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ABSTRACT

Model-based reinforcement learning (RL) offers a solution to the data inefficiency
that plagues most model-free RL algorithms. However, learning a robust world
model often requires complex and deep architectures, which are computationally
expensive and challenging to train. Within the world model, sequence models
play a critical role in accurate predictions, and various architectures have been ex-
plored, each with its own challenges. Currently, recurrent neural network (RNN)-
based world models struggle with vanishing gradients and capturing long-term
dependencies. Transformers, on the other hand, suffer from the quadratic memory
and computational complexity of self-attention mechanisms, scaling as O(n2),
where n is the sequence length.
To address these challenges, we propose a state space model (SSM)-based world
model, Drama, specifically leveraging Mamba, that achieves O(n) memory
and computational complexity while effectively capturing long-term dependen-
cies and enabling efficient training with longer sequences. We also introduce
a novel sampling method to mitigate the suboptimality caused by an incorrect
world model in the early training stages. Combining these techniques, Drama
achieves a normalised score on the Atari100k benchmark that is competitive
with other state-of-the-art (SOTA) model-based RL algorithms, using only a 7
million-parameter world model. Drama is accessible and trainable on off-the-
shelf hardware, such as a standard laptop. Our code is available at https:
//github.com/realwenlongwang/Drama.git.

1 INTRODUCTION

Deep Reinforcement Learning (RL) has achieved remarkable success in various challenging appli-
cations, such as Go (Silver et al., 2016; 2017), Dota (Berner et al., 2019), Atari (Mnih et al., 2013;
Schrittwieser et al., 2020), and MuJoCo (Schulman et al., 2017; Haarnoja et al., 2018). However,
training policies capable of solving complex tasks often requires millions of environment interac-
tions, which can be impractical and pose a barrier to real-world applications. Thus, improving
sample efficiency has become a critical goal in RL algorithm development.

World models have shown promise in improving sample efficiency by generating artificial training
samples through an autoregressive process, a method referred to as model-based RL (Micheli et al.,
2023; Robine et al., 2023; Zhang et al., 2023; Hafner et al., 2023). In this approach, interaction
data is used to learn the environment dynamics using a sequence model, allowing the agent to train
on artificial experiences generated by the resulting sequence model instead of relying on real-world
interactions. This approach shifts the problem from improving the policy directly using real sam-
ples (which is sample inefficient) to improving the accuracy of the world model to match the real
environment (which is more sample efficient). However, model-based RL faces a well-known chal-
lenge: when the model is inaccurate due to limited observed samples, especially early in training,
the policy eventually learned can converge to suboptimal behaviour, and detecting model errors is
difficult, if not impossible.
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In sequence modelling, linear complexity (in sequence length) is highly desirable because it allows
models to efficiently process longer sequences without a dramatic increase in computational and
memory resources. This is particularly important when training world models, which require effi-
cient sequence modelling to simulate complex environments over long time horizons. RNNs, partic-
ularly advanced variants like Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU),
offer linear complexity, making them computationally attractive for this task. However, RNNs still
struggle with vanishing gradient issues and exhibit limitations in capturing long-term dependencies
(Hafner et al., 2019; 2023). More recently, transformer architectures, which have dominated natural
language processing (NLP) (Vaswani et al., 2017), have gained traction in fields like image process-
ing and offline RL following groundbreaking work in these areas (Dosovitskiy et al., 2021; Chen
et al., 2021). The transformer structure has demonstrated its effectiveness in model-based RL as
well (Micheli et al., 2023; Robine et al., 2023; Zhang et al., 2023). However, transformers suffer
from both memory and computation complexity that scale as O(n2), where n is the sequence length,
posing challenges for world models that require long sequences1 to simulate complex environments.

Currently, SSMs are attracting significant attention for their ability to efficiently model long-
sequence problems with linear complexity. Among SSMs, Mamba has emerged as a competitive
alternative to transformer-based architectures in various fields, including NLP (Gu & Dao, 2024;
Dao & Gu, 2024), computer vision (Zhu et al., 2024), and offline RL (Lv et al., 2024). Applying
Mamba’s architecture to model-based RL is particularly appealing due to its linear memory and
computational scaling with sequence length, coupled with its ability to capture long-term dependen-
cies effectively. Moreover, efficiently capturing environmental dynamics can reduce the likelihood
that the behaviour policy being learned within an inaccurate world model, a challenge we further ad-
dress by incorporating a novel dynamic frequency-based sampling method. In this paper, we make
three key contributions:

• We introduce Drama, the first model-based RL agent built on the Mamba SSM, with
Mamba-2 as the core of its architecture. We evaluate Drama on the Atari100k benchmark,
demonstrating that it achieves performance comparable to other SOTA algorithms while
using only a 7 million trainable parameter world model.

• We compare the performance of Mamba and Mamba-2 , demonstrating that Mamba-2
achieves superior results as a sequence model in the Atari100k benchmarks, despite slightly
limiting expressive power to enhance training efficiency.

• Finally, we propose a novel but straightforward sampling method, dynamic frequency-
based sampling (DFS), to mitigate the challenges posed by imperfect sequence models.

2 METHOD

We describe the problem as a Partially Observable Markov Decision Process (POMDP), where at
each discrete time step t, the agent observes a high-dimensional image Ot ∈ O rather than the
true state st ∈ S with the conditional observation probability given by p(Ot|st). The agent selects
actions from a discrete action set at ∈ A = {0, 1, . . . , n}. After executing an action at, the agent
receives a scalar reward rt ∈ R, a termination flag et ∈ [0, 1], and the next observation Ot+1. The
dynamics of the MDP are described by the transition probability p(st+1, rt|st, at). The behaviour
of the agent is determined by a policy π(Ot;θ), parameterised by θ, where π : O → A maps the
observation space to the action space. The goal of this policy is to maximise the expected sum of
discounted rewards E

∑
t

γtrt, given that γ is a predefined discount factor.

Unlike model-free RL, model-based RL does not rely directly on real experiences to improve the
policy π(Ot;θ) (Sutton & Barto, 1998). There are various approaches to obtaining a world model,
including Monte Carlo tree search (Schrittwieser et al., 2020), offline imitation learning (DeMoss
et al., 2023) and latent sequence models (Hafner et al., 2019). In this work, we focus on learning a
world model f(Ot, at;ω) from actual experiences to capture the dynamics of the POMDP in a latent
space. The actual experiences are stored in a replay buffer, allowing them to be repeatedly sampled
for training the world model. The world model consists of a variational autoencoder (VAE) (Kingma

1According to (Tay et al., 2021), a long sequence is defined as having a length of 1,000 or more.
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Figure 1: Drama world model architecture. At each sequence index t, the raw game frames are
encoded into zt and combined with the action at as input to the Mamba blocks. The input channel
dimension is divided by the head dimension p to generate the deterministic recurrent state dt. This
recurrent state dt is used to predict the next embedding ẑt+1, reward r̂t, and termination flag êt,
which represent the outcomes based on the current frame and action. The decoder reconstructs the
original frame from the encoded embeddings zt rather than from the predicted embeddings ẑt. The
Mamba-2 block employs a semi-separable matrix structure, which can be decomposed into q × q
sub-matrices, enabling more efficient computation and processing.

& Welling, 2014; Hafner et al., 2021), a sequence model, and linear heads to predict rewards and
termination flags. The details of our world model are discussed in Section 2.2.

After each update to the world model, a batch of experiences is sampled from the replay buffer to
initiate a process called ‘imagination’. Starting from an actual initial observation and using an action
generated by the current behaviour policy, the sequence model generates the next latent state. This
process is repeated until the agent collects sufficient imagined samples for policy improvement. We
explain this process in detail in Section 2.3.

2.1 STATE SPACE MODELLING WITH MAMBA

SSMs are mathematical frameworks inspired by control theory to represent the complete state of
a system at a given point in time. These models map an input sequence to an output sequence
x ∈ Rl → y ∈ Rl, where l denotes the sequence length. In structured SSMs, a hidden state
H ∈ R(n,l) is used to track the sequence dynamics, as described by the following equations:

Ht = AHt−1 +Bxt

yt = C⊺Ht
(1)

where A ∈ R(n,n),B ∈ R(n,1),C ∈ R(n,1) and Ht ∈ R(n,1), in which n represents the prede-
fined dimension of the hidden state that remains invariant to the sequence length. To efficiently
compute the hidden states, it is common to structure A as a diagonal matrix, as discussed in (Gu
et al., 2022b; Gupta et al., 2022; Smith et al., 2023; Gu & Dao, 2024). Additionally, selective
SSMs, such as Mamba, extend the matrices (A,B,C) to be time-varying, introducing an extra
dimension corresponding to the sequence length. The shapes of these time-varying matrices are
A ∈ R(T,N,N),B ∈ R(T,N), and C ∈ R(T,N) 2.

2In Mamba, the time variation of A is influenced by a discretisation parameter ∆. For more details, please
refer to (Gu & Dao, 2024)
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Dao & Gu (2024) introduced the concept of structured state space duality (SSD), which further
restricts the diagonal matrix A to be a scalar multiple of the identity matrix, forcing all diagonal
elements to be identical. To address the resulting reduced expressive power, Mamba-2 introduces a
multi-head technique, akin to attention, by treating each input channel as p independent sequences.
Unlike Mamba, which computes SSMs as a recurrence, Mamba-2 approaches the sequence trans-
formation problem through matrix multiplication, which is more GPU-efficient:

yt = C⊺
t Ht

yt =

t∑
i=0

C⊺
t At:iBixi

(2)

where At:i is AtAt−1 . . .Ai+1. This allows the SSM to be formulated as a matrix transformation:

y = SSM(x;A,B,C) = Mx

Mj,i :=

{
C⊺

t At:iBi if j ≥ i

0 if j < i

(3)

Mamba-2 reformulates the state-space equations as a single matrix multiplication using semi-
separable matrices (Vandebril et al., 2005; Dao & Gu, 2024), which is well known in computational
linear algebra, as shown by Figure 1. The matrix M can also be written as:

M = L ◦CB⊺ ∈ R(T,T )

L =


1
a1 1
a2a1 a2 1

...
...

. . . . . .
aT−1 . . . a1 aT−1 . . . a2 . . . aT−1 1

 (4)

where at ∈ [0, 1] is an input-dependent scalar. The matrix L bridges the SSM mechanism with the
causal self-attention mechanism by removing the softmax function and applying a mask matrix L
to the ‘attention-like’ matrix. It is equivalent to causal linear attention when all at = 1. As a result,
Mamba-2 achieves 2-8 times faster training speeds than Mamba, while maintaining linear scaling
with sequence length.

2.2 WORLD MODEL LEARNING

Our world model has two main components: an autoencoder and a sequence model. Additionally
it includes two MLP heads for reward and termination predictions. The architecture of the world
model is illustrated in Figure 1.

2.2.1 DISCRETE VARIATIONAL AUTOENCODER

The autoencoder extends the standard variational autoencoder (VAE) architecture (Kingma &
Welling, 2014) by incorporating a fully-connected layer to discretise the latent embeddings, con-
sistent with previous approaches (Hafner et al., 2021; Robine et al., 2023; Zhang et al., 2023). The
raw observation is a three-dimensional image, Ot ∈ [0, 255](h,w,c), at time step t. The encoder
compresses the observation into a discrete latent vector, denoted as zt ∼ p(zt|Ot). The decoder
reconstructs the raw image, Ôt, from zt. Gradients are passed directly from the decoder to the
encoder using the straight-through estimator, bypassing the sampling operation during backpropa-
gation (Bengio et al., 2013).

2.2.2 SEQUENCE MODEL

The sequence model simulates the environment in the latent variable space, zt, using a deterministic
state variable, dt. Note that this is distinct from the hidden states typically used by SSMs, like
Mamba and Mamba-2, to track dynamics. At each time step t, the next token in the sequence is
determined by both the current latent variable, zt and the current action at. To integrate these,
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we concatenate them and project the result using a fully connected layer before passing it to the
sequence model. Given a sequence length l, the deterministic state is derived from all previous
latent variables and actions. The sequence model can be expressed as:

Seuqnce model: dt = f(zt−l:t, at−l:t;ω)

Latent variable predictor: ẑt+1 ∼ p(ẑt+1|dt;ω)
(5)

We implement the sequence model with Mamba-2 (Dao & Gu, 2024). Specifically, each time a
batch of samples, denoted as O ∈ [0, 255](b,l,h,w,c), is drawn from the experience buffer E , where b
is the batch size, l the sequence length, and h,w, c the image height, width, and channel dimension
respectively. After encoding, the batch will be compressed to Z ∈ R(b,l,d) where d is the dimension
of the latent variable. The latent variable passes through a linear layer with the action to produce
the input X ∈ R(b,l,d) of the Mamba blocks. To fully leverage GPU parallelism, the training process
must strictly avoid sequential dependencies. That is, at time step t, the sequence model predicts
the latent variable ẑt+1, and its target zt+1 depends solely on the observation Ot+1 as shown in
Figure 1. Unlike DreamerV3, where zt+1 ∼ p(zt+1|Ot+1,dt), this approach eliminates sequential
dependence.

Mamba processes the input tensor Xb,:l,d into a sequence of hidden states H ∈ R(b,l−1,n) , which are
then mapped back to the deterministic state sequence Db,:l,d using time-varying parameters. Since
the hidden states operate in a fixed dimension n (unlike standard attention mechanisms, where the
state scales with the sequence length), Mamba achieves linear computational complexity in l.

Mamba-2 applies a similar transformation but leverages matrix multiplication. The input tensor X’s
dimension d is first split into d/p heads, which are processed independently. The transformation
matrix is a specially designed semiseparable lower triangular matrix, which can be decomposed
into q × q blocks. Specialised blocks handle causal attention over short ranges and hidden state
transformations, enabling efficient GPU computation.

2.3 BEHAVIOUR POLICY LEARNING

The behaviour policy is trained within the ‘imagination’, an autoregressive process driven by the
sequence model. Specifically, a batch of bimg trajectories, each of length limg , is sampled from the
replay buffer. Leveraging Mamba’s efficiency with long sequences , we use real-world transitions
to estimate a more informative hidden state for the ‘imagination’ process. Rollouts begin from the
last transition of each sequence (at step limg) and continue for h steps. Notably, the rollout does not
stop when an episode ends, unlike the prior SSM-based meta-RL model (Lu et al., 2023) where the
hidden state must be manually reset, as the Mamba-based sequence model automatically resets the
state at episode boundaries (Gu & Dao, 2024).

A key difference between Mamba- and transformer-based world models lies in the ‘imagination’
process: Mamba updates inference parameters independently of sequence length, accelerating the
‘imagination’ process, which is a major time-consuming phase in model-based RL. The behaviour
policy’s state concatenates the prior discrete variable ẑt with the deterministic variable dt to exploit
the temporal information. While the behaviour policy utilises a standard actor-critic architecture,
other on-policy algorithms can also be applied. In this work, we adopt the recommendations from
(Andrychowicz et al., 2021) and adjust the loss functions and value normalisation techniques as
described in (Hafner et al., 2023).

2.4 DYNAMIC FREQUENCY-BASED SAMPLING (DFS)

In model-based RL, the behaviour model often underestimates rewards due to inaccuracies in the
world model, impeding exploration and error correction (Sutton & Barto, 1998). These inaccuracies
are particularly common early in training when the model is fitted to limited data. Thus, we propose
a sample-efficient method to address this issue, i.e., Dynamic Frequency-based Sampling (DFS).

The primary objective is to sample transitions that the world model has sufficiently learned
to ensure reliable ‘imagination’. To accomplish this, we maintain two vectors during train-
ing, each matching the length of the transition buffer |E|. For the world model, v =
(v1, v2, . . . , v|E|),where vi ∈ Z+ for i ∈ {1, 2, . . . , |E|}, which tracks the number of times a tran-
sition has been sampled to improve the world model. The resulting sampling probabilities are
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computed as, (p1, p2, . . . , p|E|) = softmax(−v), similar to (Robine et al., 2023). For ‘imagi-
nation’, b = (b1, b2, . . . , b|E|),where bi ∈ Z+ for i ∈ {1, 2, . . . , |E|}, which counts the times that
the transition has been sampled to improve the behaviour policy. The sampling probabilities are
denoted as, (p1, p2, . . . , p|E|) = softmax(f(v, b)),where f(v, b) = v − b − max(0,v − b).
During training, two cases arise: 1) ∃i ∈ |E|, vi ≥ bi, f(vi, bi) = 0, In this case, the transition
has been trained more frequently with the world model than with the behaviour policy, suggest-
ing that the world model is likely capable of making accurate predictions from this transition. 2)
∃i ∈ |E|, vi < bi, f(vi, bi) = vi − bi, signaling that the transition is either likely under-trained
for the world model rollouts or overfitted to the behaviour policy. Consequently, the probability of
selecting this transition for behaviour policy training decreases. These two mechanisms ensure that
‘imagination’ sampling favours transitions learned by the world model, while avoiding excessive
determinism.

3 EXPERIMENTS

In this work, the proposed Drama framework is implemented on top of the STORM infrastructure
(Zhang et al., 2023). We evaluate the model using the Atari100k benchmark (Kaiser et al., 2020),
which is widely used for assessing the sample efficiency of RL algorithms. Atari100k limits interac-
tions with the environment to 100,000 steps (equivalent to 400,000 frames with 4-frame skipping).
We present the benchmark and analyse our results in Section 3.1 . Ablation experiments and their
analysis are provided in Section 3.2.

3.1 ATARI100K RESULTS

We compare Drama against SOTA MBRL algorithms across 26 Atari games in the Atari100k bench-
mark. In Table 1, the ‘Normalised Mean’ refers to the average normalised score, calculated as:
(evaluated_score−random_score)/(human_score−random_score). For each game, we train
Drama with 5 independent seeds and track training performance using a 5-episode running average,
as recommended by Machado et al. (2018), a practice also followed in related work (Hafner et al.,
2023).

Despite utilising an extra-small world model (7M parameters, referred to as the XS model), Drama
achieves performance comparable to IRIS and TWM. To enable a like-for-like comparison between
Drama and DreamerV3 with a similar number of parameters, we evaluate the learning curves of
Drama and a 12M-parameter variant of DreamerV3 (referred to as DreamerV3XS) on the full
Atari100K benchmark. As shown in Figure 4 in the appendix, Drama significantly outperforms
DreamerV3XS, achieving a normalised mean score of 105 compared to 37 and a normalised median
score of 27 compared to 7, as presented in Table 3.

Table 1 demonstrates that Drama, with Mamba-2 as the sequence model, is both sample- and
parameter-efficient. For comparison, SimPLe (Kaiser et al., 2020) trains a video prediction model
to optimise a PPO agent (Schulman et al., 2017), while SPR (Schwarzer et al., 2021) uses a se-
quence model to predict in latent space, enhancing consistency through data augmentation. TWM
(Robine et al., 2023) employs a Transformer-XL architecture to capture dependencies among states,
actions, and rewards, training a policy-based agent. This method incorporates short-term tempo-
ral information into the embeddings to avoid using the sequence model during actual interactions.
Similarly, IRIS (Micheli et al., 2023) uses a Transformer as its sequence model, but generates new
samples in image space, allowing pixel-level feature extraction for behaviour policies. DreamerV3
(Hafner et al., 2023), which employs an RNN-based sequence model along with robustness tech-
niques, achieves superhuman performance on the Atari100k benchmark using a 200M parameter
model—20 times larger than our XS model. STORM (Zhang et al., 2023), which adopts many of
DreamerV3’s robustness techniques while replacing the sequence model with a transformer, reaches
similar performance on the Atari100k benchmark as DreamerV3.

Drama excels in games like Boxing and Pong, where the player competes against an autonomous
opponent in simple, static environments, requiring a less intense autoencoder. This strong perfor-
mance indicates that Mamba-2 effectively captures both ball dynamics and the opponent’s posi-
tion. Similarly, Drama performs well in Asterix, which benefits from its ability to predict ob-
ject movements. However, Drama struggles in Breakout, where performance can be improved
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Random Human PPO SimPLe SPR TWM IRIS STORM DreamerV3 DramaXS
Alien 228 7128 276 617 842 675 420 984 1118 820
Amidar 6 1720 26 74 180 122 143 205 97 131
Assault 222 742 327 527 566 683 1524 801 683 539
Asterix 210 8503 292 1128 962 1117 854 1028 1062 1632
BankHeist 14 753 14 34 345 467 53 641 398 137
BattleZone 2360 37188 2233 4031 14834 5068 13074 13540 20300 10860
Boxing 0 12 3 8 36 78 70 80 82 78
Breakout 2 30 3 16 20 20 84 16 10 7
ChopperCommand 811 7388 1005 979 946 1697 1565 1888 2222 1642
CrazyClimber 10780 35829 14675 62584 36700 71820 59324 66776 86225 83931
DemonAttack 152 1971 160 208 518 350 2034 165 577 201
Freeway 0 30 2 17 19 24 31 34 0 15
Frostbite 65 4335 127 237 1171 1476 259 1316 3377 785
Gopher 258 2412 368 597 661 1675 2236 8240 2160 2757
Hero 1027 30826 2596 2657 5859 7254 7037 11044 13354 7946
Jamesbond 29 303 41 100 366 362 463 509 540 372
Kangaroo 52 3035 55 51 3617 1240 838 4208 2643 1384
Krull 1598 2666 3222 2205 3682 6349 6616 8413 8171 9693
KungFuMaster 258 22736 2090 14862 14783 24555 21760 26183 25900 23920
MsPacman 307 6952 366 1480 1318 1588 999 2673 1521 2270
Pong -21 15 -20 13 -5 19 15 11 -4 15
PrivateEye 25 69571 100 35 86 87 100 7781 3238 90
Qbert 164 13455 317 1289 866 3331 746 4522 2921 796
RoadRunner 12 7845 602 5641 12213 9109 9615 17564 19230 14020
Seaquest 68 42055 305 683 558 774 661 525 962 497
UpNDown 533 11693 1502 3350 10859 15982 3546 7985 46910 7387
Normalised Mean (%) 0 100 11 33 62 96 105 127 125 105
Normalised Median (%) 0 100 3 13 40 51 29 58 49 27

Table 1: Comparison of game performance metrics for various algorithms across multiple Atari
games. For Freeway IRIS enhances exploration using a distinct set of hyperparameters, while
STORM leverages offline expert knowledge. TWM reports the results with a 21.6M model while
IRIS does not report the exact number of parameters, they use the same transformer embedding
dimension and layer number as TWM plus a behaviour policy with CNN layers. DreamerV3 notably
uses a 200M parameter model and achieves good results in a series of diverse tasks. STORM does
not report the number of trainable parameters.

with a more robust autoencoder in Figure 6. Additionally, Drama excels in games like Krull and
MsPacman, which require longer sequence memory, but faces challenges in sparse reward games
like Jamesbond and PrivateEye.

3.2 ABLATION EXPERIMENTS

In this section, we present three ablation experiments to evaluate key components of Drama. First,
we compare dynamic frequency-based sampling performance against uniform sampling on the full
Atari100k benchmark, demonstrating its effectiveness across diverse environments. Secondly, we
compare Mamba and Mamba-2 on a subset of Atari games, including Krull, Boxing, Freeway,
and Kangaroo, to highlight the differences in their performance when applied to dynamic game-
play scenarios. Lastly, we compare the long-sequence processing capabilities of Mamba, Mamba-2,
and GRU in a custom Grid World environment. This experiment focuses on a prediction task using
different sequence models, offering insights into their sequence modelling capabilities, which are
crucial for MBRL applications especially if long-sequence modelling is important.

3.2.1 DYNAMIC FREQUENCY-BASED SAMPLING

In this experiment, we compare DFS with the uniform sampling method in the Mamba-2-based
Drama on the full Atari100k benchmark. In Table 4, DFS is more effective than the uniform sam-
pling overall , achieving a 105% normalised mean score (vs. the uniform’s 80%), despite both meth-
ods sharing similarly median performance (27% vs. 28%). As shown in Figure 5, DFS shows signif-
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Figure 2: Mamba vs. Mamba-2. Mamba2 has shown a superior performance to Mamba in three out
of four games. Both Mamba and Mamba-2 use DFS in this experiment.

icant advantages in games requiring adaptation to evolving dynamics, such as Alien, Asterix,
BankHeist, and Seaquest. Additionally, DFS performs well in opponent-based games such as
Boxing and Pong, where exploiting the weaknesses of the opponent AI is essential. However,
DFS performs less effectively in games like Breakout and KungFuMaster, likely because the
critical game dynamics are accessible early in the gameplay.

3.2.2 MAMBA VS. MAMBA-2

As mentioned in Sec 2.1, Mamba-2 imposes restrictions on the diagonal matrix A to improve ef-
ficiency. However, whether these restrictions degrade performance of SSMs remains unclear, as
prior work lacks conclusive theoretical or empirical evidence (Dao & Gu, 2024). In response to this
gap, we compare Mamba-2 and Mamba as the backbone of the world model in model-based RL.
We conducted ablation experiments using DFS, with both architectures configured under identical
hyperparameters.

Figure 2 illustrates that Mamba-2 outperforms Mamba in the games Krull, Boxing and
Freeway. In Krull, the player navigates through different scenes and solves various tasks.
In the later stages, rescuing the princess while avoiding hits results in a significant score boost,
while failure leads to a plateau in score. As shown, Mamba experiences a score plateau in Krull,
whereas Mamba-2 successfully overcomes this challenge, leading to higher performance. Note that
Freeway is a sparse reward game requiring high-quality exploration. A positive training effect is
achieved only by combining DFS with Mamba-2 without any additional configuration.

3.2.3 SEQUENCE MODELS FOR LONG-SEQUENCE PREDICTABILITY TASKS

To assess the efficiency of Mamba and Mamba-2 in long-range modelling compared to Transformers
and GRUs, which are widely used in recent MBRL approaches, we present a simple yet representa-
tive grid world environment3, as illustrated in Figure 3a. The learning objectives here are twofold:
1) the sequence model must reconstruct (predict) the correct grid-world geometry over a long se-
quence and 2) the sequence model must accurately generate the agent’s location within the grid
world, reflecting the prior sequence of movements. To achieve this, we represent a trajectory as a
long sequence by flattening consecutive frames (row-wise tokenisation of frames) and separating
each frame with a movement action a. Let the size of the grid world be lg . Then, each frame can
be tokenised into a sequence of length lf = lg

2 + 1, as depicted in Figure 3b. Since l ≫ lf , the
task demands strong long-range sequence modelling to ensure geometric and logical consistency in
predictions–a core requirement for MBRL sequence models.

We compare GRU, Transformer, Mamba, and Mamba-2 in this grid world environment, where
lg = 5 and lf = 26, considering two sequence lengths: a short sequence length l = 8 × lf
and a long sequence length l = 64 × lf . Performance is measured via training time, memory
usage and reconstruction error (lower time consumption and reconstruction error indicate better en-
vironment understanding). Results show that, Mamba and Mamba-2 achieve equivalent low error
and short training time in both sequence lengths compared to other methods. However, Mamba-2
demonstrates the lowest training time over all methods. These findings confirm that the proposed
Mamba-based architecture presents a strong capability to capture essential information, particularly
in scenarios involving long sequence lengths.

3Implementation based on (Torres–Leguet, 2024)
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(a)

(b)

Figure 3: Illustrations of the grid world environment and its reconstruction into a sequential format.
(a) Sequence of consecutive frames in the grid world environment. The Example presents a sequence
of consecutive frames, arranged from left to right. Each frame represents a 5 × 5 grid, where the
outer 16 cells are black walls, and the central 3 × 3 grid is the reachable space. The red cell is
the controllable agent, which moves according to a random action, and the yellow cell is a fixed
goal. The sequence of frames, from left to right, illustrates the movement of the agent following the
action sequence: east → south → east → north. Once the yellow cell is reached by the agent,
the location of the agent and goal will be reset randomly. (b) Reconstructing the grid world into a
long sequence. Each grey-shaded box contains 25 flattened grid tokens and one action token.

Method l Training Time (ms) Memory Usage (%) Error (%)

Mamba-2
208 25 13 15.6 ± 2.6

1664 214 55 14.2 ± 0.3

Mamba
208 34 14 13.9 ± 0.4

1664 299 52 14.0 ± 0.4

GRU
208 75 66 21.3 ± 0.3

1664 628 68 34.7 ± 25.4

Transformer
208 45 17 24.7 ± 7.4

1664 - OOM -

Table 2: Performance comparison of different methods in the grid world environment. Memory
usage is reported as a percentage of an 8GB GPU. The error is represented as the mean ± stan-
dard deviation. The training time refers to the average duration per training step. Notably, the
Transformer encounters an out-of-memory (OOM) error during training with long sequences. All
experiments are conducted on a laptop. The definition of Error (%) is provided in Appendix A.6.

4 RELATED WORK

4.1 MODEL-BASED RL

The origin of model-based RL can be traced back to the Dyna architecture introduced by Sutton &
Barto (1998), although Dyna selects actions through planning rather than learning. Notably, Sutton
& Barto (1998) also highlighted the suboptimality that arises when the world model is flawed, espe-
cially as the environment improves. The concept of learning in ‘imagination’ was first proposed by
Ha & Schmidhuber (2018), where a world model predicts the dynamics of the environment. Later,
SimPLe (Kaiser et al., 2020) applied MBRL to Atari games, demonstrating improved sample effi-
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ciency compared to SOTA model-free algorithms. Beginning with Hafner et al. (2019), the Dreamer
series introduced a GRU-powered world model to solve a diverse range of tasks, such as MuJoCo,
Atari, Minecraft, and others (Hafner et al., 2020; 2021; 2023). More recently, inspired by the suc-
cess of transformers in NLP, many MBRL studies have adopted transformer architectures for their
sequence models. For instance, IRIS (Micheli et al., 2023) encodes game frames as sets of tokens
using VQ-VAE (Oord et al., 2017) and learns sequence dependencies with a transformer. In IRIS,
the behaviour policy operates on raw images, requiring an image reconstruction during the ‘imagi-
nation’ process and an additional CNN-LSTM structure to extract information. TWM (Robine et al.,
2023), another transformer-based world model, uses a different structure. It stacks grayscale frames
and does not activate the sequence model during actual interaction phases. However, its behaviour
policy only has access to limited frame history, raising questions about whether learning from to-
kens that already include this short-term information could be detrimental to the sequence model.
STORM (Zhang et al., 2023), closely following DreamerV3, replaces the GRU with a vanilla trans-
former. Additionally, it incorporates a demonstration technique, populating the buffer with expert
knowledge, which has shown to be particularly beneficial in the game Freeway.

4.2 STRUCTURE STATE SPACE MODEL BASED RL

Structured SSMs were originally introduced to tackle long-range dependency challenges, comple-
menting the transformer architecture (Gu et al., 2022a; Gupta et al., 2022). However, Mamba and
its successor, Mamba-2, have emerged as powerful alternatives, now competing directly with trans-
formers (Gu & Dao, 2024; Dao & Gu, 2024). Deng et al. (2023) implemented an SSM-based
world model, comparing it against RNN-based and transformer-based models across various pre-
diction tasks. Despite this, while SSMs have been applied to world model-based RL (e.g., Recall
to Imagine (R2I) (Samsami et al., 2024)), architectures like Mamba and Mamba-2 remain untested
in this framework. Mamba has recently been applied to offline RL, either with a standard Mamba
block (Lv et al., 2024) or a Mamba-attention hybrid model (Huang et al., 2024). Lu et al. (2023)
proposed applying modified SSMs to meta-RL, where hidden states are manually reset at episode
boundaries. Since both Mamba and Mamba-2 are input-dependent, such resets are unnecessary. No-
tably, R2I leverages advanced SSMs to enhance long-term memory and credit assignment in MBRL,
achieving SOTA performance in memory-intensive tasks, though it exhibits slightly weaker overall
performance compared to DreamerV3 (Samsami et al., 2024).

5 CONCLUSION

In conclusion, Drama, our proposed Mamba-based world model, addresses key challenges faced
by RNN- and transformer-based world models in model-based RL. By achieving O(n) memory and
computational complexity, our approach enables the use of longer training sequences. Furthermore,
our novel sampling method effectively mitigates suboptimality during the early stages of training,
contributing to a lightweight world model (only 7 million trainable parameters) that is accessible
and trainable on standard hardware. Overall, our method achieves a normalised score competitive
with other SOTA RL algorithms, offering a practical and efficient alternative for model-based RL
systems. Although Drama enables longer training and inference sequences, it does not demonstrate a
decisive advantage that would allow it to dominate other world models on the Atari100k benchmark.
An interesting direction for future work is to explore tasks where longer sequences drive superior
performance in model-based RL. Additionally, it would be valuable to investigate whether Mamba
can help address persistent challenges in model-based RL, such as long-horizon planning, behaviour
learning, and informed exploration.
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A APPENDIX

A.1 ATARI100K LEARNING CURVES

Figure 4: Atari100k Learning Curve. This figure compares the performance of DramaXS (10 million
parameters) and DreamerV3XS (12 million parameters) on the Atari100k benchmark. DramaXS
outperforms DreamerV3XS in most games. Exceptions include PrivateEye and Qbert , where
DreamerV3XS performs better.
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Game Random Human DramaXS DreamerV3XS
Alien 228 7128 820 553
Amidar 6 1720 131 79
Assault 222 742 539 489
Asterix 210 8503 1632 669
BankHeist 14 753 137 27
BattleZone 2360 37188 10860 5347
Boxing 0 12 78 60
Breakout 2 30 7 4
ChopperCommand 811 7388 1642 1032
CrazyClimber 10780 35829 83931 7466
DemonAttack 152 1971 201 64
Freeway 0 30 15 0
Frostbite 65 4335 785 144
Gopher 258 2412 2757 287
Hero 1027 30826 7946 3972
Jamesbond 29 303 372 142
Kangaroo 52 3035 1384 584
Krull 1598 2666 9693 2720
KungFuMaster 258 22736 23920 4282
MsPacman 307 6952 2270 1063
Pong -21 15 15 -10
PrivateEye 25 69571 90 207
Qbert 164 13455 796 983
RoadRunner 12 7845 14020 8556
Seaquest 68 42055 497 169
UpNDown 533 11693 7387 6511
Normalised Mean (%) 0 100 105 37
Normalised Median (%) 0 100 27 7

Table 3: Atari100K performance table. DramaXS achieves significantly better performance than
DreamerV3XS in compact model settings within model-based reinforcement learning, highlighting
the parameter efficiency of Mamba-based architectures.
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A.2 UNIFORM SAMPLING VS. DFS LEARNING CURVES

Figure 5: Uniform Sampling vs. DFS Learning Curve. DFS outperforms uniform sampling in
11 games (e.g., Asterix , BankHeist , Krull ), underperforms in 2 games (Breakout ,
KungFuMaster ), and matches performance in 13 games . The normalised mean score of DFS
(105% ) surpasses uniform sampling (80% ), while the normalised median is comparable (27% vs.
28% ). DFS demonstrates stronger performance in games requiring exploiting the opponents’ strat-
egy (e.g., Pong , Boxing ) but struggles in environments with early-stage dynamics (Breakout).
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Game Random Human DFS Uniform
Alien 228 7128 820 696
Amidar 6 1720 131 154
Assault 222 742 539 511
Asterix 210 8503 1632 1045
BankHeist 14 753 137 52
BattleZone 2360 37188 10860 10900
Boxing 0 12 78 49
Breakout 2 30 7 11
ChopperCommand 811 7388 1642 1083
CrazyClimber 10780 35829 83931 77140
DemonAttack 152 1971 201 151
Freeway 0 30 15 15
Frostbite 65 4335 785 975
Gopher 258 2412 2757 2289
Hero 1027 30826 7946 7564
Jamesbond 29 303 372 363
Kangaroo 52 3035 1384 620
Krull 1598 2666 9693 7553
KungFuMaster 258 22736 23920 24030
MsPacman 307 6952 2270 2508
Pong -21 15 15 3
PrivateEye 25 69571 90 76
Qbert 164 13455 796 939
RoadRunner 12 7845 14020 9328
Seaquest 68 42055 497 384
UpNDown 533 11693 7387 5756
Normalised Mean (%) 0 100 105 80
Normalised Median (%) 0 100 27 28

Table 4: The Atari100K performance table demonstrates that the Drama XS model, when paired
with DFS, achieves a higher normalised mean score compared to using the uniform sampling
method. This highlights the effectiveness of DFS in enhancing performance of Mamba-powered
MBRL.

A.3 MORE TRAINABLE PARAMETERS

As model-based RL agents consist of multiple trainable components, hyperparameters tuning for
each part can be computationally expensive and is not the primary focus of this research. Prior
work has demonstrated that increasing the neural network’s size often leads to stronger performance
on benchmarks (Hafner et al., 2023). In Figure 6, we demonstrate that Drama achieves overall
better performance when using a more robust autoencoder and a larger SSM hidden state dimen-
sion n. Notably, the S model exhibits significantly improved results in games like Breakout and
BankHeist, where pixel-level information plays a crucial role.
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Figure 6: S model vs. XS model. We adjusted the game set to emphasise the importance of recog-
nising small objects. The S model features a more robust autoencoder than the XS model, with
additional filters and 3M more trainable parameters. In terms of performance, the S model signifi-
cantly outperforms the XS model in Breakout and BankHeist. However, it underperforms in
Kangaroo and shows comparable performance in ChopperCommand.

A.4 LOSS AND HYPERPARAMETERS

A.4.1 VARIATIONAL AUTOENCODER

The hyperparameters shown in Table 5 correspond to the default model, also referred to as XS in
Figure 6. For the S model, we simply double the number of filters per layer to obtain a stronger
autoencoder.

Hyperparameter Value
Learning rate 4e-5
Frame shape (h, w, c) (64, 64, 3)
Layers 5
Filters per layer (Encoder) (16, 32, 48, 64, 64)
Stride (1, 2, 2, 2, 2)
Kernel 5
Weight decay 1e-4
Act SiLU
Norm Batch

Table 5: Hyperparameters for the autoencoder.

A.4.2 MAMBA AND MAMBA-2

Similar to the previous section, the values reported in Table 6 correspond to the default model. For
the S model, we double the latent state dimension, thereby enabling the recurrent state to retain more
task-relevant information. In the Mamba-2 model, the enhanced architecture accommodates a larger
latent state dimension without a substantial increase in training time.

A.4.3 REWARD AND TERMINATION PREDICTION HEADS

Both the reward and termination flag predictors take the deterministic state output from the sequence
model to make their predictions. Due to the expressiveness of the temporal information extracted by
the sequence model, a single fully connected layer is sufficient for accurate predictions.
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Hyperparameter Value
Learning rate 4e-5
Hidden state dimension (d) 512
Layers 2
Latent state dimension (n) 16
Act SiLU
Norm RMS
Weight decay 1e-4
Dropout 0.1
Mamba-2: Head dimension (p) 128

Table 6: Hyperparameters for Mamba and Mamba-2. Except the head dimension is only for Mamba-
2, the other hyperparameters are shared. The head number is 512/128 = 4.

Hyperparameter Value
Hidden units 256
Layers 1
Act SiLU
Norm RMS

Table 7: Hyperparameters for reward and termination prediction heads.

The world model is optimized in an end-to-end and self-supervised manner on batches of shape
(b, l) drawn from the experience replay.

L(ω) = E


l∑

i=1

(Oi − Ôi)
2︸ ︷︷ ︸

reconstruction loss

+Ldyn(ω) + 0.1 ∗ Lrep(ω)

− ln p(r̂i|di;ω)︸ ︷︷ ︸
reward prediction loss

− ln p(t̂i|di;ω)︸ ︷︷ ︸
termination prediction loss

 (6)

where

Ldyn(ω) = max (1,KL [sg(p(zi+1|Oi+1;ω)) ∥ q(ẑi+1|di;ω)])
Lrep(ω) = max (1,KL [p(zi+1|Oi+1;ω) ∥ sg(q(ẑi+1|di;ω))])

(7)

and sg(·) represents the stop gradient operation.

A.4.4 ACTOR CRITIC HYPERPARAMETERS

We adopt the behaviour policy learning setup from DreamerV3 (Hafner et al., 2023) for simplicity
and its demonstrated strong performance, since the behaviour policy model is not central to our
primary contribution.
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Hyperparameter Value
Layers 2
Gamma 0.985
Lambda 0.95
Entropy coefficient 3e-4
Max gradient norm 100
Actor hidden units 256
Critic hidden units 512
RMS Norm True
Act SiLU
Batch size (bimg) 1024
Imagine context length (limg) 8

Table 8: Hyperparameters for the behaviour policy.

A.5 PSEUDOCODE OF DRAMA

Algorithm 1 Training the world model and the behaviour policy

Require: Initialize behavior policy πθ, world model fω , and replay buffer E
1: Loop:
2: Phase 1: Data Collection
3: Collect experience tuple (Ot, at, rt, et) using πθ

4: Store (Ot, at, rt, et) into replay buffer E
5: Phase 2: World Model Training
6: Sample b trajectories of length l from E
7: Update world model fω using sampled trajectories
8: Phase 3: Behaviour Model Training
9: Sample bimg trajectories of length limg from E

10: Retrieve context from the first limg − 1 experiences from the world model fω
11: Generate imagined rollout for h steps using the last experience
12: Train behavior policy πθ with imagined rollout
13: Repeat

A.6 THE GRID WORLD ERROR CALCULATION

The Grid World environment task requires the sequence model to capture two types of sequences.
The first, referred to as the geometric sequence, involves reconstructing the spatial structure of the
map. The environment consists of a grid surrounded by black walls, with a single agent cell and goal
cell positioned, while all remaining cells are plain floor tiles. Formally, let the map M be defined
as a grid where M [i, j] represents the cell at position (i, j). The geometric sequence requires the
sequence model to encode the spatial relationships such that M [i, j] satisfies the constraints of walls
(W ), floor (F ), agent (A), and goal (G), with walls forming the boundary:

M [i, j] =


W, if (i = 0 or i = lg − 1) or (j = 0 or j = lg − 1),

F, if (i, j) /∈ {W,A,G},
A, if (i, j) = agent position,
G, if (i, j) = goal position.

The geometric error Eg measures violations of the grid’s structural constraints. It is defined as the
number of boundary cells incorrectly classified as non-wall (M [i, j] ̸= W when (i = 0 or i =
lg − 1) or (j = 0 or j = lg − 1) ). For interior cells, where 0 < i < lg − 1 and 0 < j < lg − 1,
there must be exactly one agent and one goal, with all remaining cells being floors.
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The second component, referred to as the logic sequence, requires predicting the agent’s next po-
sition At based on the prior action at−1. This prediction requires the model to retain information
about the prior action, reconstruct the geometric sequence, and infer the agent’s subsequent position
accordingly. The logic error, El, is defined as a prediction failure, which occurs if: (1) the predicted
frame contains invalid configurations (e.g., multiple agents in the interior), or (2) the predicted agent
position does not match the groudtruth position in the subsequent frame.

The Error (%) presented in Table 2 represents the average of Eg and El.
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A.7 EXPERIMENT ‘IMAGINATION’ FIGURES

In this section, we analyze reconstructed frames generated by the ‘imagination’ of the sequence
model to investigate potential causes of its poor performance in certain games, such as Breakout.

Figure 7: Drama XS model’s ‘imagination’ in Breakout. The model exhibits poor performance
in Breakout, as its autoregressive generation produces reconstructed frames that frequently omit
the ball—a key visual element. This systematic omission likely undermines its ability to execute
effective policies, contributing to suboptimal task performance.

The discrepancies in reconstructed frames (Figure 7, Figure 8) and the performance gains in Figure
6 collectively suggest that a more robust autoencoder enhances task performance in environments
where pixel-level information is critical. This observation is further supported by the Drama XS
model’s strong performance in Pong (Figure 9), a game sharing core mechanics with Breakout
(e.g., paddles and balls) but with reduced visual complexity due to the absence of multicolored
bricks. While systematic analysis is warranted to validate this hypothesis, these results indicate that
refining the autoencoder may serve as a critical first step in alleviating performance limitations in
visually demanding tasks.
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Figure 8: Drama S model’s ‘imagination’ in Breakout. The Drama S model exhibits significant
improvements over the XS variant, with the ball—a critical game element—consistently recon-
structed in the majority of autoregressive frames. This enhancement suggests a stronger capacity to
encode pixel-level details, aligning with its superior task performance.
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Figure 9: Drama XS model’s ‘imagination’ in Pong. The Drama XS model exhibits strong perfor-
mance in Pong, contrasting sharply with its suboptimal results in Breakout. While both games
share core mechanics (e.g., paddles and balls), Pong’s absence of multicolored bricks reduces vi-
sual complexity, thereby lowering demands on the model’s frame-encoding capacity. Consequently,
the ball—a critical element—is consistently reconstructed in the majority of autoregressive frames,
supporting effective policy execution.

A.8 WALL-CLOCK TIME COMPARISON OF SEQUENCE MODELS IN MBRL

As illustrated in Figure 10, we compare the wall-clock time efficiency of sequence models in the
Atari100k MBRL task. The results demonstrate that Mamba and Mamba-2 outperform the Trans-
former architecture during the imagination phase for all tested sequence lengths. While Mamba-2
exhibits a marginal computational overhead compared to Mamba and the Transformer for shorter
training sequences, it achieves superior efficiency for longer sequences, making it particularly ad-
vantageous for tasks demanding long-range temporal modelling. All models were evaluated under
identical experimental conditions, with comparable parameter sizes and training configurations.
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(a)

(b)

Figure 10: Wall-clock time comparison of sequence models in MBRL. Experiments were conducted
on a consumer-grade laptop with an NVIDIA RTX 2000 Ada Mobile GPU, ensuring practical rele-
vance to resource-constrained settings. Notably, the Transformer model leveraged a key-value (KV)
cache to optimise inference speed. Results demonstrate that Mamba-2 achieves superior efficiency
for longer sequences in both training and ‘imagination’ phases. However, it incurs a slight com-
putational overhead compared to the Transformer and Mamba during training at shorter sequence
lengths.
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