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ABSTRACT

Since WGANs were first introduced, there has been considerable debate on
whether their success in generating realistic images can be attributed to minimiz-
ing the Wasserstein distance between the distribution of generated images and the
training distribution. In this paper, we present theoretical and experimental re-
sults that show that WGANs do minimize the Wasserstein distance but the form
of the distance that is minimized depends highly on the discriminator architec-
ture and its inductive biases. Specifically, we show that when the discriminator is
convolutional, WGANs minimize the Wasserstein distance between patches in the
generated images and the training images, not the Wasserstein distance between
images. Our results leverage the advantages of discrete generators for which the
Wasserstein distance between the generator distribution and the training distribu-
tion can be computed exactly and the minima can be characterized analytically.
We present experimental results with discrete GANs that generate realistic fake
images (comparable in quality to their continuous counterparts) and present ev-
idence that they are minimizing the Wasserstein distance between real and fake
patches and not the distance between real and fake images. Our code is available
at https://github.com/ariel415el/DiscreteGANs.git

1 INTRODUCTION

In a seminal paper, (Arjovsky et al., 2017) showed the relationship between generative adversarial
networks (GANs) and the Wasserstein distance (W1) between two distributions. They argued that
when the data lies on a low dimensional manifold, the Wasserstein distance is a more sensible
optimization criterion compared to the KL divergence and showed that the Wasserstein distance can
be approximately optimized using an adversarial game between two neural networks: a generator
network and a critic network. The key difference between their method, the Wasserstein GAN
(WGAN), and previous GANs is that the critic is regularized to be 1-Lipshitz, and a great deal
of subsequent research has focused on improved regularization techniques (Gulrajani et al., 2017;
Miyato et al., 2018; Anil et al., 2019). WGANs have been used in many applications and can provide
excellent sample quality in different challenging image datasets (Radford et al., 2015; Isola et al.,
2017; Brock et al., 2018; Karras et al., 2020; Sauer et al., 2022; Pan et al., 2023).

In recent years, however, the connection between the success of GANs and the Wasserstein distance
has been questioned (Stanczuk et al., 2021; Fedus et al., 2018; Mallasto et al., 2019; Korotin et al.,
2022; Milne & Nachman, 2022). The first criticism is the extent to which WGANs do minimize
the Wasserstein distance. Several authors have shown that approximately minimizing W1 using
WGANs can yield a poor approximation (Pinetz et al., 2019; Mallasto et al., 2019; Stanczuk et al.,
2021; Korotin et al., 2021). A second criticism is whether minimizing the Wasserstein distance be-
tween two distributions is a sensible optimization criterion for generative models of images. Figure 1
shows a result from Mallasto et al. (2019): a model that does a much better job of minimizing an
empirical estimate of the Wasserstein distance actually produces results of much lower visual qual-
ity. This has led to an alternative view whereby ”GANs succeed because they fail to approximate
the Wasserstein distance” (Stanczuk et al., 2021) and that GANs should not be seen as minimizing a
loss function (Goodfellow et al., 2020; Fedus et al., 2017). Many papers have completely abandoned
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Figure 7: Samples resulting from the training with a given
approximation method. c-transfrom on the top and gradient
penalty on the bottom. Based on (Mallasto et al., 2019b).
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Figure 1: When a WGAN generator is trained using gradient clipping, the approximation to Wasser-
stein distance is poor and a batch of generated faces have a higher Wasserstein distance to a batch
from the training set compared to when the “c-transform” method is used (Mallasto et al., 2019).
Nevertheless, the visual quality is higher with the poor approximation.

the distribution- matching approach and focused instead on analyzing the adversarial game and its
equilibrium (Sidheekh et al., 2021; Farnia & Ozdaglar, 2020; Schäfer et al., 2019; Qin et al., 2020).

A seemingly simple approach to answering the question of whether WGANs succeed because they
minimize W1 is to measure the Wasserstein distance between Pθ, the distribution over fake images
defined by the GAN, and Pdata, the true distribution, and to compare that distance with alternative
methods that minimize W1(P, Pdata). Unfortunately, an exact calculation of W1(P,Q) where P,Q
are continuous distributions can only be done for a limited class of distributions. In previous works
(e.g. figure 1), an empirical approximation to W1(P,Q) was used, but this approximation is known
to be poor for high-dimensional data such as images (Weed & Bach, 2019). Thus as long as we use
continuous, non-parametric distributions for the data and the generated images, it is impossible to
give a rigorous answer to whether WGANs minimize W1.

In this paper, we present an alternative approach that allows us to give a rigorous answer. We
leverage the advantages of discrete GANS. These GANS are identical to the standard GANs in
which a noise vector z is passed through a neural network fθ to generate an image. But in discrete
GANs, the noise vector z is sampled uniformly from M possible fixed noise vectors and thus the
generator can generate at most M possible images. Our work was motivated by our initial findings
that when M is sufficiently large, discrete GANs generate images that are of comparable quality to
that of standard GANs with the same architecture. Figure 2 shows images generated by a variant of
FastGAN 1 that we trained as a discrete GAN with M = 70, 000 fixed noise vectors. The results are
comparable in quality to training the same architecture with continuous noise vectors and similar
results are obtained with other values of M .

By using a discrete GAN we obtain the following advantages:

• We can exactly compute the Wasserstein distance between the GAN distribution Pθ and the
empirical distribution Pdata

• We can analytically characterize the optimal distribution Pθ that minimizes W1(Pθ, Pdata)
for different values of M .

• We can directly optimize W1(Pθ, Pdata) and compare these (locally) optimal solutions to
the ones found by WGANs.

In this paper, we leverage these advantages of discrete GANs to provide theoretical and experi-
mental evidence that successful WGANs do minimize the Wasserstein distance but the form of the
distance that is minimized depends highly on the discriminator architecture and its inductive biases.
Specifically, we show that when the discriminator is convolutional, WGANs minimize the Wasser-
stein distance between patches in the generated images and the training images, not the Wasserstein
distance between images.

1See appendix B.2
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Figure 2: (top:) Images generated by a discrete version of FastGAN trained on 128x128 images
from FFHQ with M = 70, 000. Even though the generator is discrete the visual quality is high and
comparable to that of the continuous generator. Similar results are obtained with different values of
M . (botttom:) the closest training example to each generated image.

2 EXACT COMPUTATION OF W1 IN DISCRETE SETTING AND
CHARACTERIZATION OF THE MINIMUM.

We start by reviewing the connection between Wasserstein distance and WGANs. The Wasserstein
distance W1(P,Q) between two distributions is defined as:

W1(P,Q) = inf
γ∈Π(P,Q)

Ex,y∼γ∥x− y∥ (1)

where Π(P,Q) denotes the set of joint distributions whose marginal probabilities are P,Q. The
connection to GANs is more evident in the dual form:

W1(P,Q) = max
f∈F1

EP (f)− EQ(f) (2)

where F1 is the class of 1-Lipschitz bounded functions. Thus if we denote by P the distribution over
images defined by the generator and Q the training distribution, the minimization of W1(P,Q) can
be performed using an adversarial game in which the generator attempts to decrease EP (f)−EQ(f)
and the discriminator, or critic f , attempts to increase EP (f)− EQ(f).

As mentioned in the introduction, the Wasserstein distance between arbitrary P,Q cannot be com-
puted efficiently and in this paper we leverage the advantages of discrete distributions for which
exact computation and optimization is possible.

Definition 2.1. (Discrete distribution) Given a set of N points {xi}Ni=1 we denote the discrete
distribution defined by these points by P{xi}(x) =

1
N δ(x− xi), where δ is the Dirac delta function.

Definition 2.2. (Discrete W1): Given a set of M points {xi} and a second set of N points {yi} the
Wasserstein distance between the discrete distributions defined by the two sets is given by:

W1(P{x}, P{y}) = min
π

∑

i,j

πij∥yi − xj∥ (3)

with πij a M ×N matrix whose elements are in [0, 1] and satisfies
∑

i πij =
1
M ,

∑
j πij =

1
N .

Unlike the continuous case, the solution for the optimal transport matrix π can be done in polynomial
time so that W1(P{x}, P{y}) can be computed exactly. The connection to discrete GANs is described
in the following definition:

Definition 2.3. (Discrete W1 optimization problem). Given a set of of N points {yi} the discrete
W1 optimization problem is to find a set of M points {xj} such that W1(P{x}, P{y}) is minimal.
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Figure 3: In the discrete Wasserstein minimization problem, we approximate a training distribution
consisting of N examples (blue circles) with a generated distribution consisting of M examples
(red asterisk). In this paper we present an algorithm (OT-means) for solving this problem and we
characterize the optimal solution. Specifically, we show that when M < N the optimal solution
generates images that are linear combinations of training examples, while for M = N and M > N
it copies the training examples.

Figure 3 illustrates this problem. The training training distribution has N examples (blue circles) and
we try to approximate it with a generated distribution with M examples (red asterisks). The figure
shows numerical solutions to this problem using an iterative algorithm that we call ”OT-Means”.

Algorithm (OT-Means). Repeat until convergence:

• Given the current estimate of the generated points {xj} set π to be the optimal transport
matrix betwen {xj}Mj=1 and the training set {yi}Ni=1

• Given π minimize:
xj = argmin

x

∑

i

πij∥yi − x∥

This minimization is the geometric median problem and can be performed using iteratively
reweighted least squares (Weiszfeld, 1937).

It is easy to show that this algorithm decreases W1(P{x}, P{y}) at each iteration.

Figure 3 shows the output of OT-means on the same toy dataset with different values of M . It can
be seen that when M < N the optimal solution generates samples that are linear combinations of
training examples, while for M = N and M > N it copies the training examples. The following
theorem characterizes the solutions to the problem.

Theorem 2.4. For M = N or M > N, M
N = k the optimal solution to the discrete W1 optimization

problem is for the generator to copy the training examples. For M < N , at any local minimum of
the problem, each generated sample is a linear combination of at least N/M training examples.

Proof. (sketch) The result for M = N or M = kN follows from the fact that W1 ≥ 0 and copying
the examples yields W1 = 0. The result for M < N follows by differentiating W1(P{x}, P{y})
with respect to a specific xj and setting the gradient to zero. See appendix A.1 for full proof.

Given these results, we can now rigorously answer the following question: is the success of the
discrete GAN shown in figure 2 due to minimizing W1 ? This GAN was trained with M = N =
70, 000 thus the optimal solution is to simply copy the training examples. But as can be seen, in
figure 2, the discrete GAN is not copying the training images and when we compute the exact W1

for this problem we see that is far from the optimal value of zero. As another example, consider the
discrete GAN shown in figure 4: here M = 10, 000 and N = 70, 000 so at any local minimum the
generated images should be a linear combination of at least 7 training images. Indeed when we run
OT-means with these values of M,N we obtain images of low quality (shown in the bottom of the
figure) even though the exact W1 is better. This is reminiscent of the Mallasto et al. (2019) result in
figure 1 but note that here we are using the exact W1 between two discrete distributions and avoiding
the intractable problem of approximating W1 between continuous distributions.
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Discrete FastGAN (M = 10K) (W1 ≈ 1.82e04):

OT-Means (M = 10K) (W1 ≈ 7.69e03)):

Figure 4: Top: results of discrete fastGAN with M = 10K so that M < N . The results are still
sharp and realistic. Bottom: OT-means with the same M,N . This produces blurred images and yet
the exact W1 is lower.

3 THE IMPORTANCE OF THE DISCRIMINATOR ARCHITECTURE

Given the dual form of W1 (equation 2), how do we explain the fact that WGANs do such a poor job
of minimizing W1? One possibility is that in the standard training of WGANs, the discriminator is
not optimized to convergence: the common practice is to iterate a few iterations of gradient descent
for the generator and then a few iterations for the discriminator. Perhaps this use of iterative gradient
updates precludes the WGANs from optimizing W1 ? In this section, we present evidence that this
is not the case. In fact, even with iterative gradient updates, WGANs can do an excellent job of
optimizing the Wasserstein distance, but the specific form of the distance that is being optimized is
heavily influenced by the architecture of the discriminator.

Figures 5,6 show experiments with fully connected discriminators. Fully connected discriminators
are interesting because they satisfy the universal approximation property Hornik et al. (1989): by
using a sufficiently wide fully connected network with the gradient penalty method of WGANs, the
discriminator should be able to implement any 1-Lipshitz function. In these figures, we considered
three toy datasets of N = 1000 images: (1) white squares on a black background (2) MNIST
and (3) face thumbnails (of size 64 × 64). We trained a discrete WGAN with a fully connected
discriminator on these datasets with different values of M . The generator network was also a fully
connected network and we used mini-batches of size 64. We also ran OT-Means on the same data
and for the same values of M . We found that for a range of values of M , the discrete WGAN did an
excellent job of minimizing W1.

Figure 5 shows the results for M = 64. Recall that given theorem 2.4, any local minimum of the loss
should generate images that are linear combinations of at least 15 different training images. Indeed
when we look at the results of OT-Means (in the middle column) we find that the generated images
are blurred, as expected. When we look at the results of the DiscreteWGAN-FC (right column)
we see that they are also blurred. Unlike the typical published WGAN generated images, where the
results are sharp and contain high-resolution detail (e.g. figure 1), now the results are visually similar
to the results of OT-Means. Perhaps most convincingly, when we measure the exact W1 between the
generated images and the training set, we see that the DiscreteWGAN-FC samples achieve nearly
the same W1 as the OT-Means result (and significantly better than the W1 obtained by randomly
choosing a batch of M examples from the data as the generated images).

Figure 6 shows a similar pattern of results for the case M = N . According to theorem 2.4, in
this setting the optimal W1 is obtained when the generator simply copies the training examples.
Indeed such a solution is found rapidly using OT-Means. But more surprisingly, this solution is also
found using the Discrete GAN: even though the generator never has direct access to the training set
(only through a noisy gradient signal given by the discriminator) and is trained with mini-batches, it
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Figure 5: Using a fully connected discriminator minimizes W1 almost as well as OT-Means. The
plots on the right show the exact W1 for OT-Means (green), WGAN (blue), and randomly choosing
a batch of M training images (red).

Figure 6: Using Fully connected discriminator and M = N makes WGANs copy the data. Again,
this is almost as good as minimizing W1 with OT-Means.

manages to copy the training examples and achieves a W1 value that is close to the optimal value of
zero. Figure 20 in the appendix shows more results for the case M = N : all images generated by
the WGAN are copies of a training image.

Taken together, these results show that WGANs can do an excellent job of minimizing W1, even
with iterative gradient updates. How then do we explain the failure of W1 minimization in successful
WGANs such as those shown in figures 1,2? As we now show, this is because they use convolutional
discriminators.

3.1 CONVOLUTIONAL DISCRIMINATORS

The key assumption in the connection between WGANs and W1 is that the discriminator can ap-
proximate any 1-Lipshitz function. But what happens if the discriminator architecture has a strong
inductive bias? Almost all discriminators used in practical GANs are convolutional. The following
theorems show that for such discriminators, WGANs no longer minimize W1 between images but
rather between smaller image-patches.
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Figure 7: Using convolutional discriminators with the same generator as above learns either global
patch statistics (with CNN-GAP) or local patch statistics (with CNN-FC). In all cases, the patch W1
that it finds is similar to directly optimizing the appropriate patch W1.

We start by formally defining two convolutional architectures (see detailed description in the ap-
pendix B.1).

Definition 3.1. (CNN-GAP) We denote by CNN-GAP(S) a CNN in which all layers except the last
two are convolutional, followed by global average pooling (GAP) and a fully connected layer. The
receptive field of units in the layer before the global average pool is S.

Definition 3.2. (CNN-FC) We denote by CNN-FC(S) a CNN in which all layers except the last
layer are convolutional followed by fully connected layer and the receptive field of units in the layer
before last is S.

These two CNNs are abstractions of CNNs that are used in successful WGANs: CNN-GAP is an
abstraction of the patchGAN discriminator (Isola et al., 2017) and CNN-FC is an abstraction of the
DCGAN discriminator (Radford et al., 2015). More details are in Appendix B.1.

Theorem 3.3. Training a WGAN with a CNN-GAP discriminator is equivalent to minimizing
W1(P̂θ, P̂data) where P̂θ, P̂data are the distribution over all patches of size S in the generated im-
ages and training images respectively.

Proof. (sketch) For this discriminator the output can be written as a sum of discriminators over
patches and by linearity of expectation EP (f), EQ(f) can be written as a sum of expectations over
patch distributions. Constraining the image discriminator to be 1-Lipshitz also constrains the patch
discriminator. Full proof in A.2

This proof generalizes the connection between convolutional discriminators and patch distributions
that was first presented in Isola et al. (2017). We note also that most of the proof (which relies on
the linearity of expectations) also holds for other forms of GANs such as Cramer GANs (Bellemare
et al., 2017) , Sobolev GANs (Mroueh et al., 2017), and MMD-GANs (Li et al., 2017) . For the
non-saturating GAN with a convolutional discriminator, the discriminator output cannot be written
as a linear sum of patch outputs and so the proof does not hold although we observe empirically that
such NS-GANS behave qualitatively similar to WGANs (figure 17). Figure 19 shows the influence
of the receptive field of the discriminator on the patch distribution minimized by the WGAN: as we
increase the receptive field of the discriminator, the images increasingly capture more of the global
structure of the training images.
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Figure 8: Top column: 20 randomly selected fake patches from a single location from a discrete
GAN with M = N = 70K. Second column: the most similar true patches from the same location
in the training set. Even though the generator never has direct access to the training images, it does
a good job of copying the training patches. The mean cosine distance to the nearest neighbor is
0.99. Bottom: comparisons of histograms of random projections of fake and true patches at the
same location. The histograms are almost perfectly aligned. The histogram of LSUNS patches at
the same location are shown for comparison.

Theorem 3.4. Training a WGAN with a CNN-FC discriminator is equivalent to minimizing an

upper bound on W1(
ˆ

P i,j
θ ,

ˆ
P i,j
data) where ˆ

P i,j
θ

ˆ
P i,j
data are the distributions over all patches of size S in

the generated images and training images respectively at location (i, j). This bound holds for any
location (i, j).

Proof. (sketch) For this discriminator, the output can be written as a weighted sum of discriminators
over patches at a specific location. By choosing the weights to be one only at one location and zero
everywhere else, we obtain a bound on the Wasserstein distance between fake and generated patches
at that location. Full proof in A.3.

Figure 7 (1st and 3rd left columns) shows the dramatic influence of the discriminator architecture
on the toy datasets that we showed in figure 5, Even though we are using exactly the same value of
M (64) and exactly the same training set and generator architecture, the Discrete GANs with CNN
discriminators generate completely different images compared to OT-Means (Fig. 5).

In order to directly optimize patch W1 we can no longer use OT-Means because the generated
patches must satisfy the constraint that they are taken from M images with overlap. As an alterna-
tive, we use SGD to train the same generator network used by the discrete GANs but replace the
WGAN training loss with an estimate of the appropriate patch W1.

As mentioned in the introduction we use the discrete generators to avoid using minibatch-based
empirical estimates of W1. For image W1 we need to compute an optimal transport between M = 64
generated images and N training images and this is still feasible but for global patch W1 we need to
compute optimal transport between all patches in 64 images and all patches in the training images
and this is infeasible. We therefore used Sliced Wasserstein distance (SWD) Pitie et al. (2005);
Rabin et al. (2011); Bonneel et al. (2015) as a cheaper proxy.

The sliced Wasserstein distance is defined as the expected W1 value between 1-d projections of two
distributions into random directions. An unbiased approximation of this distance is computed from
k random directions. The efficiency of SWD stems from the fact that for one-dimensional data, the
W1 can be computed by simply sorting the samples and so the distance between two samples of
size M can be computed in O(M logM). While in general SWD(P,Q) and W1(P,Q) may be
different, SWD shares with W1 the property that SWD(P,Q) = 0 if and only if P = Q. Thus by
minimizing patch SWD we are encouraging the patch distribution in the fake images to match the
patch distributions in the true images.

Figure 7 (2nd and 4th columns from the left) shows the results of direct optimization of patch SWD
on the same datasets and using the values of M . Unlike the OT-Means results, matching patch
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Figure 9: Evidence that the discrete DCGAN (2 leftmost plots) and FastGAN (2 rightmost plots)
match the local statistics in the generated image and the training images. Even though each image is
quite far from a training image, the local histograms of random projections of patches from the true
images and the generated images are almost identical. This is true for various values of M including
a continuous prior.

distributions yields images that preserve high-frequency details and lack global structure. Clearly,
discrete GANs that use convolutional discriminators generate images similar to those obtained by
approximately minimizing patch distributions, not by minimizing image W1.

To summarize, our proofs show that theoretically WGANs with convolutional discriminators should
minimize patch W1 and not image W1 and our experiments with toy data show that this is indeed
the case, even if we use iterative gradient training. We now ask, can the minimization of patch W1

explain the success of WGANs in realistic datasets?

4 DO SUCCESSFUL DISCRETE GANS MINIMIZE PATCH WASSERSTEIN
DISTANCE?

Model DCGAN FastGAN OT-Means AFHQ Imagenet
M 10K 70K ∞ 10K 70K ∞ 10K 15K 70K

Local patch swd 0.044 0.040 0.058 0.056 0.045 0.033 0.099 0.145 0.181

Table 1: The local SWD between real FFHQ (N=70K) image patches and fake image patches for
different successful DiscreteWGANs (averaged over locations) with different M values. In all cases,
the average local SWD is below 0.05. For reference comparison, the average local SWD for OT-
Means (M=10K) is around 0.1 and > 0.14 for images from AFHQ and ImageNet

We trained discrete versions of FastGAN and DCGAN on N = 70, 000 FFHQ images of size
128 × 128. We varied the number of fixed noise vectors M and found that for both architectures,
the discrete GANs generate comparable results to the continuous counterparts (figures 2,4). See also
figure 14 in the appendix.

The preceding theory and experiments have told us what to expect if these successful discrete GANs
are minimizing Wasserstein distance. The easiest case is when M = N . For such a case, we expect
a discrete GAN to copy images from the training set if it is minimizing image W1 and to copy
patches from the training set if it is minimizing patch W1. Figure 8 (top) shows fake patches from
a single location generated by the discrete FastGAN from figure 2 and the bottom row shows the
closest match from the same location in the training set. Even though the generator never has direct
access to the training images, it does a good job of copying the training patches. The mean cosine
distance to the nearest neighbor is 0.99.

If the discrete GAN is minimizing patch W1 it is not enough for it to copy patches from the training
set: it should also maintain the same patch distribution. Consider for example a location where there
are only two possible patches in the training set: 60% are blue patches and 40% are green patches.
If the fake patches are 99% blue and 1% green, then the patch W1 would still be high (Elnekave
& Weiss, 2022). Only if the fake patches were also 60% blue and 40% green is the patch W1

minimal. To visualize how well the discrete GAN matches the local patch distribution we considered
histograms of random projections of the patches. As can be seen in three plots at the bottom of
figure 8 the histograms for fake patches and true patches are almost perfectly aligned. Thus the
discrete GAN is not only copying patches but also matching the local patch distribution. Even when
we consider the histograms corresponding to patches in the edges of the image for true and fake
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images, the two histograms align quite well (see figure 13 in the appendix). Thus even for locations
that often correspond to the background, the discrete GAN matches the local patch distribution in
the true and fake images.

When M < N then we cannot expect the discrete GANs to copy training patches but rather its
output should look like the output of OT-Means on patches from a single location (see appendix D):
each generated patch is a linear combination of training patches and the local histograms of true and
fake patches at a location should match. Figure 9 shows that the local distribution is matched very
well for a discrete DCGAN with different values of M . Importantly, the matching also holds with
the continuous prior.

We summarize all of our experiments in table 1: for the two GAN architectures and for different
values of M , the local distributions at a particular location are well matched between the true images
and the generated images. As a reference we also compute the distance to a batch of 10K images
from ImageNet and a batch from AFHQ (Choi et al., 2020): the average local SWD between AFHQ
and FFHQ is about 0.15 and 0.18 while the different WGANs consistently achieve a local SWD that
is about 0.04.

5 LIMITATIONS AND EXTENSIONS

Our theoretical results are based on simplifications of convolutional discriminators used in practice.
One major simplification is that we assume that the receptive field sizes are at most S and this
value of S determines the patch size used in patch W1. For practical CNNs, the theoretical limit on
the receptive field may be very large, but the effective receptive field size is still small (Brendel &
Bethge, 2019) and the CNN can be well-approximated as if the receptive field size was much smaller
than the theoretical limit. A second simplification is that we implicitly assumed that the CNNs do
not use any padding when performing convolutions (and this was also the case in the GANs that we
trained for the toy data). When padding is used, patches at different image locations can actually be
distinguished even with a patch-based discriminator (e.g. (Isola et al., 2017),(Shaham et al., 2019))
so even a CNN-GAP discriminator will optimize a patch distance that is location-dependent.

Even though our use of the discrete setting allows us to exactly measure W1 between true and
fake images, it still leaves open the question of how small W1 needs to be in order for a method
to be described as ”successful” in minimizing W1. For this reason, we compare the results of the
WGANs to direct optimization of W1 and also visualize the histograms and measure their distance
using SWD.

The most significant limitation of our paper, of course, is our focus on discrete GANs while SOTA
GANs use a continuous prior. We note that most of our theoretical results do not require the GANs
to be discrete: working with discrete GANs allows us to empirically measure W1 and rigorously de-
termine whether the predictions hold. In practice, we find that continuous GANs with convolutional
discriminators behave similarly to their discrete counterparts (with large M ).

6 DISCUSSION

The question that motivated this paper is whether WGANs succeed because they optimize the
Wasserstein distance. We leveraged the discrete setting that allows us to compute the Wasserstein
distance exactly, to characterize its optima, and to optimize it with alternative algorithms. Our results
indicate that the answer is ”yes” but the form of W1 that is being optimized depends on the architec-
ture of the discriminator. Specifically, we have shown that when the discriminator is convolutional,
what is being minimized is the patch W1 and not the image W1.

A major advantage of having a well-defined loss function that is being optimized is the ability to
monitor learning algorithms and check for their convergence. We hope that our results will yield
WGAN learning algorithms that are considerably more stable than the current methods and require
less parameter tuning.
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A PROOFS

A.1 PROOF OF THEOREM 2.4

To show that for M < N at any local minimum, the generator must be a linear combination of at
least N/M training examples, we differentiate equation 3 with respect to a generated image xi and
setting the gradient to zero yields that xi must satisfy:

xi =
∑

j

wijyj

with wij a vector of weights that sums to one and wij ∝ πij∥xj−yi∥−1. Now since πij is a solution
to the optimal transport between M generated images and N training images, it is a non-negative
matrix that satisfies

∑
i πij = 1

N and
∑

j πij = 1
M . This implies that for each i there must be at

least N/M different indices j for which πij > 0 and this shows that y must be a linear combination
of at least N/M training images.

A.2 PROOF OF THEOREM 3.3

We can write the output of the critic for an input x as:

f(x) = WT 1

n

∑

i

h(pix)

where pix extracts the ith patch in image x, W are the weights in the final layer, and n is the number
of patches in the penultimate feature map.

Moving WT into the above sum and defining g(x) = WTh(x) where x is a patch we can rewrite
the image critic, f(x) as:

f(x) =
1

n

∑

i

g(Pix)

Recall that the critic f attempts to maximize EP (f) − EQ(f). By the linearity of the expectation
EQ(f) is equal to EQ̃(g) and likewise EPθ

(f) = EP̃θ
(g) where P̃ , Q̃ are the distributions over

patches in the true and fake images. Denoting by GAP1 the class of 1-Lipshitz functions that can
be implemented by a CNN-GAP architecture, this means that:

max
f∈GAP1

EPθ
(f)− EQ(f) = max

g∈G1

EP̃θ
(g)− EQ̃(g)

G1 is the class of functions that operate on S × S patches and can be implemented by the units in
the layer before the GAP.

Constraining the image discriminator to be 1-Lipshitz means that for any two images x1, x2 such
that ∥x1 − x2∥ < d, |f(x1) − f(x2)| < d. In particular, this holds when we choose x1, x2 so that
they differ only in a single patch and this means that g must also be 1-Lipshitz.

A.3 PROOF OF THEOREM 3.4

We can write the output of the critic for an input x as:

f(x) =
∑

c

∑

i

wicfc(Pix) (4)
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where Pix extracts the ith patch in image x, C is the number of channels and wic the weights in the
final layer.

Now define the function class CNN as all functions that can be implemented using equation 4 and
the subclass CNNk as the set of functions that can be implemented by equation 4 where wjc = 0
∀c, ∀j ̸= k. Since CNNi ⊂ CNN we have

max
f∈CNN

EPθ
(f)− EQ(f) ≥ max

f∈CNNi

EPθ
(f)− EQ(f)

and since for f ∈ CNNi f is only a function of the ith patch we can write:

max
f∈CNNi

EPθ
(f)− EQ(f) = max

i∈I,gi∈G
EP̃θ

(gi)− EQ̃(gi)

= max
i∈I

W patchesi
1 (Pθ, Q)

where again gi(x) is a critic for the ith patch: gi(x) =
∑

c wicfc(Pix).

B ARCHITECTURES

B.1 TOY CNNS

We bring here further details about CNN-GAP and CNN-FC architectures used in the experiment
section. Both architectures start with 3 convolutional layers with kernel size 3, stride 2 and no
padding each followed by a RELU layer. These layers transform a 64x64x3 image into a 7x7x256
feature map. The receptive field at this point, i.e., the size of the patch in the original images that
affect each pixel in this feature map is 15x15. CNN-GAP applies global average pooling to this
feature map that transforms it into a 1x1x256 layer that is later linearly projected into a scalar.
CNN-FC reshapes the feature map into a long vector of 7*7*256 that is linearly projected into a
scalar. Figure 10 illustrates the two architectures with their common backbone.

B.2 FASTGAN VARIANT

We experimented with FastGAN Liu et al. (2020) as an easy, fast-to-converge GAN model that
performs comparably to SOTA GANs. In our experiments, we simplified its architecture branching
off this implementation 2. We removed the auto-encoding branches of the discriminator so that both
the generator and the discriminator are simple feed-forward networks with skip connections.

C OTMEANS WITH DIFFERENT VALUES OF M

In the main paper we showed results for small M (in which case the generated images are blurred)
and M = N (in which case the generated images are copies of the training set). In figure 11 we
show intermediate values of M as well. As can be seen, as M increases, the images are increasingly
sharper until they appear to copy the training set.

D OTMEANS ON PATCHES

One reason to expect better results with the minimization of patch W1 is related to theorem 2.4:
minimizing image W1 causes the generator to either copy the training set or to generate images that
are linear combinations of several training images and will therefore be of poor visual quality. But if
we minimize patch W1 we can still generate images that are very different from the training images
by copying patches from the training set and combining them in novel ways. We can also generate
patches that are linear combinations of training patches, but since the distribution of patches is
simpler in some sense than that of images, linear combinations of training patches do not necessarily

2https://github.com/odegeasslbc/FastGAN-pytorch/blob/main/models.py
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Figure 10: An illustration of the toy CNN used the experiments in figures 5-7. 3 Convolutional
layers are followed by two types of linear heads that project the feature map into a scalar. The
annotation RF stands for the receptive field of the previous layer.

Figure 11: Results of OTmeans with N = 1000 and different values of M . As M increases, the
images are increasingly sharper until they appear to copy the training set.
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Figure 12: The difference between minimizing image W1 and patch W1. When we minimize image
W1 and then extract small (20× 20) patches (middle row) the extracted patches look very different
from the training patches. When we minimize patch W1, i.e. the Wasserstein distance between
20×20 patches at that location in the true and fake images, the generated patches (bottom row) look
similar to real patches. The success in capturing the local patch distribution can be visualized by
comparing the histograms of random projections of the patches.

have to be blurred. Figure 12 illustrates this point. We minimized patch W1 by running OTmeans
with M = 10, 000 only on a small 20x20 patch in a location that corresponds to the left part of
the mouth. We then compared the generated patches to those obtained by running OTmeans on the
full image (hence minimizing image W1) and then extracting the patches. As can be seen in the
figure, the patches obtained by minimizing patch W1 are high-contrast and sharp, unlike the patches
obtained by minimizing image W1.

We can visualize how well the generated patches match the distribution of training patches by plot-
ting the histogram of random projections of the patches. As shown in the bottom of figure 12, when
we minimize image W1 the histograms of projections of generated patches are visibly different from
those of training patches at the same location. When we minimize the local patch W1, the histograms
match very well.

E HISTOGRAMS AT DIFFERENT LOCATIONS

Figure 13 visualize how well the discrete GAN matches the local patch distribution we considered
histograms of random projections of the patches in additional 3 locations.

F RESULTS WITH DISCRETE SOTA ARCHITECTURES

We bring here the results of training discrete-WGANs with more capable architectures. As can
be seen, for both DCGAN Radford et al. (2015) and FastGAN Liu et al. (2020) the results with
two different discrete priors (M=10K,70K) are comparable to the results with normal prior (M=∞).
Each second row shows the data nearest neighbor to show there is no copying involved.

16



Published as a conference paper at ICLR 2025

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000
0

500

1000

1500

2000

2500
location: 1 1

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000
0

500

1000

1500

2000

2500

3000
location: 1 64

true
fake

-3000 -2000 -1000 0 1000 2000 3000
0

200

400

600

800

1000

1200

1400

1600

1800

2000
location: 64 64

true
fake

Figure 13: Histograms of the same random projection for true and fake patches at different locations.
Note that the histograms are different between different locations but highly similar for true and fake
patches. This is true even for locations at the edge of the image.

F.1 RESULTS WITH DISCRETE DCGAN

See generated images and data nearest neighbors in figure 14

F.2 RESULTS WITH DISCRETE FASTGAN

See generated images and data nearest neighbors in figure 15

G ADDITIONAL ABLATION EXPERIMENTS

G.1 RESULTS WITH CONVOLUTIONAL GENERATOR

In all of the experiments in the paper, we used the same FC generator. We repeat here the results
from figures 5 and 8 from the paper with a convolutional generator (DCGANRadford et al. (2015).
As can be seen in figure 16 the WGAN and direct optimization show similar behavior.

G.2 RESULTS WITH DIFFERENT GAN LOSSES

Our paper deals with WGANs. While the same can be done for all IPMs like Sobolev GANs and
MMD GANs it may not be directly applied to some other losses like the original or non-saturating
GAN losses. However, our experiments with Non-saturating GANs show (figure 17) qualitatively
similar results.

G.3 RESULTS WITH DIFFERENT PATCH SIZES

We have conducted experiments from figures 5,7 with different receptive field sizes for the discrim-
inator. We used 2 convolutional layers instead of 3 in the discriminator to get RF size=8 and the
same number of layers (3) with kernel size 4 (instead of 3) to get a RF size of 22. As can be seen in
figure 19, as the receptive field increases the WGAN generated images preserve statistics of patches
of larger sizes.

G.4 ADDITIONAL RESULTS WITH M=N

We bring here in figure 20 more results from the experiment of figure 6
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M = 10, 000:

M = 70, 000:

M = ∞ :

Figure 14: Images generated with Discrete DCGAN for different values of M . For each value of
M we show five generated images and below them the closest image from the training set for each
generated image.
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M = 10, 000:

M = 70, 000:

M = ∞ :

Figure 15: Images generated with Discrete FastGAN variant for different values of M . For each
value of M we show five generated images and below them the closest image from the training set
for each generated image.
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(a) FFHQ (b) Mnist (c) Squares

Figure 16: Comparing direct optimization in image/patch level with WGAN with FC/Convolutional
discriminator when the generator is convolutional

(a) FFHQ (b) Mnist (c) Squares

Figure 17: Results of training NS-GAN with FC/Convolutional discriminators. As can be seen, we
see the same trend as with WGAN where the discriminator architecture controls whether the statistic
being preserved is in the image or the patch level. The graphs also show metrics taken from the same
model trained with WGAN loss and of a direct optimization for reference. The NS-GAN is not as
good as the WGAN at minimizing the appropriate W1 but the results are qualitatively similar.
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Figure 18: CNN-GAP with different receptive fields

Figure 19: Results of DiscreteWGAN trained with Convolutional discriminator with GAP but with
different receptive fields. As can be seen, as the patch size grows the statistics of bigger patches are
preserved.
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Batch1:

Batch2:

Batch3:

Batch4:

Figure 20: Additional 4 batches of results from the model from figure 6 trained with M=N=1K on
FFHQ each batch’s top row shows fake images and the bottom row shows data nearest neighbors.
All generated images are copies of training images.
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