application we define Si = (Yi, Zi) for the downstream task of interest.

C.2.2 GRAPHICAL LASSO

Graphical lasso (glasso) is a maximum likelihood estimator for inferring graph structure in a high-
dimensional setting (Friedman et al., 2007). This method uses l1 regularization to estimate the
precision matrix (or inverse covariance) of a set of random variables from which a graph structure
can be determined. The optimization problem which glasso solves can be formalized as follows

min
Θ≻0

− log det(Θ) + tr(Σ̂Θ) + λ∥Θ∥1, (7)

1The dataset is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE67023

2The dataset can be found at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE27219

3See http://www.subtiwiki.uni-goettingen.de/v4/exports

22

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67023
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67023
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27219
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27219
http://www.subtiwiki.uni-goettingen.de/v4/exports


Under review as a conference paper at ICLR 2023

Figure 7: Boxplots of the regulons F1 score for two groups of regulons depending on their size (between 10
and 50, and between 50 and 400).

where Σ̂ is the empirical covariance or correlation matrix and Θ := Σ−1 denotes the precision
matrix. In our setting, the input for the glasso is the Pearson’s correlation matrix of the gene repre-
sentations retrieved with ICA at the preceding step. We can read graph structure from the estimated
matrix Θ̂ as follows: if the ij entry of Θ̂ is not 0 (i.e. Θ̂ij ̸= 0) there is an edge between the genes i
and j, i.e. the genes might be co-regulated. We used the huge4 R package for the implementation
of graphical lasso.

C.2.3 EXTENDED EBIC

There are various criteria for model selection and hyperparameter tuning of glasso models. Chen &
Chen (2008) propose an information criterion for Gaussian graphical models called extended BIC
(EBIC) that takes the form

− log det(Θ(E)) + tr(Σ̂Θ(E)) + |E| log n+ 4|E|γ log p, (8)

where E is the edge set of a candidate graph and γ ∈ [0, 1]. Models that yield low EBIC scores are
preferred. Note that positive values for γ lead to sparser graphs. Foygel & Drton (2010) suggest that
γ = 0.5 is a good choice when no prior knowledge is available. In our experiments, we select the λ
that minimizes the EBIC score with γ = 0.5.

C.2.4 PRECISION AND RECALL

To evaluate the proposed method, we use two different evaluation strategies. First, we count the
true positive and false positive (or unknown) edges from the output undirected graph. Edges are
annotated as true positive if they connect pairs of co-regulated genes. In the second part of our eval-
uation, we are interested in the regulon prediction power of our method. For each known regulon,
we compute precision and recall score in the following way:

4See https://CRAN.R-project.org/package=huge.
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Precision(R) =

∑
g∈R |N(g) ∩Ngt(g)|∑

g∈R |N(g)|
,

Recall(R) =
maxC∈C(R) |C|

|R|

where R denotes the set of regulon genes, N(g) and Ngt(g) are the sets of all neighbours of gene
g in the output network and ground truth network, respectively, and C(R) the set of all connected
components in the induced graph with vertices in R.

C.2.5 METHOD

All steps described above are summarized in the following pseudo code.

Algorithm 1 Algorithmic description of the data integration task.
1: Input:

X1,∈ Rn1×p, X2 ∈ Rn2×p is a data matrix with n1 and n2 samples and p
genes
Λ is a set of regularization parameters
γ EBIC selection parameter (8)

2: Perform a data integration method to obtain S1,∈ Rk1×p, S2 ∈ Rk2×p

3: Concatenate S = (S1, S2)
⊤ ∈ Rk1+k2×p

4: Compute the Pearson correlation matrix Σ̂ ∈ Rp×p of S.
5: Estimate the precision matrices {Θ̂λ}λ∈Λ which solves 7 for each λ from the set Λ
6: Select the final Θ̂out ∈ {Θ̂λ}λ∈Λ according to EBIC(γ) (see 8)
7: Output:

the selected Θ̂out
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Figure 8: We have the two view case again with number of total sources and observed signals 100 and number
of samples 1000. We consider three cases of noise standard deviation: σ = 0.1, 0.5, 1. As soon as enough
shared sources are present (around 60) our method lower value of Amari distance (the lower the better) in all
cases. In the the first two cases (σ = 0.1 or 0.5) the Amari distance gets closer to 0 when the shared sources
are 60. The error bars correspond to 95% confidence intervals based on 50 independent runs of the experiment.

(a) (b)

Figure 9: Comparison of MultiViewICA and our method on a two-view shared response model setting. In
Figure 9a we fix the sample size and measure the Amari distance for sources 60, 70, . . . 110. In Figure 9b the
number of sources is set to 100 and we conduct the experiments for different sample sizes (x-axis). It seems
that our method outperforms MultiViewICA in both scenarios.

D SYNTHETIC EXPERIMENTS

D.1 AMARI DISTANCE

The Amari distance (Amari et al., 1995) between two invertible matrices A,B ∈ Rn×n is defined
by

amari(A,B) :=

n∑
i=1

( n∑
j=1

|cij |
maxk |cik|

− 1
)
+

n∑
j=1

( n∑
i=1

|cij |
maxk |ckj |

− 1
)
, C := A−1B.

D.2 ADDITIONAL EXPERIMENTS ON SYNTHETIC DATA

Noisy high-dimensional views. First, we investigate the effect of noise on the Amari distance
in the two-view experiment. In Section 6.1, we empirically showed in the noiseless case that if
we have enough shared sources present in the two views, we can recover the individual ones up
to permutation and scaling with high accuracy. We repeat this experiment in a noisy setting. We
consider three cases when the noise’s standard variation is σ = 0.1, 0.5, 1. The results are depicted
in Figure 8. In the first two cases the results are close to the one discussed in Section 6.1. As
expected, by adding noise with high variance (σ = 1) our method does not converge and affects the
quality of the estimated mixing matrices measured with the Amari distance. The whole procedure
is repeated 50 times, and the error bars are the 95% confidence intervals based on the independent
runs.

Objective function motivation. In the following experiment, we compare MultiViewICA and our
method when the observed data is high-dimensional on a two-view shared response model appli-
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Figure 10: Choice of Hyperparameter λ. The data comes from a two-view model with 50 shared and 50
individual sources per view. The x-axis is represents the noise standard deviation and the y-axis the Amari
distance.

Figure 11: The data is generated according to a model, where no individual sources are present and the noise
per view is uniformly samples from the interval [1, 2]. The number of views is set to 10 and the sample size
is 1000 for all experiments. We vary the number of sources from 10 to 50. The experiment is repeated 50
times. We fit the model with 5 different hyperparameters. Our method shows better results in the case when
the hyperparameter is 0.1 and 0.5.

cations, i.e. no individual sources. The experimental setup allows for comparing standard MLE
(MultiViewICA) and MLE after whitening (Our Method). Figure 3 summarizes the results. Fig-
ure 9a compares the two methods for fixed sample size 1000. In Figure 9b we fixed the number
of sources to be 100 and vary the sample size. For all experiments the noise standard deviation
is 0.01. It seems that our method performs better in the case of insufficient data. This could be
empirical evidence that the trace has stronger regularization properties than the MMSE term in the
MultiViewICA objective.

Choice of λ For this experiment we used data generated from 2 views with 50 individual and 50
shared sources with varying noise standard deviation σ ∈ {0.1, 0.5, 1, 2, 10} (x-axis). Each of
the lines in Figure 10 correspond to a fixed hyperparameter λ ∈ {0.1, 0.5, 1, 2, 10}. It can be
deduced that for this particular experiment for λ ≥ 0.5 there is no significant difference in the
model performance.

Additional experiments on the impact of the hyperparameter λ. In this subsection, we perform
the same experiment as in Figure 3b for different values of the hyperparameter lambda 0.1, 0.5, 1, 2
and 10. Figure 11 suggests that in that case choosing lower values for the parameter yields better
results.

D.3 IMPLEMENTATION

The code for GroupICA, ShICA, MultViewICA is distributed with BSD 3-Clause License. The
OmicsPLS R library has a GPL-3 license, the scikit-learn library is distributed with BSD
2-Clause License. Our code is available under https://anonymous.4open.science/r/
shindica-C497/
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Study Application Observed Signals Latent Sources Views
Salman et al. (2019) Identifying biomarkers fMRI data brain functional networks multiple subjects
(Durieux & Wilderjans, 2019) Mental disorders detection fMRI data brain functional networks multiple subjects
(Long et al., 2020) subgroup detection fMRI data brain functional networks multiple subjects
(Huster et al., 2015) Denoising EEG data brain activity patterns multiple subjects
(Congedo et al., 2010) Diagnosis and assessment EEG data eyes-closed resting EEG patterns multiple subjects

of abnormal brain functioning
(Sompairac et al., 2019) extensive overview tumoral omics data gene/protein profiles heterogenous omics data
(Avila Cobos et al., 2018) cell type decomposition tissue/tumor samples cell type-specific expressions tissue/tumor samples
(Fraunhoffer et al., 2022) prognostic prediction transcriptomic profiles from PDAC epithelial gene profile three types of transcriptome data

and microenvironment cells

Table 2: List of recent studies that use ICA as a common data analysis tool. We also provide the application,
used data modalities latent sources and views interpetation.

E MODEL JUSTIFICATION

Multiview ICA importance in the scientific community. As mentioned in our introduction, we
would like to point out that ICA has proven to be a successful approach for analyzing biomedical
data over the years since it solves blind source separation problems common in neuroscience and
biomedicine, as stated in the main paper. Furthermore, many biomedical applications can be ad-
dressed as multiview problems due to multiple subjects in a study (e.g., fMRI, EEG data) or data
coming from different modalities (e.g., omics data). This led to the development of multiview meth-
ods. Most of those approaches focus on shared response model setting (only shared sources), e.g.
Group ICA, ShICA, MultiviewICA, IVA methods and their corresponding variations. We list some
recent scientific applications where multiview ICA models were used in Table 2. We also provided
an interpretation of the used views and latent and observed signals.

The shared response models are restrictive. There is a growing interest in examining individ-
ual variability rather than shared signals in the above-mentioned areas of applications (Dubois &
Adolphs, 2016) , such as (Seghier & Price, 2018; Bartolomeo et al., 2017; Long et al., 2020). For
instance, one can be interested in the effect of individual brain patterns on brain activity to develop
more robust biomarkers. Another application where shared response models (GroupICA, Multi-
viewICA, IVA, etc.) would not be a sensible choice is data integration of omics data. This is an
important research direction in computational biology, where we are interested in preserving the
shared biological signal between datasets (views) and individual ones, as we illustrated in our ex-
ample. Existing approaches for the tasks mentioned above consist of two steps: applying ICA/IVA
on the data followed by statistical analysis (as in (Long et al., 2020)) to separate the individual from
the shared sources (or vice versa). Thus, we believe our method is a valuable addition to this set
of tools. In the independent component analysis context, we are unaware of a similar model that
both provides identifiability results and an optimization procedure that maximizes the direct data
log-likelihood for given source priors.

Linearity assumption in the biomedical domain. The linear assumption can be explained by
the nature of the data in the targeted domains. More precisely, if we consider the examples from
above: the linear mixing of the components in the fMRI data context has been justified by various
studies, e.g. McKeown & Sejnowski (1998), and in the other applications, the linear assumption
can be achieved after data transformation, e.g. log-transforming the transcriptome data. Moreover,
the linearity assumption is valid in many real-life applications in the biomedical domain, where
often we have a high-dimensional setting (gene activity, experimental measurements, etc.) with a
low number of observed samples (participants, experiments). Moreover, in the low-data regime,
if we know too little about the underlying problem, the linear approach is often a better option
than eventually overparametrization it with a deep learning model. o We do agree that a non-linear
multiview version will be a valuable addition to the current active research on non-linear ICA, e.g.
(Hyvärinen & Morioka, 2016; 2017; Monti et al., 2020). However, the identifiability justification of
the proposed methods has assumptions that are hard to satisfy in real-life data scenarios (e.g. the
assumption of Variability (Hyvärinen et al., 2019). In our linear version, we assure identifiability
without any requirements on how distinct the views should be. Moreover, there are other non-linear
multi-view versions, as stated in our work, that lack identifiability.
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F MODEL ASSUMPTIONS

To prove the identifiability of the stated model, we require that four assumptions should be satisfied:

1. The mixing matrices have full-column rank. This implies that we require that the sources
have a minimal representation, i.e. the number of latent sources is minimal, which is a
realistic assumption.

2. The second assumption is additive noise on the sources. It can be interpreted as a measure-
ment error on the device with variance σ2AdA

⊤
d . We choose this setting compared to the

Adsd + ϵd because, in our case, we get a likelihood in a closed form which is not available
in the latter representation. Richard et al. (2020; 2021) make a similar assumption for the
shared response model setting.

3. The sources are mutually independent and non-Gaussian. This is a standard ICA assump-
tion (Comon, 1994). Gaussian random variables, called “white” noise represent noise vari-
ables, which besides location and scale, do not carry real information. Thus, If all sources
are Gaussian, either they cannot be identified (see, for example, Proposition 3 (Richard
et al., 2020)) or additional assumptions on the variance structure need to be made to assure
identifiability (Richard et al., 2021). The non-Gaussian random variables carry meaning
and are identifiable. This is not a restrictive assumption since the sources in real-life sce-
narios are often non-Gaussian: fMRI, EEG, and omics data. The fixed mean and variance
are also assumptions often adopted in ICA (e.g. (Richard et al., 2021; Hyvärinen & Oja,
2000)). This results from the fact that the standard literature on ICA does not provide any
identifiability guarantees for the true variances and means of the sources. To illustrate this,
we provided a new theoretical result in the Supplementary, where we do not fix the sources’
variances and means. It turns out that we need to make additional assumptions to provide
identifiability guarantees for the source distributions.

4. The measurement error is independent of the latent signal. This is a common assumption
in measurement error models known as classical errors. It is a realistic assumption since
we usually do not expect the measurement error to influence the true signal and vice versa
Richard et al. (2020; 2021); Gresele et al. (2020).
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