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B SUPPLEMENTARY MATERIAL:
ORGAN-DETR: 3D ORGAN DETECTION TRANSFOMER WITH MULTISCALE
ATTENTION AND DENSE QUERY MATCHING
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B.1 CHALLENGES FOR ORGAN DETECTION IN CT

We visualize challenges for organ detection in a CT sample in Figure 7. The current challenges
of CT data and detection can be categorized into four groups, as detailed below. i) Similar voxel
intensity values in organs and neighboring tissues make the feature representation difficult to distin-
guish those based solely on voxel intensities from the same scale level. ii) Accurately outlining the
border of individual organ structures is another challenge in CT data due to the unclear boundaries
between adjacent organs and soft tissues. iii) Furthermore, the close proximity of organs within the
human body and the potential for overlap in medical images pose challenges for detection in dis-
tinguishing between organs, particularly when they exhibit similar intensity levels. iv) Last but not
least, individual anatomy may exhibit substantial variations, including the differences in the size of
organs, shape, and positioning of those regarding each other. This adds another complexity to organ
detection methods.
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(a) Organ: Duodenum

(b) Organ: Gallbladder

(c) Organ: (Left) Adrenal Gland

Figure 7: Representation of three different organs in a 3D CT scan of Total-Segmentator (scan 11)
from different viewpoints (left to right: axial, coronal, and sagittal). Precisely identifying organs
presents a significant challenge due to 1) proximity and overlap: Organs in the human body are
very close to each other and may overlap in medical images, which makes it difficult for automated
systems to distinguish one organ from another, especially when they share similar intensities; 2)
fuzzy boundaries: The boundaries between neighboring organs and soft tissues are not always
well-defined, making it difficult to precisely delineate the borders of individual structures, 3) similar
intensity voxels: Organs often have similar pixel or voxel intensities as the surrounding tissues. This
similarity in intensity makes it challenging to differentiate organs from their neighboring structures
solely based on pixel values in medical images; and 4) inter-patient variability: Each individual’s
anatomy can vary significantly. The size, shape, and even the position of organs can differ from one
person to another. This adds another complexity layer when developing automated organ detection
methods.
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Figure 8: MSA is equipped with dual attention modules: a self-attention mechanism to capture short-
range information within a layer and a cross-attention mechanism to capture long-range information
between layers (shown by the green and blue arrows).

Table 3: Specification of five CT datasets publicly accessible and utilized in this study

Dataset Size #Train / #Val. / #Test #Organs

AbdomenCT-1K (Ma et al., 2022) 224×224×96 732 / 126 / 116 5
AMOS (Ji et al., 2022) 256×256×128 166 / 22 / 52 15
WORD (Xiangde Luo & Zhang, 2022) 224×224×160 98 / 15 / 29 10
Total-Segmentator (Wasserthal et al., 2022) 160×160×256 113 / 21 / 29 19
VerSe (Sekuboyina et al., 2020) 64×64×256 261 / 37 / 74 24

B.2 INFORMATION FLOW IN MULTISCALE ATTENTION

Figure 8 visualizes the concept of the introduced Multiscale Attention (MSA). DETR-like methods
often opt for high-level features due to the computational complexity, resulting in reduced spatial
resolution. This constraint hinders the effective utilization of the Transformer-based features within
the scope of detection tasks. In response to these challenges, MSA strategically captures a wide
spectrum of long- and short-range feature patterns within and between layers with a dual attention
mechanism.

Table 4: List of organs in the preprocessed CT datasets

Dataset List of Organs
AbdomenCT-1K pancreas, left kidney, right kidney, spleen, liver

WORD pancreas, duodenum, left kidney, right kidney, spleen, urinary bladder,
liver, stomach, small bowel, colon (merged with rectum)

Total-Segmentator gallbladder, pancreas, esophagus, left adrenal gland, right adrenal gland,
trachea, urinary bladder, left kidney, right kidney, spleen, aorta, duodenum

liver, small bowel, colon, stomach, heart, left lung, right lung

AMOS esophagus, left adrenal gland, right adrenal gland, prostate/uterus,
left kidney, right kidney, spleen, pancreas, gallbladder, aorta, postcava,

duodenum, urinary bladder

VerSe vertebrae {C1–C7, T1–T12, L1–L5}
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Table 5: Summary of shape and voxel spacing characteristics in the preprocessed CT datasets

Dataset Data Resolution Voxel spacing

AbdomenCT-1K (224,224,96) (1.14,0.75,1.13) / (1.67,1.22,2.78) / (1.37,0.90,2.19)
WORD (224,224,160) (1.02,0.61,2.25) / (1.69,1.51,3.28) / (1.21,0.81,2.70)
Total-Segmentator (160,160,256) (1.31,0.67,0.16) / (2.59,2.09,2.56) / (1.88,1.40,2.22)
AMOS (256,256,128) (0.83,0.50,1.31) / (1.22,0.94,3.79) / (1.02,0.66,3.13)
VerSe (64,64,256) (3,3,3) / (3,3,3) / (3,3,3)

B.3 DATASETS AND DATA PREPARATION

The proposed organ detector is assessed using five publicly available CT datasets, see Table 3.
All these datasets provide segmentation labels. During the training process, axis-aligned bounding
boxes are extracted from the segmentation maps for each class. These bounding boxes serve as
ground truth bounding boxes for training the object detector. An overview of statistics related to CT
scans’ size, voxel spacing, and intensity percentiles is reported in Table 5.

ABDOMENCT-1K

AbdomenCT-1K (Ma et al., 2022) comprises a total of 1112 abdominal CT scans gathered from
various medical centers. In this dataset, each scan has voxel-wise segmentation labels for four
organs. These CT scans share a common axial pixel resolution of 512 × 512. The slice thickness
varies between 1.25mm and 5.0mm. For this particular project, a preprocessed version of the
dataset was utilized. In the preprocessing step, the data was resampled to have an anisotropic voxel
spacing of 2mm along each axis. Furthermore, scans containing missing organs, such as the kidney,
were excluded from the dataset, resulting in 975 CT scans. Additionally, a subset consisting of 160
samples was created for development purposes. The original segmentation labels in this dataset
covered the liver, kidney, spleen, and pancreas. To enhance the dataset’s utility, an extra label was
introduced to differentiate between the left and right kidney (as indicated in Table 4). To achieve this,
a script was developed to determine the centers of both kidneys, separate them using a sagittal plane,
and then relabel the left kidney accordingly. To ensure uniformity across all scenes, the dataset’s
preprocessing involved registering all CT scans to the first scan in the dataset. This registration
process ensured that the body’s orientation in all CT scans was consistent. Metadata contained in
the NIfTI files further confirmed the correctness of the orientation.

WORD

The WORD (Whole abdominal Organs Dataset) dataset (Xiangde Luo & Zhang, 2022) comprises
150 CT instances, all obtained from the same medical center and imaging device. This dataset
provides segmentation labels for 16 anatomical structures. Each CT sample contains a variable
number of slices, ranging from 159 to 330, with a consistent resolution of 512 × 512 pixels. The
axial in-plane spacing is 0.976mm× 0.976mm, and the spacing between slices varies from 2.5mm
to 3.0mm. For the purpose of organ detection, the dataset excluded the femur heads. Out of the
14 remaining anatomical structures, 11 were retained, while the gallbladder, adrenal glands, and
esophagus were excluded for simplicity. Additionally, the labels for the rectum and small bowel
were combined into a single label, resulting in a total of 10 organs as outlined in Table 4.

TOTAL-SEGMENTATOR

The Total-Segmentator dataset (Wasserthal et al., 2022) consists of 1204 CT instances collected
from various medical centers, encompassing various field-of-views (FOVs). This dataset provides
segmentation labels for 104 anatomical structures, including bones, muscles, organs, and vessels.
Each CT sample varies in composition, containing anywhere from 77 to 486 slices, with variable
in-plane axial pixel resolution. Additionally, each volume in this dataset has a consistent isotropic
spacing of 1.5mm. A metadata table is available, containing information about FOV categories.
A subset named ‘Thorax-Abdomen-Pelvis (TAP)’ has been defined to evaluate the object detector,
comprising 19 organs as specified in Table 4. In this subset, certain organs like the heart and lungs
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had separate labels for different parts, which were consolidated into labels such as heart, left lung,
and right lung for evaluation purposes.

AMOS

The AMOS (Abdominal Multi-Organ Segmentation) dataset (Ji et al., 2022) consists of a total of
500 CT samples obtained from different medical centers and imaging devices. This dataset provides
segmentation labels for 15 organs, as specified in Table 4. Each CT instance varies in composition,
containing between 67 and 369 slices. Out of these instances, 385 have an axial in-plane resolution
of 512× 512 pixels, while 115 have a resolution of 768× 768 pixels. The median voxel spacing for
the images is 0.67mm×0.67mm×5.0mm, with a minimum of 0.45mm×0.45mm×1.25mm and a
maximum of 1.07mm× 1.07mm× 5.0mm. It is worth noting that only the training and validation
subsets of this dataset have been used to create training, validation, and test datasets because the
labels for the original test dataset are not publicly available.

VERSE

The VerSe (Vertebrae Segmentation) dataset (Sekuboyina et al., 2020; Löffler et al., 2020; Liebl
et al., 2021) comprises a total of 374 CT images. These visual scans originate from CT scanners
produced by four different manufacturers. Additionally, the dataset encompasses a wide range of
field-of-views (FOVs) and includes various abnormalities such as fractures, metallic implants, and
foreign materials. Specifically, segmentation labels are available for 26 vertebrae; however, to eval-
uate the organ detector, only 24 Vertebrae are considered. Vertebraes L6 and T13 were excluded
due to their limited representation in the dataset; they were entirely absent from the validation and
test datasets. Each CT image consists of a variable number of slices, ranging from 34 to 2023,
with resolutions falling within the range of [103, 144] to [960, 2048]. The in-plane spacing varies
from 0.195mm× 0.195mm to 1.675mm× 1.675mm, and the slice thickness varies from 0.4mm
to 5.0mm. Although the VerSe dataset does not contain any organ-related data, it is still valuable
because it presents a challenging organ detection task for CT instances.

B.4 PREPROCESSING AND AUGMENTATION

AbdomenCT-1K: Preprocessing for the AbdomenCT-1K dataset is straightforward, given its field-
of-views (FOVs) that exclusively cover the abdomen. In this procedure, all 975 CT samples under-
went orientation standardization to Right-Anterior-Superior (RAS), followed by cropping to include
labeled regions with a two-pixel margin, and finally resizing to the specified target dimensions of
(224, 224, 96). These essential preprocessing steps were consistently applied across all datasets,
ensuring uniformity and compatibility in the dataset preparation process.

WORD: During the preprocessing of WORD, the CT scans were cropped using specific organs,
namely the colon, small bowel, spleen, stomach, urinary bladder, and rectum. All these organs,
except the liver, were considered when conducting the boundary check. The decision to exclude
the liver from the boundary check was based on the observation that only a few voxels of the liver
typically touched the image boundary.

Total-Segmentator: The image cropping process involved selecting specific organs, which included
the lungs, liver, stomach, spleen, colon, and urinary bladder. Like the AMOS dataset, a desig-
nated set of boundary organs was employed to identify organs that might have unintentionally been
cropped along the image edges. The segmentation map was relabeled for a defined set of 19 organs
(outlined in Table 4) since the original dataset defines 104 anatomical structures.

AMOS: Only the liver, stomach, spleen, urinary bladder, and prostate/uterus were considered dur-
ing the organ cropping process, while the aorta and esophagus were excluded. Subsequently, the
transformed scans checked their boundary voxels to confirm the presence of the specified organs
within the cropping region. If the margin could not be applied and there was still an organ in the
boundary layer of the scan, the scan was skipped. This was done to prevent cropped boundary or-
gans from being in the dataset. Along the preprocessing steps, these boundary organs were defined
in (Wittmann et al., 2023) for tests. The same set of organs and preprocessing steps were used for
this dataset to keep comparability.
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VerSe: The VerSe dataset contains varying FOVs, so the preprocessing of its CT scans differs from
the preprocessing of the other datasets. A fixed FOV cropping method proved inadequate because
of the substantial FOV differences between images. As an alternative, the initial step involved
cropping CT scans around any labels with a margin of three. Labels located at the image boundaries
were excluded from this process. To ensure uniformity, all scans were resampled to achieve an
isotropic spacing of 3mm. Additionally, the scans were padded to reach a final size of (64,64,256).
Two scans, however, posed a challenge as they exceeded the intended target size, rendering the
standard preprocessing approach ineffective for them. Consequently, the preprocessed VerSe dataset
comprises a total of 372 CT samples.

The preprocessing of scans involved several steps to prepare them for further analysis:

• Normalization: Scans were normalized to fall within the range [0, 1]. This was achieved
by scaling the voxel values based on the 0.5 and 99.5 percentiles of the non-background
voxels within the input scan.

• Clipping Intensities: Any intensities outside the normalized range were clipped to 0 or 1.
• Data Augmentations: To enhance the generalizability of the models, several augmentations

were applied with a probability of 50%. These augmentations included:
– Intensity Scaling and Shifting: The intensity values were scaled and shifted, each with

a maximum variation of up to 10%.
– Rotation: The scans were rotated by angles ranging from -5 degrees to +5 degrees.
– Random Translations: Scans were randomly translated, with a maximum displace-

ment of up to 10%.
– Random Zoom: A random zoom, ranging from -10% to +10%, was applied with a

probability of 50%.

These preprocessing and augmentation techniques were employed to make the dataset more robust
and diverse, thereby improving the generalization capabilities of the models used for analysis.

B.5 EXPERIMENTAL SETUP

General setting: All the methods benefited from the AdamW algorithm2. For the neck (i.e., De-
tection Transformer), a learning rate of 2e-4 was applied, while for the backbone, it was set at 2e-5,
with a weight decay of 1e-4. To manage the learning rate schedule, the StepLR scheduler3 was
employed, with a step size of 1250, throughout a span of 2000 epochs. A batch size of 2 was uti-
lized for experiments across all datasets. The loss weights for classification, bounding box’s IoU,
bounding box’s GIoU, and segmentation were configured as 2, 5, 2, and 2, respectively. Among
the competing techniques, RetinaNet and Focused Decoder benefit from segmentation loss in the
backbone. Specifically, they utilize the first layer with an identical resolution to the input CT data
for segmentation purposes.

Backbones: In this study, the feature embedding size (fe) remains constant at 384. The channel
configuration for the ResNet model is defined as [32, 64, 256, 512, 1024], with layer settings con-
figured as [3, 4, 6, 3] for ResNet-50 and [3, 4, 23, 3] for ResNet-101. The FPN backbone comprises
5 layers, initiating with a channel size of 24 and doubling it with each subsequent layer. The Swin
Transformer was incorporated into the backbones’ encoder primarily because of its promising per-
formance. In this configuration, a window size of 5 was used. The second and subsequent layers
had a stride of 2, whereas the first layer had a stride of 1. The depth was consistently set at 2, and
the number of heads varied across layers, with values of [3, 6, 12, 24]. Additionally, a dropout rate
of 0.2 was applied.

Detection Transformer: Organ-DETR, SwinFPN, and Transoar incorporate the decoder of De-
formable DETR in their architecture, with the following configuration: 3 highest feature maps,
embedding dimension of 384, 0.1 dropout rate, 6 attention heads, and 3 decoder layers. The focused
Transformer unit in Focused Decoder maintained the same configuration as previously described.
Additionally, the anchor offset was established at 0.1.

2https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
3https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.

StepLR.html
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Matchers’ setup: Tables 14 through 18 provide detailed parameter settings for each matching ap-
proach across all datasets. It is worth noting that the cost weights for classification, bounding box
IoU, and bounding box GIoU were established at values of 2, 5, and 2, respectively.

EVALUATION METRICS

According to the COCO reference4, ‘mAP COCO’, denoted by mAR or AP, computes average
precision values at ten different IoU thresholds, ranging from 0.5 to 0.95 with increments of 0.05,
i.e., T = {0.5, 0.55, . . . , 0.95}:

mAP =
1

|T|
∑

t=<T>
APt. (18)

mAP is averaged over all categories. Likewise, mAR COCO computes AR (Average Recall) values
at different IoU with thresholds in T = {0.5, 0.55, . . . , 0.95}:

mAR =
1

|T|
∑

t=<T>
ARt. (19)

AP75 is a strict metric that computes AP for predicted bounding boxes with the specific IoU thresh-
old of 0.75. While incorporating additional metrics like localization error in millimeters could pro-
vide further assessment, our study emphasizes organ detection as a general task, demonstrating its
applicability across various CT datasets with distinct characteristics. Hence, we believe the afore-
mentioned metrics are well-suited for evaluating detection tasks.

B.6 EXPERIMENTAL RESULTS

B.6.1 ABLATION STUDY ON MSA PARAMETERS

Table 6: Ablation study on different parameters of
MSA on WORD and other datasets.

Parameter mAP mAR AP75

Voxel Patch Size
2× 2× 2 51.1 57.9 55.0
4× 4× 4 51.6 58.3 55.0
6× 6× 6 51.5 57.9 53.0

Number of Scale Levels (avg. across all 5 datasets)
1 (w/o cross-att.) 44.7 39.6 51.6
2 (1 cross-att. level) 48.3 45.5 55.6
3 (2 cross-att. levels) 54.3 61.4 56.0

Number of Heads
16 50.1 57.9 50.8
32 51.6 58.3 55.0
64 53.3 59.1 57.2

Depth
2 51.6 58.3 55.0
3 51.3 58.2 54.8
4 51.9 59.2 54.0

Drop rate
0 51.1 57.9 55.0
0.1 50.9 56.5 59.4
0.3 52.0 58.3 53.5

MSA introduces a set of hyperparameters
encompassing the size of voxel patches,
the number of heads, drop rate, and depth.
The influence of each of these parame-
ters is detailed in Table 6, with an analy-
sis conducted on the WORD dataset. Ad-
ditionally, we have conducted an in-depth
investigation into the impact of MSA’s
scale levels and have provided averaged
results across all five datasets, reported
in the table. Considering all metrics, it
is advisable to opt for voxel patches of
size 4 or 2 when using MSA. AP75 score
associated with voxel patches of size 6
shows that larger voxel patches are un-
favorable. The significance of MSA has
been demonstrated in the preceding sec-
tions. Here, we underline the link between
the number of scales employed in MSA
and the resulting scores. Table 6 reveals
that incorporating additional scale lev-
els with cross-attention mechanisms sig-
nificantly enhances the performance of
Organ-DETR. Notably, using two cross-
attentions results in a remarkable perfor-
mance gain of +6.0 mAP, underscoring the
efficacy of involving a broader range of
voxel patches from various scales to en-
hance the detection method’s overall per-
formance. The table also suggests 64 heads and a depth of 4.

4https://cocodataset.org/#detection-eval
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Figure 9: Standard deviation and mean (solid line) of gradient descent results for positive queries in
a sample from the WORD dataset

B.6.2 RESULTS ON GRADIENT NORM

Figure 9 depicts the gradient norm values of positive queries within the DQM method, showcasing
varying values of the parameter λ. The graph reveals a clear trend: higher values of λ correspond to
increased gradient values, thereby expediting the training process. Higher values of λ may also lead
to a higher incidence of false positive queries. However, the multiscale segmentation loss framework
effectively controls and mitigates this potential issue. It is worth noting that equation 6 is calculated
based on the assumption of uniform gradient values for all positive queries, a condition that may
not hold in practical scenarios. Consequently, some variance in the results depicted in the figure
compared to those obtained in theory is expected, but the overall trend substantiates the conclusion
from the theoretical analysis.

B.6.3 COMPUTATIONAL COST

All experiments on the WORD, Total-Segmentator, and VerSe datasets were conducted on an
NVIDIA A100 with 40GB VRAM. Due to their large data size, we employed an NVIDIA A100
with 80GB VRAM for running the experiments on the AbdomenCT-1K and AMOS. In the analysis
of computational cost, we assessed the cost-effectiveness of the detection methods using four key
metrics: the total number of parameters, the number of floating-point operations (FLOPs), the train-
ing duration in hours on a GPU, and the inference frames per second (FPS). The results for WORD
and VerSe are reported in Tables 7 and 8, respectively. While training Organ-DETR takes longer,
it exhibits superior inference speed compared to alternative techniques. Note that we did not report
the cost of Focused Dec on the VerSe dataset since it requires fixed FoV, so VerSe is not applicable.
Additionally, it is worth highlighting that Organ-DETR possesses the highest number of param-
eters among the considered models. This observation underscores the remarkable computational
efficiency achieved by the Organ-DETR framework.

Table 7: Comparative results of organ detection techniques in terms of computational cost on WORD
dataset

Method Backbone Transformer Params FLOPs Training Inference
(#M ) (#G) (GPU hours) FPS

RetinaNet FPN Retina U-Net 51 1583 17 12
- FPN DETR 44 612 21 5
Focused Dec. FPN Foc. Dec. 43 373 20 14
SwinFPN FPN + Swin D-DETR 73 638 22 9
Transoar FPN D-DETR 53 583 20 12
Organ-DETR FPN MSA + D-DETR 84 629 26 18
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Table 8: Comparative results of organ detection techniques in terms of computational cost on the
VerSe dataset

Method Backbone Transformer Params FLOPs Training Inference
(#M ) (#G) (GPU hours) FPS

RetinaNet FPN Retina U-Net 53 203 13 59
- FPN DETR 44 63 8 32
Focused Dec. FPN Foc. Dec. – – – –
SwinFPN FPN + Swin D-DETR 63 66 11 34
Transoar FPN D-DETR 53 56 9 42
Organ-DETR FPN MSA + D-DETR 84 108 39 41

B.6.4 VISULAISION COMPARISON
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(a) RetinaNet
(Spleen: 0.89, Liver: 0.94, Right Kidney: 0.87, Pancreas: 0.53, Left Kidney: 0.94)

(b) Focused Decoder
(Spleen: 0.84, Liver: 0.88, Right Kidney: 0.94, Pancreas: 0.49, Left Kidney: 0.94)

(c) Transoar (FPN)
(Spleen: 0.91, Liver: 0.94, Right Kidney: 0.89, Pancreas: 0.50, Left Kidney: 0.93)

(d) Organ-DETR (FPN)
(Spleen: 0.96, Liver: 0.94, Right Kidney: 0.96, Pancreas: 0.83, Left Kidney: 0.90)

Figure 10: Visual comparison of bounding box predictions for various organ detection techniques
in a subset of the AbdomenCT-1K dataset, along with reported IoU scores for each organ. Note that
due to the limitations of 3D visualization, some fine details may be lost in 2D visualization.
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(a) RetinaNet
(Liver: 0.76, Left Kidney: 0.76, Right Kidney: 0.91, Pancreas: 0.56, Spleen: 0.77)

(b) Focused Decoder
(Liver: 0.76, Left Kidney: 0.49, Right Kidney: 0.60, Pancreas: 0.61, Spleen: 0.69)

(c) Transoar (with FPN backbone)
(Liver: 0.83, Left Kidney: 0.62, Right Kidney: 0.81, Pancreas: 0.67, Spleen: 0.69)

(d) Organ-DETR (with FPN backbone)
(Liver: 0.85, Left Kidney: 0.79, Right Kidney: 0.93, Pancreas: 0.68, Spleen: 0.77)

Figure 11: Visual comparison of bounding box predictions for various organ detection techniques in
a subset of the WORD dataset, along with reported IoU scores for each organ. Note that due to the
limitations of 3D visualization, some fine details may be lost in 2D visualization.

25



Under review as a conference paper at ICLR 2024

(a) RetinaNet
(Avg. IoUs of depicted organs-Left: 0.88, Right: 0.81)

(b) Focused Decoder
(Avg. IoUs of depicted organs-Left: 0.90, Right: 0.86)

(c) Transoar (with FPN backbone)
(Avg. IoUs of depicted organs-Left: 0.89, Right: 0.81)

(d) Organ-DETR (with FPN backbone)
(Avg. IoUs of depicted organs-Left: 0.92, Right: 0.88)

Figure 12: Visual comparison of bounding box predictions for various organ detection techniques in
a subset of the Total-Segmentator dataset, along with reported IoU scores for each organ. Note that
due to the limitations of 3D visualization, some fine details may be lost in 2D visualization.
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(a) Hungarian Matching
(Esophagus: 0.74, Liver: 0.87, Bladder: 0.15)

(b) DQM
(Esophagus: 0.81, Liver: 0.90, Bladder: 0.40)

Figure 13: Visualization of the sampling points’ location of different organs in the last layer of
the Transformer decoder for (a) Deformable DETR’s Hungarian matching in Transoar; and (b) the
proposed DQM of Organ-DETR on a Total-Segmentator’s sample. Organs represented from top to
bottom: Esophagus, liver, and bladder. Note that due to the limitations of 3D visualization, some
fine details may be lost in 2D visualization.
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(a) Hungarian Matching
(Liver: 0.77, Left Kidney: 0.53)

(b) DQM
(Liver: 0.87, Left Kidney: 0.77)

Figure 14: Visualization of the sampling points’ location of different organs in the last layer of
the Transformer decoder for (a) Deformable DETR’s Hungarian matching in Transoar; and (b) the
proposed DQM of Organ-DETR on a WORD’s sample. Note that due to the limitations of 3D
visualization, some fine details may be lost in 2D visualization.

(a) Hungarian Matching
(Right Kidney: 0.53, Left Kidney: 0.89)

(b) DQM
(Right Kidney: 0.87, Left Kidney: 0.92)

Figure 15: Visualization of the sampling points’ location of different organs in the last layer of
the Transformer decoder for (a) Deformable DETR’s Hungarian matching in Transoar; and (b) the
proposed DQM of Organ-DETR on an AbdomenCT-1K’s sample. Note that due to the limitations
of 3D visualization, some fine details may be lost in 2D visualization.
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B.6.5 MAIN RESULTS PER DATABASE

Table 9: Comparative results of organ detection techniques using consistent parameters on the
AbdomenCT-1K dataset

Method Backbone Transformer Matcher mAP mAR AP75 Query Params
(#) (#M )

RetinaNet FPN Retina U-Net - 71.9 76.6 81.1 100 50.7
- UNETR+Swin D-DETR Hung. 69.1 75.0 78.4 100 51.7
- FPN DETR Hung. 64.9 70.4 72.1 100 43.7
Focused Dec. FPN Foc. Dec. Hung. 60.3 67.4 66.8 135 36.1
SwinFPN FPN + Swin D-DETR Hung. 76.3 81.9 85.9 100 38.2
Transoar FPN D-DETR Hung. 76.4 81.5 85.0 100 53.4
Transoar ResNet-50 D-DETR Hung. 76.0 81.2 84.1 100 56.9

Organ-DETR FPN MSA + D-DETR DQM 81.7 86.4 91.7 100 81.5
Organ-DETR ResNet-50 MSA + D-DETR DQM 80.0 84.9 84.9 100 53.5
Organ-DETR ResNet-101 MSA + D-DETR DQM 80.2 85.2 92.2 100 62.3

Table 10: Comparative results of organ detection techniques using consistent parameters on the
WORD dataset

Method Backbone Transformer Matcher mAP mAR AP75 Query Params
(#) (#M )

RetinaNet FPN Retina U-Net - 34.5 39.4 29.2 100 51.4
- UNETR+Swin D-DETR Hung. 39.0 47.2 30.1 100 51.6
- FPN DETR Hung. 29.1 36.5 20.4 100 43.7
Focused Dec. FPN Foc. Dec. Hung. 26.7 34.1 17.4 270 42.5
SwinFPN FPN + Swin D-DETR Hung. 40.8 49.4 35.1 100 73.4
Transoar FPN D-DETR Hung. 38.8 47.3 29.1 100 53.4
Transoar ResNet-50 D-DETR Hung. 34.4 42.6 24.0 100 56.9

Organ-DETR FPN MSA + D-DETR DQM 52.0 58.3 53.5 100 84.3
Organ-DETR ResNet-50 MSA + D-DETR DQM 48.2 55.6 45.3 100 52.5
Organ-DETR ResNet-101 MSA + D-DETR DQM 48.4 55.1 44.2 100 62.3
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Table 11: Comparative results of organ detection techniques using consistent parameters on the
Total-Segmentator dataset

Method Backbone Transformer Matcher mAP mAR AP75 Query Params
(#) (#M )

RetinaNet FPN Retina U-Net - 35.8 41.7 27.5 100 52.7
- UNETR+Swin D-DETR Hung. 37.5 43.0 31.7 100 51.7
- FPN DETR Hung. 29.7 35.4 22.9 100 43.7
Focused Dec. FPN Foc. Dec. Hung. 42.7 48.7 37.4 513 42.9
SwinFPN FPN + Swin D-DETR Hung. 40.9 47.1 34.8 100 73.4
Transoar FPN D-DETR Hung. 40.4 46.8 33.0 100 53.4
Transoar ResNet-50 D-DETR Hung. 37.6 43.9 31.9 100 56.9

Organ-DETR FPN MSA + D-DETR DQM 49.5 55.4 49.6 190 84.4
Organ-DETR ResNet-50 MSA + D-DETR DQM 47.5 53.5 44.8 190 52.6
Organ-DETR ResNet-101 MSA + D-DETR DQM 47.0 53.1 44.4 190 62.3

Table 12: Comparative results of organ detection techniques using consistent parameters on the
VerSe dataset

Method Backbone Transformer Matcher mAP mAR AP75 Query Params
(#) (#M )

RetinaNet FPN Retina U-Net - 46.3 55.4 51.0 100 53.4
- UNETR+Swin D-DETR Hung. 36.3 45.2 25.8 100 51.9
- FPN DETR Hung. 21.8 31.1 9.4 100 43.7
SwinFPN FPN + Swin D-DETR Hung. 33.9 43.6 20.8 100 63
Transoar FPN D-DETR Hung. 34.8 44.8 22.7 100 53.4
Transoar ResNet-50 D-DETR Hung. 35.8 44.9 24.4 100 56.9

Organ-DETR FPN MSA + D-DETR DQM 55.1 61.8 62.7 240 84.4
Organ-DETR ResNet-50 MSA + D-DETR DQM 48.3 57.7 45.5 240 52.6
Organ-DETR ResNet-101 MSA + D-DETR DQM 49.5 56.6 46.8 240 62.4

Table 13: Comparative results of organ detection techniques using consistent parameters on the
AMOS dataset

Method Backbone Transformer Matcher mAP mAR AP75 Query Params
(#) (#M )

RetinaNet FPN Retina U-Net - 27.9 31.6 24.6 100 52.2
- UNETR+Swin D-DETR Hung. 20.1 27.8 9.1 100 51.7
- FPN DETR Hung. 18.0 24.5 8.3 100 43.7
Focused Dec. FPN Foc. Dec. Hung. 25.1 33.3 13.5 405 42.6
SwinFPN FPN + Swin D-DETR Hung. 27.2 35.1 17.4 100 73.4
Transoar FPN D-DETR Hung. 28.1 35.4 17.9 100 53.4
Transoar ResNet-50 D-DETR Hung. 24.1 85.5 31.2 100 56.9

Organ-DETR FPN MSA + D-DETR DQM 36.2 43.6 29.2 150 84.3
Organ-DETR ResNet-50 MSA + D-DETR DQM 32.2 40.0 23.4 150 52.5
Organ-DETR ResNet-101 MSA + D-DETR DQM 32.9 40.7 24.3 150 62.3
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B.6.6 MATCHING RESULTS PER DATABASE

Table 14: Comparative results of different matching techniques on the AbdomenCT-1K dataset

Method #M Hyperparameters mAP mAR AP75

Hungarian 5 one-to-one 76.4 81.4 93.0
DN 5 σbbox = 0.4, σlabel = 0.5, Ndn = 50 75.2 81.0 90.1
CDN 5 σbbox = 0.4, σlabel = 0.5, Ndn = 50 75.5 81.5 84.5
Hybrid Matching 5 N = 100, T = 300,K = 6 76.7 82.2 85.5
Matching with Distinct Queries 5 N = 100, βIoU = 0.8 73.5 79.4 83.2
DQM (ours) 5 N = 100, λ = 0.2 78.9 83.9 93.0

Table 15: Comparative results of different matching techniques on the VerSe dataset

Method #M Hyperparameters mAP mAR AP75

Hungarian 24 one-to-one 35.5 45.1 23.6
DN 24 σbbox = 0.2, σlabel = 0.25, Ndn = 50 33.7 43.2 24.4
CDN 24 σbbox = 0.2, σlabel = 0.25, Ndn = 50 33.5 43.5 20.1
Hybrid Matching 24 N = 100, T = 300,K = 6 36.3 45.9 25.3
Matching with Distinct Queries 24 N = 200, βIoU = 0.8 24.7 32.0 12.5
DQM (ours) 24 N = 200, λ = 0.1 36.4 45.0 23.6

Table 16: Comparative results of different matching techniques on the WORD dataset

Method #M Hyperparameters mAP mAR AP75

Hungarian 10 one-to-one 38.1 46.8 28.5
DN 10 σbbox = 0.4, σlabel = 0.5, Ndn = 50 37.5 46.0 28.3
CDN 10 σbbox = 0.4, σlabel = 0.5, Ndn = 50 38.8 47.4 27.6
Hybrid Matching 10 N = 100, T = 300,K = 6 41.7 49.5 34.8
Matching with Distinct Queries 10 N = 200, βIoU = 0.8 37.7 45.8 26.8
DQM (ours) 10 N = 200, λ = 0.2 42.4 50.4 35.3

Table 17: Comparative results of different matching techniques on the Total-Segmentator dataset

Method #M Hyperparameters mAP mAR AP75

Hungarian 19 one-to-one 39.2 45.4 31.8
DN 19 σbbox = 0.4, σlabel = 0.5, Ndn = 50 38.5 45.1 32.2
CDN 19 σbbox = 0.4, σlabel = 0.5, Ndn = 50 38.7 45.4 33.1
Hybrid Matching 19 N = 100, T = 300,K = 6 37.3 44.3 31.1
Matching with Distinct Queries 19 N = 250, βIoU = 0.8 28.8 34.5 21.0
DQM (ours) 19 N = 600, λ = 0.2 38.6 45.5 34.4
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Table 18: Comparative results of different matching techniques on the AMOS dataset

Method #M Hyperparameters mAP mAR AP75

Hungarian 15 one-to-one 26.9 34.3 16.3
DN 15 σbbox = 0.4, σlabel = 0.5, Ndn = 50 26.1 34.4 14.9
CDN 15 σbbox = 0.4, σlabel = 0.5, Ndn = 50 26.4 34.1 17.6
Hybrid Matching 15 N = 100, T = 300,K = 6 27.0 34.5 15.9
Matching with Distinct Queries 15 N = 300, βIoU = 0.8 19.5 26.8 7.4
DQM (ours) 15 N = 400, λ = 0.2 27.1 35.0 27.7
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