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Abstract
With the development of deep learning, traffic forecasting technol-
ogy has made significant progress and is being applied in many
practical scenarios. However, various events held in cities, such as
sporting events, exhibitions, concerts, etc., have a significant impact
on traffic patterns of surrounding areas, causing current advanced
prediction models to fail in this case. In this paper, to broaden the
applicable scenarios of traffic forecasting, we focus on modeling the
impact of events on traffic patterns and propose an event traffic fore-
casting problem with multimodal inputs. We outline the main chal-
lenges of this problem: diversity and sparsity of events, as well as
insufficient data. To address these issues, we first use textual modal
data containing rich semantics to describe the diverse characteris-
tics of events. Then, we propose a simple yet effective multi-modal
event traffic forecasting model that uses pre-trained text and traffic
encoders to extract the embeddings and fuses the two embeddings
for prediction. Encoders pre-trained on large-scale data have power-
ful generalization abilities to cope with the challenge of sparse data.
Next, we design an efficient large language model-based event de-
scription text generation pipeline to build multi-modal event traffic
forecasting datasets, ShenzhenCEC and SuzhouIEC. Experiments
on two real-world datasets show that our method achieves state-of-
the-art performance compared with eight baselines, reducing mean
absolute error during the event peak period by 4.26%. Code is avail-
able at: https://github.com/2448845600/EventTrafficForecasting.

CCS Concepts
• Information systems→ Spatial-temporal systems; Data min-
ing; • Computing methodologies→ Artificial intelligence.
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1 Introduction
Traffic forecasting plays a crucial role in Intelligent Transportation
Systems (ITS), which use historical traffic signals from sensors to
predict future traffic signals. Traditional statistics-based methods,
such as exponential smoothing [19] and autoregressive integrated
moving average [37], have some limitations due to their reliance
on stationarity-related assumptions and disregard for nonlinear
relationships between traffic signals. Recent research based on deep
learning captures traffic patterns from both temporal and spatial
perspectives, using TCN-based [26, 39], RNN-based [3, 22, 32], and
attention-based [11, 12, 16, 17] modules to model the temporal cor-
relation and GCN-based modules [9, 21, 31, 40] to model the spatial
correlation between traffic nodes. Currently, traffic forecasting has
made substantial advancements and is utilized in several down-
stream applications, such as traffic management, urban computing,
and automated driving [2, 14, 41].

However, various human activities that occur in urban areas
have impacts on the city transportation system, leading to abrupt
shifts in traffic patterns. Consequently, the traffic prediction model
with excellent regular performance is weak in this case as shown
in Figure. 1. Events, such as sports championships, exhibits, and
concerts, are typical large-scale human activities that have the
characteristic of impacting wide areas and attracting large crowds,
pose serious challenges to event organizers and traffic management
agencies. Inaccurate estimation of the event’s influence on the
traffic system may result in traffic congestion in the surrounding
area. In some extreme cases, it can result in safety concerns such
as traffic accidents and crowd surge. Hence, this study specifically
addresses the issue of event traffic forecasting, with the goal of
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Figure 1: The impact of events on traffic patterns can lead to
distortions in traffic prediction models. GWNet is a powerful
model that works well when no events occur (regular), but
weakens when events occur.

modeling the influence of events on traffic patterns and effectively
predicting event traffic.

In this paper, we highlight that the primary challenges of event
traffic forecasting research are the diversity and sparsity of events
after analyzing the real-world traffic data in Shenzhen City, China.
First, there are various kinds of events held in cities, including
for-profit, non-profit, official, unofficial, popular, and professional
ones. Due to the diversity of events, it is challenging for researchers
to construct a complete set of features for uniformly representing
the events’ characteristics, which makes analyzing the impact of
events on traffic patterns difficult. Second, the spatial and temporal
distribution of events is sparse. For example, no more than half
of the days are allocated for hosting events at the Shenzhen Con-
vention and Exhibition Center. Furthermore, the amount of data
is smaller during certain time ranges, such as weekdays or special
holidays, bringing a huge challenge for data-driven methods to
model spatialtemporal patterns.

In addition to the inherent challenges presented by the data
itself, the lack of enough data also greatly limits the progress of this
research. Existing public traffic forecasting datasets, such as METR-
LA, PEMS-BAY, and PEMS0X, only contain the time-series modal
traffic signal data and the graph-style node connection matrix,
without any event-related information. Since there is no official
website to directly download accurate and comprehensive event
information, we can only obtain it from the Internet, where useful
data is scattered in every corner. Manually retrieving relevant web
pages through search engines to create datasets is time-consuming
and not feasible for real-world applications. We have to solve the
problem of dataset construction pipeline before developing the
event forecasting method.

Therefore, addressing the above issues to effectively leverage
multimodal data is essential for improving the performance of
event traffic forecasting. To achieve this, we first propose an effi-
cient event description text generation pipeline with large language
models (LLMs). We send specially designed prompts and retrieved
related web pages to the powerful LLM for generating textual de-
scriptions for events. We use this data generation pipeline to build
two multi-modal event traffic prediction dataset at the Shenzhen
Convention and Exhibition Center (ShenzhenCEC) and Suzhou In-
ternational Exp Centre (SuzhouIEC). Then, we design a multimodal
(Text and Time-series) event Traffic forecasting model, T3, which

uses pre-trained text and traffic encoders to extract embeddings
of corresponding modalities for prediction. The text and traffic en-
coders, which are trained on a large amount of data, have strong
generalization capabilities to learn the representation of sparse data
without additional training. Learnable projections are used to trans-
form embeddings into hidden features to adjust for the prediction
task, followed by two multi-layer perceptrons for outputing the
prediction results together from the hidden features.

We summarize key contributions of this paper as follows:
• We first propose the event forecasting problem in a multi-
modal setting, which uses event description text and histori-
cal traffic data to predict future traffic signals.

• We develop an LLM-based event description text generation
pipeline, which significantly reduces the cost of obtaining
event information from websites. And we build two multi-
modal event traffic forecasting datasets.

• We propose the multimodal event traffic forecasting model,
T3, which uses the generalization capabilities of pre-trained
encoders to obtain representations of sparse data.

• We conduct extensive experiments on ShenzhenCEC and
SuzhouIEC to gain insight into the effectiveness of the T3.
Experimental results show that our proposal is able to consis-
tently and significantly outperform all baselines and reduce
the MAE by 4.26% during the event peak period.

2 Related Work
2.1 Traffic Forecasting
Traffic forecasting is an important type of time series forecast-
ing. Previous studies treated the traffic forecasting problem as a
pure time series prediction task and addressed it via traditional
statistic-based methods, such as exponential smoothing[19] and
autoregressive integrated moving average [37]. These methods rely
heavily on stationarity-related assumptions and ignore the nonlin-
ear correlations between traffic signals, which severely limits traffic
forecasting’s effectiveness. Recently, deep learning-based studies
have been proposed to capture the complex spatial-temporal corre-
lations in traffic signals. DCRNN [22] and STGCN [42] were the first
to apply deep learning methods to traffic prediction, using GCN
to capture spatial correlation and RNN or CNN to capture tempo-
ral correlation, and have made significant progress. Subsequently,
more and more methods [10, 20, 44] design exquisite spatiotem-
poral feature extraction modules to achieve better performance.
Recently, some works about time-series or traffic fundamental mod-
els [15, 29, 47] use time-series data to fine-tune pre-trained LLMs
to obtain zero-shot prediction capabilities. However, it is worth
noting that these studies have not utilized multi-modal data.

2.2 Multimodal Machine Learning
Multimodal machine learning aims to develop models that can pro-
cess and relate information frommultiple modalities, such as image,
video, audio, and 3D [4]. Existing multi-modal learning research
mainly focuses on vision, audio, and language modal, and a series
of research works have emerged, such as SUR-adapter [46], RTQ
[36], HAT [5], PromptMTopic [28], and so on [23]. And there are
also some papers focus on the 3D point cloud, table, source code,
graph, etc [6, 13, 33, 35]. There are many core technical challenges
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Table 1: Frequently used notation.

Notation Description

𝑆 Set of traffic nodes
𝐸 Set of traffic edges
𝑁 Number of traffic nodes
𝑀 Number of traffic edges
𝑇ℎ Length of historical time steps
𝑇𝑓 Length of future time steps
𝑋𝑖 Traffic signal of the 𝑖-th time step
X Traffic signal of the 𝑇ℎ most recent past time steps
G Traffic network G = (𝑉 , 𝐸)
T Daily event description text
Y Traffic signal of the 𝑇𝑓 nearest future time steps

𝐷text The output dimension of text encoder
𝐷traffic The output dimension of traffic encoder

𝐷 The hidden dimension of the T3 model

surrounding multimodal machine learning, and we focus on mul-
timodal representation and fusion in this paper. Representation
involves learning how to represent and summarize multimodal
data using complementarity and redundancy of multiple modali-
ties. Pre-trained encoders [7, 18, 38] are commonly used to learn
representations of inputs from relevant modalities. Fusion involves
joining information from two or more modalities to perform a
prediction. There are many model-agnostic approaches and model-
based approaches [1]. With the development of large language
models, multimodal large models are also attracting more and more
attention, such as BLIP-2 [43], LLaVA [25], and GPT4V.

3 Preliminaries
In this section, we define the notions of traffic sensor, network,
signal, and the event traffic forecasting problem. Table 1 shows the
frequently used notation.

Traffic Sensor. A traffic sensor is a sensor deployed in a traffic
system that records traffic states such as the flow or speed of passing
vehicles.

Traffic Network. A traffic network is defined as a directed or
undirected graph with the formula G = (𝑆, 𝐸), where 𝑆 is the set of
|𝑆 | = 𝑁 traffic nodes and 𝐸 is the set of |𝐸 | = 𝑀 edges.

Traffic Signal. The traffic signal 𝑋𝑡 ∈ R𝑁 denotes the observa-
tion of all sensors in the traffic network G at time step 𝑡 . In this
paper, the traffic signals generally means the traffic speed.

Event Description Text. Event description text T is a text that
describes the main contents of the events in a specific time period.

Event Traffic Forecasting. Given historical traffic signal X =

[𝑋𝑡−𝑇ℎ , 𝑋𝑡−𝑇ℎ+1, · · · , 𝑋𝑡−1] ∈ R𝑇ℎ×𝑁 from the past 𝑇ℎ time steps,
traffic network G and event description text T , the event traffic
forecasting can be formed as:

Ŷ = F (X,G,T),

where Y ∈ R𝑇𝑓 ×𝑁 are the nearest future 𝑇𝑓 time steps of traffic
signal, and F is the forecasting model. T can be ∅ when there is
no event occurring, and this situation is equivalent to the classical
traffic forecasting problem.

Table 2: Data statistics.

City Node Edge Interval Time Steps Event Day

Shenzhen 742 1277 10 min 18,000 44
SuZhou 8 16 10 min 52,416 30

4 Dataset
In this section, we will introduce in detail the construction process
and analysis conclusions of themulti-modal event traffic forecasting
datasets, using ShenzhenCEC as an example.

4.1 Event Description Text Generation Pipeline
Urban areas often hold a diverse range of large-scale events, includ-
ing exhibitions, concerts, sports matches, charity galas, etc. These
events attract large numbers of people and have a significant im-
pact on the surrounding traffic pattern, making it different from the
normal state. We try to collect comprehensive information about
these events to enhance the performance of event traffic prediction.
However, there is currently no official and unified way to obtain
event information, and comprehensive event details are scattered
in every corner of the Internet. We find that some urban venues’
official websites include historical event schedule information. Nev-
ertheless, this tabular data is limited to the event’s name and period,
lacking comprehensive details such as the event’s introduction,
theme, anticipated viewership, and so on. Although researchers
can use search engines (like Google) to retrieve relevant data from
massive web pages and manually construct a toy dataset, this data
collection approach is time-consuming and labor-intensive, making
it challenging to apply in real-world scenarios.

Hence, we develop an event description text generation pipeline
based on the advanced large language model as depicted in Figure.
2. There are four steps to generate a text for the event. First, event
scheduling data is downloaded from the official website of venues
(such as the homepage of Shenzhen Convention and Exhibition
Center 1), which only includes the name and time of historical
events. Then, we create a prompt that adequately describes the
requirements of our goal, where the prompt should contain the
name and time of the event to alleviate hallucinations of LLM’s.
Next, we crawl event-related webpages from the Internet (or you
can use similar tools provided by commercial services directly) as
the raw material for LLMs to generate text. Finally, we send both
the prompt and web data to a LLM to generate the event description
text. This retrieval augmented generation (RAG) pipeline can auto-
matically retrieve event-related information from the Internet and
intelligently extract text summaries. Compared with the manual
pipeline, our proposed solution is more convenient, efficient, and
low-cost, which can be extended to real-life scenarios.

It is crucial to acknowledge that the data generated by the afore-
mentioned pipeline may be at data leakage risk for the forecasting
task, meaning that information about upcoming incidents or emer-
gencies may be included in the event description text. This potential
risk can be resolved by limiting the publication time of crawled
web pages, making the LLM only obtain web data published before

1https://www.ShenzhenCEC.com/
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Figure 2: The event description text generation pipeline. We gather event scheduling data from official websites, create a prompt
for LLMs to generate event description text, crawl event-related webpages, and send both data and prompts to the LLM for
generating the event description.

Figure 3: Distribution of events in time.

(a) Weekday Traffic Pattern (b) Weekend Traffic Pattern

Figure 4: The impact of the event on weekday or weekend
traffic patterns. The blue line depicts the average traffic speed
during days without any events, whereas the red line illus-
trates the average traffic speed during days with events.

the event starts. Another issue is the hallucination of LLM. Al-
though several prompt engineering tricks, such as system prompts
and few-shot prompts, can significantly reduce the occurrence of
hallucinations, it is nearly impossible to entirely eliminate this
problem. In order to ensure the quality of the data, we manually
check all event description texts to ensure that there is no informa-
tion leakage or obvious hallucinatory context. Following the above
pipeline, we generate description texts for all events held at the
Shenzhen Convention and Exhibition Center between the dates of
February 1st, 2023, and June 5th, 2023.

4.2 Data Statistics
We select the Shenzhen Convention and Exhibition Center (Shen-
zhenCEC) to build the dataset because of its high frequency of
large-scale events. The statistical information is shown in Table. 2.
The traffic speed data is collected at regular intervals of 10 min-
utes within a radius of 1000 meters surrounding the ShenzhenCEC.
The time range corresponds to the duration of the event data, span-
ning a total of 125 days from February 1st, 2023, to June 5th, 2023.
The traffic graph is constructed based on the node distances. We
calculate the distance between nodes and only connect node pairs
that are within a distance of less than 10 meters. The traffic data
consists of a total of 18,000 time steps, 742 traffic nodes (road links),
and 1277 edges. The Figure. 3 illustrates the temporal distribu-
tion of events at the ShenzhenCEC over a span of 125 days. This
location hosted a total of 34 events, which were distributed across
44 days, accounting for 35.2% of the total days. It is important to
note that events can last over multiple days, and it is possible for
multiple events to occur within a single day. A single day can have
a maximum of 5 events, and a single event can last up to 4 days in
our dataset. The occurrence of events is observed on 28 weekdays
and 16 weekends.

4.3 Impact of Event on Traffic Pattern
Figure. 4 (a) and (b) illustrate the average traffic speed on week-
days and weekends respectively. The blue line indicates the average
traffic speed during days without any events, while the red line
represents the average traffic speed during days with events. We
can conclude that the events can consistently decrease traffic speed
throughout the entire nearby area. On weekdays, there are signifi-
cant variations in traffic patterns at four time periods: nighttime,
around 10 a.m., around 2 p.m., and the evening rush hours. The
traffic speed reduction at night primarily stems from the organiz-
ers’ requirement to prearrange the booth, resulting in a substantial
influx and outflow of vehicles. The time periods around 10 a.m. and
2 p.m. are generally the start times of exhibition-type events, where
the concentration of exhibitors and visitors leads to traffic conges-
tion. Finally, the commuting traffic flow during the evening peak
period merges with the traffic flow after the exhibition, causing
the evening peak hour to arrive earlier and last longer. During the
weekends, the absence of commuter traffic results in a relatively
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Projection

MM Predictor  C

Daily Event Texts

Today is 01/06, there are two events:
[Name] will hold 3 days, today is first day, 
the main content: [Thema], [Aree], [Extributor].
[Name] will hold 5 days, today is third day, 
the main content: [Thema], [Aree], [Extributor].

Today is 05/04, there are one event:
[Name] will hold 3 days, today is first day, 
the main content: [Thema], [Aree], [Extributor].
[Name] will hold 5 days, today is third day, 
the main content: [Thema], [Aree], [Extributor].

Today is 28/02, there are two events:
[Name] will hold 3 days, today is first day, 
the main content: [Thema], [Aree], [Extributor].
[Name] will hold 5 days, today is third day, 
the main content: [Thema], [Aree], [Extributor].

Projection & Expand

Text Encoder

Traffic Encoder
Traffic Graph History Signal

Frozen
Trainable

Traffic Predictor  

+

(B, N, Dtraffic)

(B, N, Dtext)

(B, N, D)

(B, N, D)

(B, N, D)

(B, N, 2D)

Future Signal

Figure 5: The framework of our proposed T3. Modules in the blue box with snowflake mean frozen in the training stage, while
in the red box with flame mean trainable. 𝐶 is the concat operation, and + is the sum operation.

stable average traffic speed. Events cause a general reduction in
traffic speed, while the speed remains mostly unchanged after 20
o’clock, regardless of whether an event takes place.

5 T3: Multimodal Forecasting Model
5.1 Overview
As shown in Figure. 5, we propose a multimodal (Text and Time-
series) Traffic forecasting model, T3. This model uses a pre-trained
text encoder and traffic encoder to extract the embedding of the
corresponding modal data. The generalization ability of pre-trained
modules can deal with the challenges of sparse event data. Then, the
T3 projects and fuses the two embeddings to obtain a multimodal
feature. Finally, two independent predictors output intermediate
prediction results from the multi-modal feature and traffic feature,
and their outputs are added as the final prediction result. Text and
traffic encoders are frozen in the training stage (in the blue box
with snowflake), and other modules are trainable (in the red box
with flame). Instead of designing a sophisticated model, we propose
a straightforward way to verify whether multi-modal data can
improve the performance of the event traffic forecasting.

5.2 Model Structure
Frozen Text Encoder. We use the pre-trained text embedding

model as the text encoder to obtain the text representations for
event traffic forecasting. Text embedding [34] is a commonly used
NLP technique that converts text data into fixed-dimensional vec-
tors that can be processed by machine learning/deep learning algo-
rithms. These vector representations are designed to capture the
semantics and context of the words they represent. We combine
the texts of multiple events that occurred in a day as the daily event
description text T and send it into the text encoder to get text
embedding embtext ∈ R𝐵×𝐷 text

:

embtext = TextEncoder(T ) . (1)

We freeze the text encoder parameters in the training stage to
keep the powerful generalization ability learned from massive text
training data for sparse event text embedding.

Frozen Traffic Encoder. We use the encoder layers of the traffic
forecasting model, which is pre-trained on traffic data from the traf-
fic dataset, as the traffic encoder. Common traffic forecastingmodels
use time-series data (history traffic signals) and graph-structure
data (traffic network) as inputs. These methods often employ space
operations, such as graph convolutional networks (GCN) and spa-
tial attention, to capture the spatial correlation among traffic nodes,
and sequence operations, such as TCN, attention, and recurrent
neural networks (RNN), to capture the temporal correlation. Our
proposed T3 uses the spatiotemporal modules as the traffic encoder
to extract traffic embedding embtraffic ∈ R𝐵×𝑁×𝐷 traffic

:

embtraffic = TrafficEncoder(X,G). (2)

Project, Expand, and Concat Embeddings. Although the pre-trained
frozen encoders have strong generalization capabilities to extract
sparse text and traffic embeddings, it is necessary for our model
to maximize the utilization of the training data to adjust the em-
beddings to fit the event traffic forecasting task. First, we use two
layers MLP to project the embeddings into the hidden space inde-
pendently:

Htext = MLPtext (embtext),Htraffic = MLPtraffic (embtraffic), (3)

where the shape ofHtext is (𝐵, 𝐷) and the shape ofHtraffic is (𝐵, 𝑁, 𝐷).
Then, we extend the size of Htext to (𝐵, 𝑁, 𝐷) and concatenate the
two hidden features to get multi-modal features Hmm ∈ R𝐵×𝑁×2𝐷 :

Hmm = Htext ∥ Htraffic . (4)

Predictor and Loss. We apply regression layers on Hmm and
Htraffic respectively, and add their output results as the final predic-
tion result:

Ŷ = FCmm
2 (𝜃 (FCmm

1 (Hmm))) +FCtraffic
2 (𝜃 (FCtraffic

1 (Htraffic))), (5)

where FC(·) is fully connection layer and 𝜃 (·) is activation function.
In the training stage, we use Mean Absolute Error (MAE) as loss
function:

L = MAE(Y, Ŷ). (6)
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Table 3: Traffic forecasting results on the ShenzhenCEC and SuzhouIEC dataset during the overall period and event peak hours.
Black bold indicates the best result, and underlining indicates the second-best result.

Model Overall Event Peak Hours
MAE RMSE MAPE (%) WAPE (%) MAE RMSE MAPE (%) WAPE (%)

Sh
en
zh
en
CE

C

HI 8.09±0.000 10.33±0.000 32.07±0.000 58.55±0.000 8.24±0.000 11.32±0.000 36.05±0.000 57.88±0.000
NLinear 4.42±0.006 6.80±0.004 16.40±0.023 16.00±0.023 5.85±0.004 8.76±0.021 23.91±0.014 20.57±0.013
PatchTST 4.31±0.006 6.70±0.016 16.04±0.019 15.60±0.022 5.65±0.017 8.67±0.083 23.16±0.102 19.84±0.061
DCRNN 3.84±0.055 5.87±0.120 14.04±0.140 13.87±0.198 4.80±0.149 6.70±0.250 20.80±0.493 16.87±0.524
GWNet 3.69±0.019 5.68±0.064 13.68±0.272 13.35±0.067 4.46±0.169 6.65±0.150 19.98±0.108 15.66±0.595

D2STGNN 3.89±0.121 6.13±0.317 14.32±0.402 14.08±0.437 4.82±0.227 7.30±0.489 21.20±0.876 16.94±0.799
STID 4.02±0.066 5.99±0.112 14.95±0.216 14.54±0.238 4.84±0.148 7.01±0.139 20.98±0.415 16.99±0.520

STAEformer 3.80±0.109 5.76±0.153 14.03±0.436 13.73±0.393 4.50±0.216 6.57±0.457 20.22±0.939 15.81±0.758

T3 (D=128) 3.73±0.017 5.74±0.096 13.85±0.170 13.49±0.060 4.46±0.122 6.72±0.132 20.06±0.338 15.68±0.430
T3 (D=256) 3.66±0.033 5.51±0.116 13.62±0.165 13.24±0.121 4.27±0.154 6.31±0.137 19.23±0.356 15.00±0.542
T3 (D=512) 3.71±0.133 5.70±0.349 13.86±0.423 13.43±0.480 4.42±0.458 6.65±0.608 19.94±1.462 15.52±1.610

Su
zh
ou

IE
C

HI 5.31±0.000 8.32±0.000 19.43±0.000 18.88±0.000 6.59±0.000 9.95±0.000 26.87±0.000 23.15±0.000
NLinear 4.01±0.002 6.14±0.011 14.86±0.010 14.51±0.005 4.48±0.013 6.47±0.020 19.13±0.051 15.77±0.045
PatchTST 3.52±0.010 5.18±0.024 13.55±0.018 13.28±0.022 3.90±0.006 5.53±0.025 17.53±0.021 13.75±0.022
DCRNN 3.25±0.056 4.86±0.158 11.90±0.122 12.02±0.116 3.00±0.052 4.27±0.061 13.38±0.230 10.57±0.181
GWNet 3.34±0.084 5.13±0.182 11.94±0.187 12.06±0.158 2.94±0.028 4.20±0.038 12.83±0.140 10.38±0.097

D2STGNN 3.24±0.060 4.93±0.166 11.40±0.162 11.74±0.134 2.67±0.040 3.76±0.044 11.34±0.074 9.41±0.141
STID 3.10±0.029 4.56±0.060 11.08±0.060 11.47±0.064 2.66±0.018 3.76±0.032 11.66±0.042 9.42±0.064

STAEformer 3.12±0.047 4.67±0.058 11.18±0.146 11.37±0.164 2.78±0.026 3.91±0.027 12.08±0.217 9.41±0.091

T3 (D=128) 3.04±0.011 4.49±0.011 10.88±0.021 11.26±0.033 2.66±0.007 3.74±0.004 11.44±0.010 9.39±0.023
T3 (D=256) 3.03+0.014 4.47±0.015 10.85±0.021 11.21±0.035 2.66±0.011 3.74±0.009 11.45±0.019 9.38±0.040
T3 (D=512) 3.02±0.012 4.46±0.011 10.84±0.018 11.19±0.031 2.66±0.013 3.75±0.013 11.47±0.014 9.39±0.044

6 Experiment
6.1 Experimental Setting
6.1.1 Dataset. All experiments are performed on the proposed two
multimodal event traffic forecasting datasets described in Section.
4. The datasets are chronologically divided into training, validation,
and testing as 6:2:2. Following the common setting in previous
traffic forecasting works [22], which uses the traffic signals of the
history 𝑇𝑓 = 12 time steps to predict the next 𝑇ℎ = 12 steps. Event
peak hours are 7 a.m. to 10 a.m. and 5 p.m. to 8 p.m. during days
with events.

6.1.2 Metrics. We evaluate the performances of all baselines by
four commonly used metrics in traffic forecasting, including mean
absolute error (MAE), root mean square error (RMSE), mean abso-
lute percentage error (MAPE), and weight mean absolute percent-
age error (WAPE). MAE reflects prediction accuracy; RMSE is more
sensitive to abnormal values; MAPE can eliminate the influence
of data units to some extent; and WAPE is more robust to outliers
compared with MAPE.

6.1.3 Implementation Details. All traffic forecasting models are
implemented using pytorch 1.10 and cudn 11.3. Models are trained
and evaluated on 12th Gen Intel(R) Core(TM) i9-12900K, 128 GB
RAM computing server equipped with two RTX 4090 GPUs. We
employ Adam with a learning rate of 0.002 as our optimizer. We use
the multistep learning rate scheduling strategy and set the decay
ratio to 0.5. All models are repeated three times using fixed seed 0,
1, and 2. We use voyage-2 to get text embeddings with 𝐷text = 1024

and GWNet to get traffic embeddings with 𝐷traffic = 256. Other
implementation details can be seen in the code.

6.1.4 Baselines. We compare our proposed T3 model with the
eight baseline models:

• HI [8]: Historical Inertia simply uses the most recent data
points in the input time series as predictions.

• NLinear [45]: NLinear is a MLP-based time series forecast-
ing model that decomposes the time series into a trend and
a remainder series and employs two parallel linear layers to
predict these two series.

• PatchTST [27]: PatchTST is a transformer-based time-series
forecasting model, which divides the input time series data
into subseries-level patches which are served as input tokens
to Transformer.

• DCRNN [22]: Diffusion convolution recurrent neural net-
work is an encoder-decoder structure network that combines
graph convolution networks with RNN.

• GWNet [39]: Graph WaveNet jointly captures spatial and
temporal dependencies through the sequential integration of
temporal convolution layers and graph convolutional layers.

• D2STGNN [32]: This method integrates deep learning tech-
nology and signal processing theory to enhance the accuracy
and efficiency of predictions.

• STID [30]: STID uses learnable temporal embeddings and
node embeddings to model spatialtemporal correlation. This
simple yet efficient component allows it to achieve perfor-
mance comparable to SOTA through multiple MLP layers.
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Table 4: Traffic forecasting results on the ShenzhenCEC dataset during the overall period and event peak hours at the 3-rd, 6-th
and 12-th time steps. Step means time step.

Model Step Overall Event Peak Hours
MAE RMSE MAPE (%) WAPE (%) MAE RMSE MAPE (%) WAPE (%)

HI
3 8.10±0.000 10.34±0.000 32.10±0.000 58.60±0.000 8.24±0.00 11.32±0.000 36.05±0.000 57.88±0.000
6 8.09±0.000 10.33±0.000 32.08±0.000 58.56±0.000 8.24±0.000 11.32±0.000 36.05±0.000 57.88±0.000
12 8.09±0.000 10.32±0.000 32.03±0.000 58.46±0.000 8.24±0.000 11.32±0.000 36.05±0.000 57.88±0.000

NLinear
3 3.42±0.005 5.33±0.003 12.83±0.013 12.37±0.018 4.42±0.014 7.11±0.019 18.55±0.021 15.54±0.047
6 4.39±0.002 6.77±0.004 16.26±0.011 15.88±0.009 5.91±0.009 8.95±0.008 23.93±0.004 20.75±0.030
12 5.70±0.017 8.31±0.008 20.98±0.063 20.60±0.061 7.32±0.018 10.19±0.063 29.62±0.101 25.73±0.063

PatchTST
3 3.31±0.012 5.18±0.015 12.50±0.034 11.99±0.044 4.22±0.045 6.83±0.022 17.82±0.222 14.82±0.158
6 4.27±0.014 6.65±0.035 15.86±0.044 15.45±0.051 5.65±0.032 8.81±0.164 23.08±0.063 19.85±0.112
12 5.59±0.017 8.22±0.008 20.62±0.039 20.21±0.063 7.16±0.040 10.15±0.030 29.12±0.096 25.14±0.142

DCRNN
3 3.03±0.038 4.63±0.056 11.39±0.073 10.98±0.139 3.75±0.059 5.62±0.155 16.99±0.193 13.19±0.208
6 3.83±0.054 5.85±0.090 14.11±0.072 13.86±0.195 4.81±0.138 6.79±0.224 21.14±0.405 16.89±0.484
12 4.85±0.128 7.16±0.230 17.29±0.448 17.53±0.462 6.00±0.313 7.68±0.417 24.58±1.062 21.08±1.099

GWNet
3 2.86±0.032 4.47±0.050 10.81±0.067 10.36±0.114 3.45±0.134 5.49±0.036 16.09±0.120 12.12±0.470
6 3.66±0.037 5.70±0.126 13.63±0.220 13.25±0.134 4.47±0.087 6.82±0.215 20.45±0.152 15.72±0.306
12 4.76±0.165 6.92±0.269 17.39±1.002 17.20±0.597 5.57±0.120 7.68±0.422 23.92±0.500 19.58±0.423

D2STGNN
3 2.89±0.059 4.48±0.085 10.90±0.241 10.45±0.214 3.49±0.110 5.49±0.125 15.90±0.420 12.25±0.386
6 3.79±0.103 5.89±0.119 14.04±0.500 13.70±0.371 4.75±0.214 7.25±0.310 21.48±0.797 16.67±0.750
12 5.31±0.486 7.92±0.905 19.18±1.408 19.20±1.756 6.56±0.886 9.09±1.236 27.37±3.040 23.06±3.113

STID
3 3.23±0.083 4.87±0.160 12.14±0.207 11.68±0.301 3.93±0.185 6.00±0.330 17.13±0.339 13.81±0.651
6 4.00±0.075 5.99±0.125 14.93±0.238 14.48±0.270 4.91±0.201 7.17±0.213 21.53±0.685 17.24±0.705
12 5.02±0.113 7.14±0.150 18.44±0.532 18.13±0.409 5.76±0.222 7.82±0.282 24.66±0.713 20.22±0.778

STAEformer
3 3.00±0.042 4.55±0.033 11.30±0.341 10.86±0.152 3.59±0.190 5.46±0.115 16.80±0.496 12.61±0.667
6 3.79±0.126 5.76±0.133 14.14±0.683 13.72±0.456 4.47±0.156 6.69±0.428 20.54±0.729 15.70±0.549
12 4.77±0.271 6.94±0.348 17.31±0.790 17.25±0.978 5.57±0.468 7.47±0.651 23.74±1.859 19.58±1.643

T3 (Ours)
3 2.85±0.013 4.37±0.052 10.78±0.037 10.31±0.045 3.41±0.075 5.35±0.059 16.05±0.183 11.98±0.262
6 3.64±0.019 5.50±0.131 13.61±0.162 13.17±0.067 4.28±0.086 6.48±0.213 19.73±0.258 15.05±0.303
12 4.62±0.122 6.58±0.166 16.96±0.579 16.71±0.441 5.09±0.301 6.82±0.348 21.91±1.074 17.90±1.058

• STAEformer [24]: Spatiotemporal adaptive embedding trans-
former proposes a novel component called spatiotemporal
adaptive embedding that can yield outstanding results with
vanilla transformers.

Among these methods, HI, NLinear, and PatchTST are time series
prediction models, and the others are traffic prediction models.

6.2 Performance Comparison
To verify the generality and performance of our proposed T3 model,
we compare it with eight baselines. Table. 3 shows the interval esti-
mate results of average forecasting performance. The HI algorithm
has the worst performance because it cannot capture complex traf-
fic patterns in both time and space dimensions. Although NLinear
and PatchTST are widely used in the time series forecasting task,
they are significantly inferior to traffic forecasting methods due
to their lack of particular modules for learning spatial correlation
inside the traffic network. Among the five traffic forecasting base-
lines, GWNet demonstrates almost the best performance, which
may be attributed to its gated structure that can learn time-varying
changes in traffic speed, while STAEformer achieves the second
highest ranking results, possibly contributed by its transformer

structure that can learn complex traffic patterns. Compared with
the above eight baseline methods, our proposed T3 model gets
state-of-the-art performance across all metrics, especially during
peak hours (7 a.m. to 10 a.m. and 5 p.m. to 8 p.m.) on event days,
achieving a reduction in MAE of 4.26%. Furthermore, Table. 4 shows
in detail the prediction performance of all methods at the third (half
an hour), sixth (an hour), and twelfth (two hours) time steps. Our
method demonstrates strong performance across all three time
steps. In summary, our method can consistently and significantly
outperform eight strong baselines and reduce the MAE by 4.26%
during the event peak period.

6.3 The Efficacy of Text Embedding
We conduct two groups of experiments and text embedding visual-
ization to verify the effectiveness of text embedding for the event
traffic forecasting task. First, we discuss whether multimodal data
is necessary for the event traffic forecasting problem. We conduct
a comparison between the GWNet employing handcrafted event
features and our proposed approach utilizing text embeddings. The
original inputs of GWNet have three kinds of features: traffic speed,
time of day, and day of week. We design two extra event features:
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Table 5: Comparison learning event embeddings with hand-
craft event features. P is period, where All represents overall
period and EP represents event peak hours. EO is the event
occurring feature, while EN is the event number feature.

P Type MAE RMSE MAPE (%) WAPE (%)

All

Naive 3.69±0.019 5.68±0.064 13.68±0.272 13.35±0.067
+EO 3.73±0.015 5.73±0.029 13.90±0.109 13.50±0.056
+EN 3.76±0.052 5.79±0.184 13.96±0.211 13.60±0.189
Ours 3.66±0.033 5.51±0.116 13.62±0.165 13.24±0.121

EP

Naive 4.46±0.169 6.65±0.150 19.98±0.108 15.66±0.595
+EO 4.37±0.071 6.57±0.045 19.71±0.047 15.36±0.249
+EN 4.66±0.155 6.76±0.346 20.52±0.612 16.38±0.543
Ours 4.27±0.154 6.31±0.137 19.23±0.356 15.00±0.542

Table 6: Predictor Ablation study during event peak hours.

MAE RMSE MAPE (%) WAPE (%)

T3 4.27±0.154 6.31±0.137 19.23±0.356 15.00±0.542
w/o MMP 4.35±0.096 6.51±0.136 19.58±0.304 15.28±0.339
w/o TP 4.39±0.098 6.49±0.196 19.66±0.386 15.43±0.346

one is whether an event occurs (EO), and the other is the daily
events number (EN). Experimental results in Table. 5 show that the
EO feature leads to a slight decrease in prediction error during the
event peak hours, while the EN feature results in an increase in pre-
diction error throughout both periods. We hypothesize that the EN
feature harms model performance because some unique values are
absent in the training set but present in the test set. For example, the
extreme case of five events in a single day only appears in the test
set. Therefore, we can conclude that hand-crafted features struggle
to represent the rich context of sparse events, and textual data is
necessary for modeling the impact of events on traffic speeds.

Then, we discuss whether the performance improvement comes
from the semantic information of text embeddings rather than
network structure. We replace the text embeddings (TE) that are
output by the text encoder with two kinds of initialized embeddings:
one is a random initial embedding (RE), and the other is a Gaussian
initial embedding that has the same distribution as TE, namely GE.
According to experimental results in Table. 7, TE presents superior
performance compared to RE and GE. We can infer that the pre-
trained language model can extract information from event text
to improve the performance of forecasting. Finally, we use t-SNE
technology to reduce high-dimensional text embeddings to two-
dimensional formats for visual analysis. As shown in Figure. 6, there
are some clusters between text embeddings, which demonstrates
that the similarity between events is captured by text embeddings.
Similar events will have similar impacts on traffic patterns, and our
method obtains the ability to predict event traffic by learning these
correlations from historical data.

Table 7: Comparison of different types of event embeddings.

P Type MAE RMSE MAPE (%) WAPE (%)

All
RE 3.79±0.092 5.86±0.308 13.95±0.479 13.71±0.332
GE 3.78±0.092 5.85±0.327 13.95±0.449 13.67±0.334
TE 3.66±0.033 5.51±0.116 13.62±0.165 13.24±0.121

EP
RE 4.59±0.360 6.84±0.707 20.40±1.418 16.12±1.265
GE 4.55±0.351 6.83±0.692 20.40±1.418 15.99±1.234
TE 4.27±0.154 6.31±0.137 19.23±0.356 15.00±0.542

Figure 6: t-SNE visualization of event embeddings.

6.4 Ablation and Hyperparameter Study
We conduct the ablation study and hyperparameter study about
T3. In Table. 6, w/o MMP refers to T3 without the multimodal
predictor, and wo TP refers to T3 without the traffic predictor. The
experimental results indicate that combining two prediction heads
yields the best results. We speculate that two predictors can be
more effective at learning hidden patterns between events and
traffic from sparse data. In addition, Table. 3 presents the impact
of different hidden dimensions 𝐷 on forecasting performance, and
the model achieves the best performance when 𝐷 is set to 256.

7 Conclusion
In this paper, we propose the event traffic forecasting problem,
which focuses on modeling the impact of events on traffic patterns
with multimodal inputs. First, we provide an effective pipeline for
generating event text using a large language model and build a
multimodal event traffic dataset to describe the diversity of events.
Then, to tackle the sparsity of collected data, we propose the multi-
modal event traffic prediction model, which uses pre-trained text
and traffic embedding models to extract embeddings of correspond-
ing modalities for prediction. Finally, we conduct experiments on
the real-world dataset, and results show that our proposed method
achieves state-of-the-art performance against all baselines.
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