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Abstract

Maximum Inner Product Search (MIPS) is a ubiquitous task
in machine learning applications such as recommendation
systems. Given a query vector and n atom vectors in d-
dimensional space, the goal of MIPS is to find the atom that
has the highest inner product with the query vector. Existing
MIPS algorithms scale at least as O(

√
d), which becomes

computationally prohibitive in high-dimensional settings that
are prevalent in various real-world scenarios. In this work,
we present BanditMIPS, a novel randomized MIPS algorithm
whose complexity is independent of d. BanditMIPS estimates
the inner product for each atom by adaptively subsampling
coordinates for more promising atoms, a strategy motivated
by multi-armed bandits. We provide theoretical guarantees
that BanditMIPS returns the correct answer with high prob-
ability, while improving the complexity in d from O(

√
d) to

O(1). We also perform experiments on four synthetic and
real-world datasets and demonstrate that BanditMIPS outper-
forms prior state-of-the-art algorithms. For example, in the
Movie Lens dataset (n=4,000, d=6,000), BanditMIPS is 20×
faster than the next best algorithm while returning the same
answer. BanditMIPS requires no preprocessing of the data
and includes a hyperparameter that practitioners may use to
trade off accuracy and runtime. We also propose a variant of
our algorithm, named BanditMIPS-α, which achieves further
speedups by employing non-uniform sampling across coordi-
nates, and demonstrate how known preprocessing techniques
can be used to further accelerate BanditMIPS. Finally, we
illustrate the potential of BanditMIPS as a versatile subrou-
tine, enabling any machine learning algorithms that employ
MIPS (e.g. Matching Pursuit, Hierarchical Navigable Small
Worlds, and a classification layer in a large language model)
to harness rich high-dimensional datasets without the need for
dimensionality reduction.

1 Introduction
The Maximum Inner Product Search problem (MIPS) (Shri-
vastava and Li 2014a; Neyshabur and Srebro 2015; Yu et al.
2017) is a ubiquitous task that arises in many machine learn-
ing applications, such as matrix-factorization-based recom-
mendation systems (Koren, Bell, and Volinsky 2009; Cre-
monesi, Koren, and Turrin 2010), multi-class prediction
(Dean et al. 2013; Jain and Kapoor 2009), structural SVM
(Joachims 2006; Joachims, Finley, and Yu 2009), and com-
puter vision (Dean et al. 2013). Given a query vector q ∈ Rd

and n atom vectors v1, . . . ,vn ∈ Rd, MIPS aims to find the
atom most similar to the query:

i∗ = argmax
i∈{1,··· ,n}

vT
i q (1)

For example, in recommendation systems, the query q may
represent a user and the atoms vi’s represent items with
which the user can interact; MIPS finds the best item for the
user, as modeled by their concordance vT

i q (Amagata and
Hara 2021; Aouali et al. 2022). In many applications, the
number of atoms n and the feature dimension d can easily be
in the millions, so it is critical to solve MIPS accurately and
efficiently (Hirata et al. 2022).

The naïve approach evaluates all nd elements and scales
as O(nd). Prior methodologies have aimed to reduce scaling
with n by reconstructing the underlying data structure which
requires heavy preprocessing, especially on datasets with
large d (Morozov and Babenko 2018a; Liu et al. 2020). To
avoid this overhead, more recent works such as (Lorenzen
and Pham 2021) and (Liu, Wu, and Mozafari 2019) advocate
for sampling-based approaches. However, the complexity
remains at best O(

√
d), which is not ideal, considering the

prevalence of high dimensional datasets in domains such
as e-commerce, genomics, and finance. Current practices
attempt to address this issue with dimensionality reduction
techniques, but this induces information loss (particularly in
higher dimensions) and tends to scale with O(d)(Li and Wan
2020).

To this end, we propose BanditMIPS, a state-of-the-art ran-
domized algorithm that solves MIPS problems on the fly. We
demonstrate BanditMIPS ’s dimensionality-independent com-
plexity and provide a tunable hyperparameter that governs
the tradeoff between accuracy and speed, a need identified by
previous works (Yu et al. 2017). We also provide theoretical
guarantees that BanditMIPS recovers the exact solution to
Equation (1) with high probability in Õ( n

∆2 )
* time, where

∆ is an instance-specific factor that does not depend on d.
We have also performed comprehensive experiments to eval-
uate our algorithm’s performance in two synthetic and two
real-world datasets. For example, in the Movie Lens dataset
(n = 4, 000, d = 6, 000) (Harper and Konstan 2015), Bandit-
MIPS is 20× faster than prior state-of-the-art while returning
the same answer.

*The Õ notation hides logarithmic factors.



At a high-level, instead of computing the inner product
vT
i q for each atom i using all d coordinates, BanditMIPS

estimates them by subsampling a subset of coordinates. Since
more samples give higher estimation accuracy, BanditMIPS
adaptively samples more coordinates for top atoms to discern
the best atom. The specific adaptive sampling procedure is
motivated by multi-armed bandits (MAB) (Even-Dar, Man-
nor, and Mansour 2006).

BanditMIPS is easily parallelizable and can be used with
other optimization objectives that decompose coordinate-
wise. Unlike previous works, it does not require preprocess-
ing, dimensionality reduction, or normalization of the data,
nor does it require the query or atoms to be nonnegative (Yu
et al. 2017). This versatility allows BanditMIPS to work as
a flexible subroutine for various machine learning tasks and
also lends itself to specific extensions as shown below. In
summary, our work offers the following contributions:
• Novel Algorithm: BanditMIPS . We introduce Bandit-

MIPS , a new state-of-the-art algorithm for MIPS in high-
dimensional settings. Achieving O(1) sample complexity
with respect to dimensionality eliminates the need for
preprocessing and dimensionality reduction techniques,
empowering rich high-dimensional data processing.

• Three Algorithmic Extensions. First, we propose
BanditMIPS-α, which provides additional runtime
speedups by sampling coordinates intelligently (Section
3). Second, we extend BanditMIPS to find the k atoms
with the highest inner products with the query (k-MIPS)
in our experiments (Section 5). Third, we discuss how
BanditMIPS can be used in conjunction with preprocess-
ing techniques leading to complexity reductions in both
the number n and dimension d of the dataset (Appendix
5).

• Versatile Integration. We accelerate machine learning
applications such as Orthogonal Matching Pursuit and
a classification layer of a large language model using
BanditMIPS as a black-box subroutine (Appendix 10).

• Empirical Superiority. We demonstrate that BanditMIPS
outperforms rivals, achieving up to 30× efficiency over
the next best algorithm due to reduced sample usage in
real datasets.

Related work
MIPS applications: MIPS arises naturally in many informa-
tion retrieval contexts (Sivic and Zisserman 2003; Dong et al.
2012; Boytsov et al. 2016) and for augmenting large, auto-
regressive language models (Borgeaud et al. 2022). MIPS is
also a subroutine in the Matching Pursuit problem (MP) and
its variants, such as Orthogonal Matching Pursuit (OMP) (Lo-
catello et al. 2017). MP and other iterative MIPS algorithms
have found many applications, e.g., to find a sparse solu-
tion of underdetermined systems of equations (Donoho et al.
2012) and accelerate conditional gradient methods (Song
et al. 2022; Xu, Song, and Shrivastava 2021). MIPS also
arises in the inference stages of many other applications,
such as for deep-learning based multi-class or multi-label
classifiers (Dean et al. 2013; Jain and Kapoor 2009) and has
been used as a black-box subroutine to improve the learning

and inference in unnormalized log-linear models when com-
puting the partition function is intractable (Mussmann and
Ermon 2016).

MIPS algorithms: Many approaches focus on solving ap-
proximate versions of MIPS. Such work often assumes that
the vector entries are nonnegative, performs non-adaptive
sampling (Lu, Hu, and Zeng 2017; Ballard et al. 2015; Loren-
zen and Pham 2021; Ding, Yu, and Hsieh 2019; Yu et al.
2017), or rely on product quantization (Dai et al. 2020; Wu
et al. 2019; Guo et al. 2020, 2019; Matsui et al. 2018; Douze,
Jégou, and Perronnin 2016; Ge et al. 2013; Babenko and Lem-
pitsky 2012; Jégou et al. 2011; Jégou, Douze, and Schmid
2011). Many of these algorithms require significant prepro-
cessing, are limited in their adaptivity to the underlying data
distribution, provide no theoretical guarantees, or scale lin-
early in d—all drawbacks that have been identified as bot-
tlenecks for MIPS in high dimensions (Ponomarenko et al.
2014).

A large family of MIPS algorithms are based on locality-
sensitive hashing (LSH) (Indyk and Motwani 1998; Shrivas-
tava and Li 2014a, 2015; Neyshabur and Srebro 2015; Huang
et al. 2015; Song et al. 2021; Lu and Kudo 2021; Shrivastava
and Li 2014b; Wu et al. 2022; Huang et al. 2018; Ma et al.
2021; Andoni et al. 2015; Yan et al. 2018). A shortcoming
of these LSH-based approaches is that, in high dimensions,
the maximum dot product is often small compared to the
vector norms, which necessitates many hashes and signif-
icant storage space (often orders of magnitude more than
the data itself). Many other MIPS approaches are based on
proximity graphs, such as ip-NSW (Morozov and Babenko
2018a) and related work (Liu et al. 2020; Feng et al. 2023;
Tan et al. 2019, 2021; Zhou et al. 2019; Chen et al. 2022;
Zhang, Wang, and He 2022; Alexander et al. 2011; Malkov
and Yashunin 2016; Malkov et al. 2014). These approaches
use preprocessing to build an index data structure that allows
for more efficient MIPS solutions at query time. However,
these approaches also do not scale well to high dimensions as
the index structure (an approximation to the true proximity
graph) is subject to the curse of dimensionality (Liu et al.
2020).

Perhaps most similar to our work is BoundedME which
solves the MIPS problem based on an adaptive sampling ap-
proach (Liu, Wu, and Mozafari 2019). However, this method
scales as O(n

√
d) which is objectively inferior to Bandit-

MIPS ’s independence with dimension d. The worse scaling
comes from predetermining the number of times each atom
is sampled by d and not adapting to the actual values of
the sampled inner products as done in BanditMIPS; rather,
BoundedME is only adaptive to the relative ranking of the
inner products. Intuitively, this approach is wasteful because
information contained in the sampled inner product’s val-
ues is discarded. Additional related work is discussed in
Appendix 7.

Multi-armed bandits: BanditMIPS is motivated by the
best-arm identification problem in multi-armed bandits (Even-
Dar, Mannor, and Mansour 2006; Karnin, Koren, and Somekh
2013; Audibert, Bubeck, and Munos 2010; Jamieson and
Nowak 2014; Jamieson et al. 2014; Jamieson and Talwalkar
2016; Bubeck, Munos, and Stoltz 2011; Bardenet and Mail-



lard 2015; Boucheron, Lugosi, and Massart 2013; Even-Dar,
Mannor, and Mansour 2002; Kalyanakrishnan et al. 2012).
In a typical setting, we have n arms each associated with
an expected reward µi. At each time step t = 0, 1, · · · , we
decide to pull an arm At ∈ {1, · · · , n}, and receive a re-
ward Xt with E[Xt] = µAt

. The goal is to identify the arm
with the largest reward with high probability while using the
fewest number of arm pulls. The use of MAB-based adaptive
sampling to develop computationally efficient algorithms has
seen many applications, such as random forests and k-medoid
clustering (Tiwari et al. 2020; Bagaria et al. 2018; Bagaria,
Kamath, and Tse 2018; Zhang, Zou, and Tse 2019a; Bagaria
et al. 2021).

2 Preliminaries and Notation
We consider a query q ∈ Rd and n atoms v1, . . . ,vn ∈
Rd. Let [n] denote {1, . . . , n}, qj the jth element of q, and
vij the jth element of vi. For a given query q ∈ Rd, the
MIPS problem is to find the solution to Equation (1): i∗ =
argmaxi∈[n] v

T
i q.

We let µi :=
vi

Tq
d denote the normalized inner product

for atom vi. Since the inner products vi
Tq tend to scale

linearly with d (e.g., if each coordinate of the atoms and
query are drawn i.i.d.), each µi should not scale with d. Note
that argmaxi∈[n] v

T
i q = argmaxi∈[n] µi so it is sufficient

to find the atom with the highest µi. Furthermore, for i ̸= i∗

we define the gap of atom i as ∆i := µi∗ − µi ≥ 0 and the
minimum gap as ∆ := mini ̸=i∗ ∆i. We primarily focus on
the computational complexity of MIPS with respect to d.

3 Algorithm

Algorithm 1 BanditMIPS
Input: Atoms v1, . . . ,vn ∈ Rd, query q ∈ Rd, error
probability δ, sub-Gaussian parameter σ Output: i∗ =
argmaxi∈[n] q

Tvi

1: Ssolution ← [n]
2: dused ← 0
3: For all i ∈ Ssolution, initialize µ̂i ← 0, Cdused ←∞
4: while dused < d and |Ssolution| > 1 do
5: Sample a new coordinate J ∼ Unif[d]
6: for all i ∈ Ssolution do
7: µ̂i ← dusedµ̂i+viJqJ

dused+1

8:
(
1− δ

2nd2
used

)
-CI: Cdused ← σ

√
2 log(4nd2

used/δ)
dused+1

9: Ssolution ← {i : µ̂i + Cdused ≥ maxi′ µ̂i′ − Cdused}
10: dused ← dused + 1

11: If |Ssolution| > 1, update µ̂i to be the exact value µi =
vT
i q for each atom in Ssolution using all d coordinates

12: return i∗ = argmaxi∈Ssolution
µ̂i

The BanditMIPS algorithm is described in Algorithm 1
and is motivated by best-arm identification algorithms. As
summarized in Table 1, we can view each atom vi as an
arm with the arm parameter µi :=

vT
i q
d . When pulling an

arm i, we randomly sample a coordinate J ∼ Unif[d] and
evaluate the inner product at the coordinate as Xi = qJviJ .
Using this reformulation, the best atom can be estimated
using techniques from best-arm algorithms.

BanditMIPS can be viewed as a combination of UCB and
successive elimination (Lai and Robbins 1985; Even-Dar,
Mannor, and Mansour 2006; Zhang, Zou, and Tse 2019b).
Algorithm 1 uses the set Ssolution to track all potential solu-
tions to Equation (1); Ssolution is initialized as the set of all
atoms [n]. We will assume that, for a fixed atom i and a ran-
domly sampled coordinate, the random variable Xi = qJviJ
is σ-sub-Gaussian for some known parameter σ. With this
assumption, Algorithm 1 maintains a mean objective estimate
µ̂i and confidence interval (CI) for each potential solution
i ∈ Ssolution, where the CI depends on the error probabil-
ity δ as well as the sub-Gaussian parameter σ. We discuss
the sub-Gaussian parameter and possible relaxations of this
assumption in Subsections 3 and 4.

Additional speedup techniques
Non-uniform sampling reduces variance: In the original
version of BanditMIPS, we sample a coordinate J for all
atoms in Ssolution uniformly from the set of all coordinates [d].
However, some coordinates may be more informative of the
inner product than others. For example, larger entries of vi

may contribute more to the inner product with q. As such, we
sample each coordinate j ∈ [d] with probability wj ∝ q2βj
and

∑
j wj = 1, and estimate the arm parameter µi of atom

i as X = 1
wJ

qJviJ . X is an unbiased estimator of µi and the
specific choice of coordinate sampling weights minimizes the
combined variance of X across all atoms; different values of
β corresponds to the minimizer under different assumptions.
We provide theoretical justification of this weighting scheme
in Section 4. We note that the effect of this non-uniform
sampling will only accelerate the algorithm.

Warm start increases speed: One may wish to perform
MIPS for a batch of m queries instead of just a single query,
solving m separate MIPS problems. In this case, we can
cache the atom values for all atoms across a random subset of
coordinates, and provide a warm start to BanditMIPS by us-
ing these cached values to update arm parameter estimates µ̂i,
Ci, and Ssolution for all m MIPS problems. Such a procedure
will eliminate the obviously less promising atoms and avoid
repeated sampling for each of the m MIPS problems and
increases computational efficiency. We note that, since the m
MIPS problems are independent, the theoretical guarantees
described in Section 4 still hold across all m MIPS problems
simultaneously.

Sub-Gaussian assumption and construction of
confidence intervals
Crucial to the accuracy of Algorithm 1 is the construction of
the (1− δ)-CI based on the σ-sub-Gaussianity of each Xi =
qJviJ . We note that the requirement for σ-sub-Gaussianity
is rather general. In particular, when the coordinate-wise
products between the atoms and query are bounded in [a, b],
then each Xi is b2−a2

4 -sub-Gaussian. This is commonly the
case, e.g., in recommendation systems where user ratings



Table 1: MIPS as a best-arm identification problem.

Terminology Best-arm identification MIPS

Arms i = 1, . . . , n Atoms v1, . . . ,vn

Arm parameter µi Expected reward E[Xi] Average coordinate-wise product viTq
d

Pulling arm i Sample a reward Xi Sample a coordinate J with reward qJviJ
Goal Identify best arm with probability at least 1− δ Identify best atom with probability at least 1−δ

(each element of the query and atoms) are integers between 0
and 5, and we use this implied value of σ in our experiments
in Section 5.

The b2−a2

4 -sub-Gaussianity assumption allows us to com-
pute 1− δ CIs via Hoeffding’s inequality, which states that
for any random variable Sn = Y1 + Y2 + . . . Yn where each
Yi ∈ [a, b]

P (|Sn − E[Sn]| > ϵ) ≤ exp
(
−2ϵ2

n(b− a)2

)
.

Setting δ equal to the right hand side and solving for ϵ gives
the width of the confidence interval. σ = b2−a2

4 acts as a
variance proxy used in the creation of the confidence intervals
by BanditMIPS; smaller variance proxies should result in
tighter confidence intervals and lower sample complexities
and runtimes.

In other settings where the sub-Gaussianity parameter may
not be known a priori, it can be estimated from the data
or the CIs can be constructed using the empirical Bernstein
inequality instead (Maurer and Pontil 2009).

4 Theoretical Analysis
Analysis of the Algorithm: For Theorem 1, we assume
that, for a fixed atom vi and dused randomly sampled coordi-
nates, the (1− δ′) confidence interval scales as Cdused(δ

′) =

O

(√
log 1/δ′

dused

)
(note that we use dused and δ′ here because

we have already used d and δ). We note that the sub-Gaussian
CIs satisfy this property, as described in Section 3.

Theorem 1. Assume ∃ c0 > 0 s.t. ∀ δ′ > 0, dused > 0,

Cdused(δ
′) < c0

√
log 1/δ′

dused
. With probability at least 1 − δ,

BanditMIPS returns the correct solution to Equation (1) and
uses a total of M computations, where

M ≤
∑

i∈[n],i̸=i∗

min

[
16c20
∆2

i

log

(
n

δ∆i

)
+ 1, 2d

]
. (2)

Theorem 1 is proven in the appendices. We note that c0
is the sub-Gaussianity parameter described in Section 3 and
is a constant. Intuitively, Theorem 1 states that with high
probability, BanditMIPS returns the atom with the highest
inner product with q. The instance-wise bound Equation
(2) suggests the computational cost of a given atom vi, i.e.,
min

[
16c20
∆2

i
log

(
n

δ∆i

)
+ 1, 2d

]
, depends on ∆i, which mea-

sures how close its optimization parameter µi is to µi∗ . Most

reasonably different atoms i ̸= i∗ will have a large ∆i and
incur an O

(
1
∆2 log

n
δ∆i

)
computation that is independent of

d when d is sufficiently large.
Important to Theorem 1 is the assumption that we can

construct (1−δ′) CIs Ci(dused, δ
′) that scale as O(

√
log 1/δ′

dused
).

As discussed in Section 3, this is under general assumptions,
for example when the estimator Xi = qJviJ for each arm
parameter µi has finite first and second moments (Catoni
2012) or is bounded.

Since each coordinate-wise multiplication only incurs
O(1) computational overhead to update running means and
confidence intervals, sample complexity bounds translate di-
rectly to wall-clock times bounds up to constant factors. For
this reason, our approach of focuses on sample complexity
bounds, in line with prior work (Tiwari et al. 2020; Bagaria,
Kamath, and Tse 2018).

Discussion of the hyperparameter δ: The hyperparam-
eter δ allows users to trade off accuracy and runtime when
calling Algorithm 1. A smaller value of δ corresponds to
a lower error probability, but will lead to longer runtimes
because the confidence intervals constructed by Algorithm 1
will be wider and atoms will be filtered more slowly. Theo-
rem 1 provides an analysis of the effect of δ and in Section 5,
we discuss appropriate ways to tune it. We note that setting
δ = 0 reduces Algorithm 1 to the naïve algorithm for MIPS.
In particular, Algorithm 1 is never worse in big-O sample
complexity than the naïve algorithm.

Discussion of the importance of ∆: In general, Bandit-
MIPS takes only O

(
1
∆2 log

n
δ∆

)
computations per atom if

there is reasonable heterogeneity among them. As proven in
Appendix 2 in (Bagaria et al. 2018), this is the case under
a wide range of distributional assumptions on the µi’s, e.g.,
when the µi’s follow a sub-Gaussian distribution across the
atoms. These assumptions ensure that BanditMIPS has an
overall complexity of O

(
n
∆2 log

n
δ∆

)
that is independent of

d when d is sufficiently large and ∆ does not depend on d.
At first glance, the assumption that each ∆i (and therefore

∆) does not depend on d may seem restrictive. However, such
an assumption actually applies under a reasonable number
of data-generating models. For example, if the atoms’ coor-
dinates are drawn from a latent variable model, i.e., the µi’s
are fixed in advance and the atoms’ coordinates correspond
to instantiations of a random variable with mean µi, then
∆i will be independent of d. As a concrete example, two
users’ 0/1 ratings of movies may agree on 60% of movies
and their atoms’ coordinates correspond to observations of a



Bernoulli random variable with parameter 0.6. Other recent
works provide further discussion on the conversion between
an instance-wise bound like Equation (2) and an instance-
independent bound that is independent of d (Bagaria et al.
2018; Baharav and Tse 2019; Tiwari et al. 2020; Bagaria et al.
2021; Baharav et al. 2022).

However, we note that in the worst case BanditMIPS
may take O(d) computations per atom when most atoms
are equally good, for example in datasets where the atoms
are symmetrically distributed around q. For example, if each
atom’s coordinates are drawn i.i.d. from the same distribution,
then the gaps ∆i will scale inversely with d; to address this
concern, we demonstrate how our algorithm maintains O(1)
scaling with respect to d in practice in Appendix 11.

Optimal weights for non-uniform sampling: Let J ∼
Pw be a random variable following the categorical distribu-
tion Pw, where P(J = j) = wj ≥ 0 and

∑
j∈[d] wj = 1.

The arm parameter µi of an atom i can be estimated by the un-
biased estimator XiJ = 1

dwJ
viJqJ . (Note that d is fixed and

known in advance). To see that XiJ is unbiased, we observe
that EJ∼Pw [XiJ ] =

∑
j∈[d] wj

1
dwj

vijqj =
∑

j∈[d]
vijqj
d =

µi.
We are interested in finding the best weights w∗, i.e., those

that minimize the combined variance

argmin
w1,...,wd≥0

∑
i∈[n]

VarJ∼Pw [XiJ ], s.t.
∑
j∈[d]

wj = 1. (3)

Theorem 2. The solution to Problem (3) is

w∗
j =

√
q2j

∑
i∈[n] v

2
ij∑

j∈[d]

√
q2j

∑
i∈[n] v

2
ij

, for j = 1, . . . , d. (4)

The proof of Theorem 2 is provided in Appendix 8.
Remark: In practice, computing the atom variance∑
i∈[n] v

2
ij requires O(nd) operations and can be com-

putationally prohibitive. However, we may approximate∑
i∈[n] v

2
ij based on domain-specific assumptions. Specifi-

cally, if we assume that for each coordinate j, qj has a similar
magnitude as vij’s, we can approximate 1

n

∑
i∈[n] v

2
ij ≈ q2j

and set w∗
j =

q2j∑
j∈[d] q

2
j

. In the non-uniform sampling ver-
sions of BanditMIPS, we use an additional hyperparameter
β and let w∗

j ∝ q2βj . β can be thought of as a temperature
parameter which governs how uniformly (or not) we sample
the coordinates based on the query vector’s values. We note
that β = 1 corresponds Equation (4).

The version we call BanditMIPS-α corresponds to taking
the limit β → ∞. In this case, we sort the query vector
explicitly and sample coordinates in order of the sorted query
vector; the sub-Gaussianity parameter used in BanditMIPS-α
is then the same as that in the original problem with uniform
sampling. While the sort incurs O(dlogd) cost, we find this
still improves the overall sample complexity of the algorithm
relative to the closest baseline when O(dlogd+ n) is better
than O(n

√
d), as is often the case in practice.

(a) (b)

(c) (d)

Figure 1: Sample complexity of BanditMIPS for different
values of d on all four datasets. 95% CIs are provided around
the mean and are computed from 10 random trials. The sam-
ple complexity of BanditMIPS does not scale with d. Note
that the values of R2, the coefficient of determination, are
similar for linear, logarithmic, and square root fits, which
suggests the scaling is actually constant.

5 Experiments
We empirically evaluate the performance of BanditMIPS
and the non-uniform sampling version BanditMIPS-α
on four synthetic and real-world datasets, comparing
them to 8 state-of-art MIPS algorithms. We consid-
ered the two synthetic datasets, NORMAL_CUSTOM and
CORRELATED_NORMAL_CUSTOM, to assess the perfor-
mance across a wide parameter range. We further consid-
ered the two real-world datasets, the Netflix Prize dataset
(n = 6, 000, d = 400, 000) (Bennett, Lanning, and Netflix
2007) and the Movie Lens dataset (n = 4, 000, d = 6, 000)
(Harper and Konstan 2015), to provide additional evalua-
tions. We compared our algorithms to 8 baseline MIPS algo-
rithms: LSH-MIPS (Shrivastava and Li 2014a), H2-ALSH-
MIPS (Huang et al. 2018), NEQ-MIPS (Dai et al. 2020),
PCA-MIPS (Bachrach et al. 2014), BoundedME (Liu, Wu,
and Mozafari 2019), Greedy-MIPS (Yu et al. 2017), HNSW-
MIPS (Malkov and Yashunin 2016; Morozov and Babenko
2018b). and NAPG-MIPS (Tan et al. 2021). Throughout the
experiments, we focus on the sample complexity, defined
as the number of coordinate-wise multiplications performed.
Appendix 9 provides additional details on our experimental
settings.

Scaling with dimension d: We first assess the scaling with
d for BanditMIPS on the four datasets. We subsampled fea-
tures from the full datasets, evaluating d up to 1, 000, 000 on
simulated data and up to 400, 000 on real-world data. Results
are reported in Figure 1. In all trials, BanditMIPS returns the



correct answer to MIPS. We determined that BanditMIPS did
not scale with d in all experiments, validating our theoretical
results on the sample complexity.

Comparison of sample complexity: We next compare the
sample complexity of BanditMIPS and BanditMIPS-α to 8
state-of-art MIPS algorithms on the four datasets across dif-
ferent values of d. We only used a subset of up to 20K features
because some of the baseline algorithms were prohibitively
slow for larger values of d. Results are reported in Figure
2. We omit GREEDY-MIPS from Figure 2 because its sam-
ple complexity was significantly worse than all algorithms,
and omit HNSW-MIPS as its performance was strictly worse
than NAPG-MIPS (a related baseline). In measuring sam-
ple complexity, we measure query-time sample complexity,
meaning we neglect the cost of preprocessing for the baseline
algorithms which is favorable to the baselines. Nonetheless,
our two algorithms substantially outperformed other algo-
rithms on all four datasets, demonstrating their superiority in
sample efficiency. For example, on the Movie Lens dataset,
BanditMIPS and BanditMIPS-α are 20× and 27× faster
than the closest baseline (NEQ-MIPS). In addition, the non-
uniform sampling version BanditMIPS-α outperformed the
default version BanditMIPS in 3 out 4 datasets, suggesting
the weighted sampling technique further improves sample
efficiency. BanditMIPS-α demonstrated slightly worse per-
formance than BanditMIPS on the Netflix dataset, possibly
because the highest-value coordinates for the randomly sam-
pled query vectors had low dot products with the atoms.

(a) (b)

(c) (d)

Figure 2: Comparison of sample complexity between Ban-
ditMIPS, BanditMIPS-α, and other baseline algorithms for
different values of d across all four datasets. The y-axis is on
a logarithmic scale. 95% CIs are provided around the mean
and are computed from 10 random trials. BanditMIPS and
BanditMIPS-α outperformed other baselines. For example,
BanditMIPS achieves sample efficiency that surpasses the
next best algorithm by up to ×30 in the Movie Lens dataset.

Algorithms Speedup
Naïve algorithm 1.00x

BoundedMe 0.41x
BanditMIPS 14.19x

BanditMIPS-α 9.93x

Table 2: Wall Clock Time Comparison on MNIST dataset.
Experimental settings are as follows: ϵ=0.1, δ=0.1, number
of atoms=1000, and signal vector size=6000.

Algorithms Speedup
Naïve algorithm 1.00x

BoundedMe 0.36x
BanditMIPS 53.02x

BanditMIPS-α 25.97x

Table 3: Wall Clock Time Comparison on Movie Lens dataset.
Experimental settings are as follows: ϵ=0.1, δ=0.1, number
of atoms=1000, and signal vector size=100000.

Algorithms Speedup
Naïve algorithm 1.00x

BoundedMe 1.02x
BanditMIPS 4.00x

BanditMIPS-α 6.02x

Table 4: Wall Clock Time Comparison on OPT-6.7B head
dataset. OPT-6.7B head dataset refers to the MIPS task using
the LM Head of the OPT-6.7B model as atoms and the final
hidden vectors from randomly generated sentences as queries.
Experimental settings are as follows: ϵ=1.0, δ=0.9, number
of atoms=10000, and signal vector size=4096.

Wallclock speedup and scaling: We note that the sam-
ple complexity of BanditMIPS may not reliably predict its
speedup for the MIPS problem, considering the highly opti-
mized vector-vector dot product techniques. Thus, we offer
wall-clock time comparisons as a complementary analysis,
demonstrating that even with modest optimizations in Python,
BanditMIPS significantly outperforms the next best algo-
rithm (BoundedME). As shown in Table 2 and Table 3,
BanditMIPS surpasses BoundedME by a large margin for the
MNIST and Movie Lens dataset. We also employed Bandit-
MIPS on the classification layer of OPT-6.7B where MIPS
serves to efficiently determine the next token to generate.
Table 4 demonstrates this impressive speedup achieved by
BanditMIPS for dimension size 4096. All sampling-based
algorithms successfully return an ϵ-suboptimal atom with
1− δ probability for the given ϵ and δ. Additionally, figure
3 demonstrates that BanditMIPS exhibits O(1) scaling with
respect to dimensionality (d) in terms of wall-clock time on
the Netflix and Movie Lens dataset.

Trade-off between speed and accuracy: We evaluate
the trade-off between speed and accuracy by varying the
error probability δ in our algorithm and the correspond-
ing hyper-parameters in the baseline algorithms (see Ap-
pendix 9 for more details). As in (Liu, Wu, and Moza-
fari 2019), we define the speedup of an algorithm to be:
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Figure 3: Wallclock time scaling of BanditMIPS for the Net-
flix dataset and OPT3-6.7b LM Head (with OPT3-6.7b model
as atoms and final hidden vectors from randomly generated
sentences as queries). The runtime of BanditMIPS is constant
in d, as is expected. Means were calculated from 10 random
seeds. For the Netflix dataset we have ϵ = 0.1, δ = 0.1, and
1000 atoms. For the LM Head, settings are ϵ = 1.0, δ = 0.9,
and 1000 atoms.

speedup = sample complexity of naïve algorithm
sample complexity of compared algorithm . The accuracy is

defined as the proportion of times each algorithm returns the
true MIPS solution. The tradeoff results for Normal Custom,
Correlated Normal Custom, Netflix, and Movie Lens datasets
are reported in Figure 4. Our algorithms achieved the best
tradeoff on all four datasets, again demonstrating the superi-
ority of our algorithms in efficiently and accurately solving
the MIPS problem. Note that this figure also includes the k-
MIPS setting where the goal is to find the top k atoms. In our
particular case, k = 5. Even in this setting, our algorithms
obtained a similar improvement over other baselines.

Real-world high-dimensional datasets: We also verify
the O(1) scaling with d on two real-world, high-dimensional
datasets: the Sift-1M (Jégou, Douze, and Schmid 2011)
and CryptoPairs datasets (Carsten 2022). The Sift-1M

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Trade-off between accuracy and speed for various
algorithms across all four datasets. The x-axis represents the
speedup relative to the naive O(nd) algorithm and the y-axis
shows the proportion of times an algorithm returned correct
answer; higher is better. Each dot represents the mean across
10 random trials and the CIs are omitted for clarity. Our
algorithms consistently achieve better accuracies at higher
speedup values than the baselines. (a) through (d) is preci-
sion at k = 1 (i.e. the best arm) whereas (e) through (h) is
precision at k = 5.

dataset consists of scale-invariant feature transform (Lowe
1999) features of 128 different images; each image is an
atom with 1 million dimensions. The CryptoPairs dataset
consists of the historical trading data of more than 400 trading
pairs at 1 minute resolution reaching back until the year 2013.
On these datasets, BanditMIPS appears to scale as O(1) with
d even to a million dimensions (Figure 6). This suggests
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Figure 5: Sample complexity of BanditMIPS versus d for
the Sift-1M and CryptoPairs datasets. BanditMIPS
scales as O(1) with respect to d for both datasets. Means
and uncertainties were obtained by averaging over 5 random
seeds. BanditMIPS returns the correct solution to MIPS in
each trial.

that the necessary assumptions outlined in Sections 3 and 4
are satisfied on these real-world, high-dimensional datasets.
Note that the high dimensionality of these datasets makes
them prohibitively expensive to run scaling experiments as
in Section 5 or the tradeoff experiments as in Section 5 for
baseline algorithms.

Preprocessing with BanditMIPS: BanditMIPS obviates
any preprocessing in the dimension d as shown in our exper-
iments above. An added benefit is that our algorithm also
works in conjunction with preprocessing methods that re-
duce the scaling with respect to the number of atoms n.
To show this compatibility, we implemented Bucket_AE
which combines BanditMIPS with a normalized binning tech-
nique. More precisely, we estimate the norm of each atom
with a constant number of samples to which we sort them

(a)

(b)

Figure 6: Sample complexity of Bucket_AE for both n and
d on the Netflix dataset averaged over 5 random seeds.
This demonstrates that BanditMIPS’s constant scaling in
dimension d is independent of optimizations deployed in
the n-dimension, opening the door for many extensions of
BanditMIPS with existing techniques.

into bins of b atoms in decreasing order (b is a hyperparam-
eter). When running BanditMIPS, we make comparisons
between only the best atoms in each bin and eliminate an
entire bin if the maximum potential of that bin’s best atom
is less than the current largest sampled inner product across
all bins. Intuitively, this allows us to filter atoms with small
estimated norm more quickly. Indeed, figure 6b demonstrates
that Bucket_AE reduces the scaling with n while maintain-
ing O(1) scaling with d on the real-world Netflix dataset.
Furthermore, we observed that Bucket_AE returns the cor-
rect solution to BanditMIPS for all trials.

Robustness to ϵ-corruption: We end the experiments
section with a discussion on BanditMIPS ’s robustness to ϵ-
corruption. Most works in the MIPS literature do not analyze
the case that the data is corrupted by noise and provide no
guarantees about robustness in this setting. However, Ban-
ditMIPS is actually robust to ϵ-corruption. More formally,



assume that each atom’s coordinates are corrupted with noise
drawn from a Gaussian with mean 0 and standard deviation
ϵ. By the Central Limit Theorem, this noise will effectively
vanish when averaged across many coordinates. For this rea-
son, in our implementation, we set the batch size (which is
the minimum number of coordinates sampled for any atom)
to 100 or greater. As long as ϵ

batch sizeσ << 1, i.e., the noise
level ϵ is reasonable, BanditMIPS will still return the correct
solution to the MIPS problem. We verify this on the Netflix
dataset corrupted under this noise model, where ϵ is set to
20% of the maximum possible coordinate value of the dataset.
We observe that BanditMIPS still scales as O(1) with respect
to d as shown in Figure 7 and returns correct solutions even
at fairly high speedup values.

(a)

(b)

Figure 7: (a): Sample complexity of BanditMIPS versus di-
mension d for the corrupted Netflix dataset. Even in the
uncorrupted settings, BanditMIPS maintains its O(1) scaling
with respect to dimensionality (d). (b): Trade-off between
top-10 accuracy and speed. The x-axis represents the speedup
relative to the naive O(nd) algorithm and the y-axis shows
the proportion of times an algorithm returned correct answer;
higher is better. Our algorithm returns an accurate solution
even at high speedup values.

6 Conclusions and Limitations
Conclusions: In this work, we presented BanditMIPS and
BanditMIPS-α, novel algorithms for the MIPS problem. In
contrast with prior work, BanditMIPS requires no preprocess-
ing of the data or that the data be nonnegative, and provides
hyperparameters to trade off accuracy and runtime. Bandit-
MIPS scales better to high-dimensional datasets under reason-
able assumptions and outperformed the prior state-of-the-art
significantly. BanditMIPS scales better to high-dimensional
datasets under reasonable assumptions and outperformed the
prior state-of-the-art significantly. Finally, we combined the
approaches of BanditMIPS and BanditMIPS-α with other
preprocessing techniques to reduce their scaling with n.
Limitations: Though the assumptions for BanditMIPS and
BanditMIPS-α are often satisfied in practice, requiring them
may be a limitation of our approach. In particular, when many
of the arm gaps are small, BanditMIPS will compute the in-
ner products for the relevant atoms naïvely.
Future directions: Future work may focus on relaxing these
assumptions. Also, BanditMIPS has the potential to em-
power diverse machine learning algorithms with rich high-
dimensional datasets, eliminating the necessity for dimen-
sionality reduction. Subsequent exploration could delve into
accelerating algorithms like Hierarchical Navigable Small
World and a classification layer in a large language model.
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7 Additional Related Work
In this appendix, we briefly describe other approaches at-
tempt to reduce MIPS to a nearest neighbor search problem
(NN). We note that the NN literature is extremely vast and has
inspired the use of techniques based on permutation search
(Naidan, Boytsov, and Nyberg 2015), inverted files (Amato
and Savino 2008), vantage-point trees (Boytsov and Naidan
2013b), and more. The proliferation of NN algorithms has
inspired several associated software packages (Bernhardsson
2018; Johnson, Douze, and Jégou 2019; Boytsov and Naidan
2013a) and tools for practical hyperparameter selection (Sun,
Guo, and Kumar 2023). However, MIPS is fundamentally dif-
ferent from and harder than NN because the inner product is
not a proper metric function (Morozov and Babenko 2018b).
Nonetheless, NN techniques have inspired many direct ap-
proaches to MIPS, including those that rely on k-dimensional
or random projection trees (Dasgupta 2008), concomitants
of extreme order statistics (Pham 2020a, 2021, 2020b), or-
dering permutations (Chávez, Figueroa, and Navarro 2008),
principle component analysis (PCA) (Bachrach et al. 2014),
or hardware acceleration (Xiang et al. 2021; Abuzaid et al.
2019). All of these approaches require significant preprocess-
ing that scales linearly in d, e.g., for computing the norms of
the query or atom vectors, whereas BanditMIPS does not.

8 Proofs of Theorems
In this appendix, we present the proofs of Theorems 1 and 2.

Proof of Theorem 1:
Proof. Following the multi-armed bandit literature, we refer
to each index i as an arm and refer to its optimization object
µi as the arm parameter. We sometimes abuse the terminol-
ogy and refer to the atom vi as the arm, with the meaning
clear from context. Pulling an arm corresponds to uniformly
sampling a coordinate J and evaluating viJqJ and incurs an
O(1) computation. This allows us to focus on the number
of arm pulls, which translates directly to coordinate-wise
sample complexity.

First, we prove that with probability at least 1−δ, all confi-
dence intervals computed throughout the algorithm are valid
in that they contain the true parameter µi’s. For a fixed atom
vi and a given iteration of the algorithm, the

(
1− δ

2nd2
used

)
confidence interval satisfies

Pr (|µi − µ̂i| > Cdused) ≤ 2e−C2
dused

dused/2σ
2

≤ δ

2nd2used

by Hoeffding’s inequality and the choice of Cdused =

σ
√

2log(4nd2
used/δ)

dused+1 . For a fixed arm i, for any value of dused we

have that the confidence interval is correct with probability at
least 1− δ

n , where we used the fact that 1+ 1
22 +

1
32 + . . . =

π2

6 < 2. By another union bound over all n arm indices, all
confidence intervals constructed by the algorithm are correct
with probability at least 1− δ.

Next, we prove the correctness of BanditMIPS. Let i∗ =
argmaxi∈[n] µi be the desired output of the algorithm. First,
observe that the main while loop in the algorithm can only
run d times, so the algorithm must terminate. Furthermore,
if all confidence intervals throughout the algorithm are valid,
which is the case with probability at least 1 − δ, i∗ cannot
be removed from the set of candidate arms. Hence, vi∗ (or
some vi with µi = µi∗) must be returned upon termination
with probability at least 1− δ. This proves the correctness of
Algorithm 1.

Finally, we examine the complexity of BanditMIPS. Let
dused be the total number of arm pulls computed for each of
the arms remaining in the set of candidate arms at a given
iteration in the algorithm. Note that for any suboptimal arm
i ̸= i∗ that has not left the set of candidate arms Ssolution,

we must have Cdused ≤ c0

√
log(1/δ)

dused
by assumption (and this

holds for our specific choice of Cdused in Algorithm 1). With
∆i = µi∗ − µi, if dused >

16c20
∆2

i
log n

δ∆i
, then

4Cdused ≤ 4c0

√
log n

δ∆i

dused
< ∆i

Furthermore,

µ̂i∗ − Cdused ≥ µi∗ − 2Cdused

= µi +∆i − 2Cdused

> µi + 2Cdused

> µ̂i + Cdused

which means that i must be removed from the set of candidate
arms by the end of that iteration.

Hence, the number of data point computations Mi required
for any arm i ̸= i∗ is at most

Mi ≤ min

[
16c20
∆2

i

log
n

δ∆i
+ 1, 2d

]
where we used the fact that the maximum number of com-

putations for any arm is 2d when sampling with replacement.
Note that bound this holds simultaneously for all arms i with
probability at least 1− δ. We conclude that the total number
of arm pulls M satisfies

M ≤
∑
i∈[n]

min

[
16c20
∆2

i

log
n

δ∆i
+ 1, 2d

]

with probability at least 1− δ.
As argued before, since each arm pull involves an O(1)

computation, M also corresponds to the total number of
operations up to a constant factor.



Proof of Theorem 2
Proof. Since all the XiJ ’s are unbiased, optimizing Problem
(3) is equivalent to minimizing the combined second moment∑

i∈[n]

EJ∼Pw [X
2
iJ ] =

∑
i∈[n]

∑
j∈[d]

1

d2wj
q2j v

2
ij (5)
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 . (6)

The Lagrangian is given by

L(w, ν) =
∑
j∈[d]

 1

d2wj
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∑
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v2ij

+ ν

1−
∑
j∈[d]

wj

 .
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Furthermore, the derivatives are

∂L(w, ν)

∂wj
= −
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∑
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2
ij

d2w2
j

− ν (8)

∂L(w, ν)

∂µ
= 1−

∑
j∈[d]

wj . (9)

By the Karush-Kuhn-Tucker (KKT) conditions, setting the
derivatives to 0 gives

w∗
j =

√
q2j

∑
i∈[n] v

2
ij∑

j∈[d]

√
q2j

∑
i∈[n] v

2
ij

for j = 1, . . . , d. (10)

9 Description of Datasets
Here, we provide a more detailed description of the datasets
used in our experiments.

Synthetic Datasets
In the NORMAL_CUSTOM dataset, a parameter θi is drawn
for each atom from a standard normal distribution, then each
coordinate for that atom is drawn from N (θi, 1). The signals
are generated similarly.

In the CORRELATED_NORMAL_CUSTOM dataset, a pa-
rameter θ is for the signal q from a standard normal distri-
bution, then each coordinate for that signal is drawn from
N (θ, 1). Atom vi is generated by first sampling a random
weight wi ∼ N (0, 1); then atom vi is set to wiq plus Gaus-
sian noise.

Note that for the synthetic datasets, we can vary n and
d. The values of n and d chosen for each experiment are
described in Subsection 9.

Real-world datasets
Netflix Dataset: We use a subset of the data from the Netflix
Prize dataset (Bennett, Lanning, and Netflix 2007) that
contains the ratings of 6,000 movies by 400,000 customers.
We impute missing ratings by approximating the data matrix

via a low-rank approximation. Specifically, we approximate
the data matrix via a 100-factor SVD decomposition. The
movie vectors are used as the query vectors and atoms and d
corresponds to the number of subsampled users.

Movie Lens Dataset: We use Movie Lens-1M dataset
(Harper and Konstan 2015), which consists of 1 million
ratings of 4,000 movies by 6,000 users. As for the Netflix
dataset, we impute missing ratings by obtaining a low-rank
approximation to the data matrix. Specifically, we perform
apply a Non-negative Matrix Factorization (NMF) with 15
factors to the dataset to impute missing values. The movie
vectors are used as the query vectors and atoms, with d
corresponding to the number of subsampled users.

We note that for all datasets, the coordinate-wise inner
products are sub-Gaussian random variables. In particu-
lar, this means the assumptions of Theorem 1 are satis-
fied and we can construct confidence intervals that scale

as O

(√
log 1/δ′

d′

)
. We describe the setting for the sub-

Gaussianity parameters in Section 9.

Experimental Settings
Scaling Experiments: In all scaling experiments, δ and ϵ
were both set to 0.001 for BanditMIPS and BanditMIPS-α.
ϵ is the hyperparameter in bandit algorithms that controls
how far the returned arm is from the true optimal arm, allow-
ing for an ϵ-suboptimal choice. For the NORMAL_CUSTOM
and CORRELATED_NORMAL_CUSTOM datasets, the sub-
Gaussianity parameter was set to 1. For the Netflix and Movie
Lens datasets, the sub-Gaussianity parameter was set to
25. For the CryptoPairs, SIFT-1M, and SimpleSong
datasets described in Appendix 10, the sub-Gaussianity pa-
rameters were set to 2.5e9, 6.25e5, and 25, respectively. The
number of atoms was set to 100 and all other atoms used
default values of hyperparameters for their sub-Gaussianity
parameters.

Tradeoff Experiments: For the tradeoff experiments, the
number of dimensions was fixed to d = 10, 000. The various
values of speedups were obtained by varying the hyperparam-
eters of each algorithm. For NAPG-MIPS and HNSW-MIPS,
for example, M was varied from 4 to 32, ef_constructions
was varied from 2 to 500, and ef_searches was varied from
2 to 500. For Greedy-MIPS, budget varied from 2 to 999. For
LSH-MIPS, the number of hash functions and hash values
vary from 1 to 10. For H2ALSH, δ varies from 1

24 to 1
2 , c0

varies from 1.2 to 5, and c varies from 0.9 to 2. For NEQ-
MIPS, the number of codewords and codebooks vary from 1
to 100. For BanditMIPS , BanditMIPS-α, and BoundedME,
speedups were obtained by varying δ from 1

1010 to 0.99 and ϵ

from 1
1010 to 3. In our code submission, we include a one-line

script to reproduce all of our results and plots.
All experiments were run on a 2019 Macbook Pro with

a 2.4 GHz 8-Core Intel Core i9 CPU, 64 GB 2667 MHz
DDR4 RAM, and an Intel UHD Graphics 630 1536 MB
graphics card. Our results, however, should not be sensitive
to hardware, as we used hardware-independent performance



Table 5: Frequencies for various musical notes.

Note Frequency (Hz)

C4 256
E4 330
G4 392
C5 512
E5 660
G5 784

metrics (the number of coordinate-wise multiplications) for
our results.

10 Application to Matching Pursuit on the
SimpleSong Dataset

We construct a simple synthetic dataset, titled the
SimpleSong Dataset where the query and atoms are audio
signals sampled at 44,100 Hz and each coordinate value repre-
sents the signal’s amplitude at a given point in time. Common
musical notes are represented as periodic sine waves with the
frequencies given in Table 5.

The query in this dataset is a simple song. The song is
structured in 1 minute intervals, where the first interval –
called an A interval – consists of a C4-E4-G4 chord and the
second interval – called a B interval – consists of a G4-C5-E5
chord. The song is then repeated t times, bringing its total
length to 2t minutes. The dimensionality of the the signal is
d = 2t ∗ 44, 100 = 88, 200t. The weights of the C4, E4, and
G4 waves in the A intervals and the G4, C5, and E5 waves in
the B intervals are in the ratio 1:2:3:3:2.5:1.5.

The atoms in this dataset are the sine waves corresponding
to the notes with the frequencies show in Table 5, as well as
notes of other frequencies.

The Matching Pursuit problem (MP) is a problem in which
a vector q is approximated as a linear combination of the
atoms v1, . . . ,vn. A common algorithm for MP involves
solving MIPS to find the atom vi∗ with the highest inner
product with the query, subtracting the component of the
query parallel to vi∗ , and re-iterating this process with the
residual. Such an approach solves MIPS several times as
a subroutine. Thus, an algorithm which accelerates MIPS
should also then accelerate MP.

In the audio domain, we note that when the atoms
v1, . . . ,vn are periodic functions with predefined frequen-
cies, MP becomes a form of Fourier analysis in which the
atoms are the Fourier components and their inner products
with the query correspond to Fourier coefficients. For more
detailed background on Fourier theory, we refer the reader to
(Brigham 1988).

For convenience, we restrict t to be an integer in our ex-
periments so a whole number of AB intervals are completed.
We ran BanditMIPS with δ = 1

10,000 and σ2 = 6.25 over 3
random seeds for various values of t. BanditMIPS is correctly
able to recover the notes played in the song in order of de-
creasing strength: G4, C5, E4, E5, and C4 in each experiment.

Figure 8: Sample complexity of MP when using BanditMIPS
as a subroutine for MIPS on the SimpleSong dataset. The
complexity of solving the problem does not scale with the
length of the song, d. Uncertainties and means were obtained
from 3 random seeds. BanditMIPS returns the correct solu-
tion to MIPS in each trial.

Furthermore, BanditMIPS is able to calculate their Fourier
coefficients correctly. Crucially, the complexity of Bandit-
MIPS to identify these components does not scale with d, the
length of the song. Figure 8 demonstrates the total sample
complexity of BanditMIPS to identify the first five Fourier
components (five iterations of MIPS) of the song as the song
length increases.

Our approach may suggest an application to Fourier trans-
forms, which aim to represent signals in terms of constituent
signals with predetermined set of frequencies. We acknowl-
edge, however, that Fourier analysis is a well-developed field
and that further research is necessary to compare such a
method to state-of-the-art Fourier transform methods, which
may already be heavily optimized or sampling-based.

11 BanditMIPS on a Highly Symmetric
Dataset

In this section, we discuss a dataset on which the assumptions
in Section 4 fail, namely when ∆ scales with d. In this set-
ting, BanditMIPS does not scale as O(1) and instead scales
linearly with d, as is expected.

We call this dataset the SymmetricNormal dataset. In
this dataset, the signal has each coordinate drawn from
N (0, 1) and each atom’s coordinate is drawn i.i.d. from
N (0, 1). Note that all atoms are therefore symmetric a priori.

We now consider the quantity ∆i,j(d) := µ1(d)− µ2(d),
i.e., the gap between the first and second arm, where our nota-
tion emphasizes we are studying each quantity as d increases.
Note that ∆i,j(d) =

vT
1 q−vT

2 q
d . By the Central Limit Theo-

rem, the sequence of random variables
√
d∆i,j(d) converges

in distribution toN (0, σ2
i,j) for some constant σ2

i,j . Crucially,
this implies that ∆i,j(d) is on the order of 1√

d
.

The complexity results from Theorem 1 then predicts that
BanditMIPS scales linearly with d. Indeed, this is what we



Figure 9: Sample complexity of BanditMIPS on the
SymmetricNormal dataset. The sample complexity of
BanditMIPS is linear with d, as is expected. Uncertainties
and means were obtained from 10 random seeds.

observe in Figure 9.
In practice, this case can be dealt with by allowing for

an ϵ-suboptimal atom vector to be returned. In this case,
BanditMIPS will no longer depend on the ∆i’s for large d,
and instead on the relative error hyperparameter ϵ. This is
depicted in figure 10.

Figure 10: Sample Complexity of BanditMIPS on the Highly
Symmetric Normal Dataset as a Function of d, allowing for ϵ-
suboptimal atoms to be identified, with ϵ = 0.1. The sample
complexity of BanditMIPS scales as O(1) with respect to d,
even when all atoms have an equal inner product with the
query vector.
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