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We first describe the three datasets used our experiments, then add full architecture descriptions,
training hyperparameters, detailed results (5 repititions to each experiment) and examples of attention
maps, produced on both of CLEVR and CUB200 evaluation dataset, demonstrating our inherent
ability to extract useful spatial information in a task dependent manner.

1 DATASETS
1.1 MULTI-MNIST

MultiMNIST (Sabour et al.,|2017) is a multi-task learning version of the MNIST dataset in which
multiple MNIST images are placed on the same image. We use 2, 4 and 9 classes experiments built as
suggested by Sener & Koltun|(2018). In the 2-classes experiment the tasks are: classifying the digit
on the top-left (task-TL) and classifying the digit on the bottom-right (task-BR). We correspondently
add tasks (TM, TR, L, C, R, BL and BM) for classifying the digits on the top-mid, top-right, left,
center, right, bottom-left and bottom-mid on the 4 and 9-classes experiments. The digits in each
position are independently chosen. We use 60K examples and directly apply LeNet (LeCun et al.,
1998) as the underlying backbone in our experiments.

1.2 CLEVR

CLEVR is a synthetic dataset, consists of 70K training images and 15K validation images, mainly
used as a diagnostic dataset for VQA. The dataset includes images of 3D primitives, with multiple
attributes (shape, size, color and material) and a set of corresponding (question-answer) pairs. We
followed the work [Liu et al.| (2019), which suggested to use CLEVR not as a VQA dataset, but rather
as a so-called referring expression dataset, and further adapt it to a multi-task learning methodology.
The tasks in our setup consist of 40 questions that query an attribute of an object that is to the (left,
right, up, down) of a referred object. Typical tasks in our experiment are: “What is the color of the
object to the right of the metal cylinder?” and ”"What is the shape of the object to the left of the small
object?”, where metallic cylinder and small object are the referred objects respectively. Notice that
given an image, only some of the questions are allowed (a question is valid only if the image includes
exactly one instance of the referred object). In our experiment, given a batch of images, we randomly
chose the corresponding questions from the set of valid questions of each image. To demonstrate
our ability to scale the number of tasks, we further extended our set of tasks to include 80, 160 and
1645 (all possible questions in the described structure) questions. results are in the main text. To
demonstrate our interpretability capability, we also used the coordinates of the object to the (left,
right, up, down) of the referred objects, annotated by a single point, as an auxiliary target at the end
of the TD stream.

1.3 CELEB-A

CELEB-A (L1u et al., [2015)) is a set of real-world celeb face images, intensively used in the scope
of MTL (e.g.,|Sener & Koltun|(2018), [Strezoski et al.|(2019)) on attribute classification tasks. The
dataset consists of 200K images with binary annotations on 40 face attributes related to expression,
facial parts, etc.

1.4 CUB-200

CUB-200 (Welinder et al.,[2010) is a fine grained recognition dataset that provides 11,788 bird images
(equally divided for training and testing) over 200 bird species with 312 binary attribute annotations,
most of them referring to the colors of specific birds’ parts. In contrast to other work (Strezoski
et al.,|2019) that used all the 312 attributes as yes/no questions, we re-organized the attributes as a



Under review as a conference paper at ICLR 2021

multi-task problem of 12 tasks (for 12 annotated bird’s parts) each with 16 classes (the annotated
colors + an unknown class) and trained using a multi-class cross-entropy loss. To demonstrate our
interpretability capability, we further used the parts’ location, annotated by a single point to each seen
part, as an auxiliary target at the end of the TD stream.

2 TRAINING & HYPERPARAMETERS

We use LeNet, VGG-11, VGG-7 and resnet-18 as our backbone BU architectures for the Multi-
MNIST, CLEVR, CELEB-A and CUB-200 experiments respectively. Each of the backbones has
been divided to two parts; a first part that consists mainly of the convolutional layers of the backbone
and a second part with the fully connected layers (including the classifier).

In our architecture, both BU streams consist of the first part of the backbone and share their weights.
The TD stream, unless specified otherwise, is a replica of the BU stream combined with upsampling
layers. The classifier is only attached to the BU2 stream. Information is passed between the BU1,
TD and BU?2 streams using lateral connections implemented as 1x1 convolutions. A task embedding
layer (a fully connected layer) is added on the top of the TD stream. During training, the learning
optimizes all the weights along the BU and TD streams, shared by all tasks, as well as the task specific
embedding parameters. Learning uses a standard backpropagation. See an illustration of the full
scheme in the main text and a detailed architecture description in the next section.

In training time, the network is supplied with an input image and a selected task, drawn at random
from the different tasks. During testing, the different tasks are applied sequentially to each test image.

2.1 MULTI-MNIST

We use the Multi-MNIST dataset to demonstrate our performance for 2, 4, and 9 tasks recognition
problems. All models trained using a standard LeNet architecture. We used a batch size of 512
images trained on 1 GPU with learning rate of 1e~3 using the Adam optimizer. We followed |Sener &
Koltun| (2018) and decrease the learning rate by a factor of 2 every 30 epochs. For a fair comparison,
all models were trained with the same amount of training examples per task (60K examples per task
in an epoch) for 100 epochs.

2.2 CLEVR

We used the CLEVR dataset to test performance while scaling the number of tasks (up to 1645) with
a fixed model size.

We trained all models using a VGG-11 architecture but decreased the number of channels in the
output of the last convolutional layer from 512 to 128 to allow training with larger batch size. We used
a batch size of 128 images trained on 2 GPUs with learning rate of 1e~* using the Adam optimizer
and decreased the learning rate by a factor of 2 every 30 epochs. An auxiliary localization loss of the
referred objects was added to our architecture, detailed on the next section and illustrated in figures E]
and

2.3 CELEB-A

We used the CELEB-A dataset to test performance on higher level classification tasks on real world
images. We trained all models using a VGG-7 architecture (with 32, 64, 128, 128, 128, 128, 128
channels). We used a batch size of 512 images trained on 4 GPUs with learning rate of 1e~3 using
the Adam optimizer and decreased the learning rate by a factor of 2 after 30 epochs.

2.4 CUB-200

We used the CUB200 dataset to test performance on real-world images with low-level features, and
to demonstrate our use of interpretability. We trained all models using a Resnet-18 architecture.
We used a batch size of 128 images trained on 2 GPUs with learning rate of 1e~* using the Adam
optimizer for 200 epochs. We added an auxiliary loss at the end of the TD stream. The target in
this case is a 224x224 mask, where a single pixel, blurred by a Gaussian kernel with a standard
deviation of 3 pixels, indicated the part’s location. Training one task at a time, we minimize both the
cross-entropy loss at the top of BU2 (classification loss) and the cross-entropy loss taken over the
224x224 image at the end of the TD softmax output (which encourages a small detected area) with
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Table 1: Detailed architectures description in term of convolutional and FC layers for the M-MNIST experiment.
K (bold) is the number of tasks. (a) multi-branch architecture, (b) channel modulation architecture and (c) our
TD control network.

(a) Multi-Branch architecture (¢) Our TD control network

SubModule Layer Kernel channels remarks SubModule Layer kernel channels remarks
BU conv2d 5 110 BUI conv2d 1—=10
conv2d 10—20
conv2d 5 10—20 FC 320—50
FC 32050 Rt
branch FC 50550 K laterals1 conv2d 10—10
FC 50— 10 times conv2d 20—20
conv2d 20—20
(b) channel-modulation architecture EMB FC K—320
TD conv2d 20—10
SubModule Layer kernel channels remarks convad 10—1
EMB FC K—10 laterals2 conv2d 1—1
FC K—20 convad 1010
FC K—20 convad 20—20
BU conv2d 5 1—10 BU2 conv2d 110 shared
conv2d 5 10—20 conv2d 10—20 weights
FC 320—50 FC 320—50
branch FC 50—50 branch FC 50—50
FC 50—10 FC 50—10

the appropriate targets for each task. Applying the localization loss in train time allows us to obtain
an attention map in inference time, helping interpretability by locating the reference parts attended by
the network (see illustrations of correctly predicted tasks in figure [3|and of failure cases in figure ).

3 IMPLEMENTATION DETAILS
3.1 DETAILED ARCHITECTURES DESCRIPTION FOR THE MULTI-MNIST EXPERIMENT

For the MultiMNIST experiments, we use an architecture based on LeNet. We follow Sener & Koltun
(2018) and use the two 5x5 convolutional layers and the first fully-connected layer as the shared
BU backbone module and the two other fully-connected layers as the branch module. The “single
task™ architecture uses several duplication, same as the number of tasks, of this basic structure, each
consisting of a backbone and a branch. The ”multi-branch” architecture uses several task specific
branch modules, same as the number of tasks, on top of a shared BU module. Table [E summarizes
this architecture in detail.

The “channel modulation” architecture consists of a BU module and a single branch module. Here,
three trainable FC layers (EMB module) create the task embeddings (channel weights), later integrated
into the BU stream by a multiplication operation. See table [Tb]for more details.

Our task-based TD control network for the Multi-MNIST experiment is specified in detail in table
We use two BU streams with shared weights; BU1 is task independent while BU2 is task dependent,
modified by the TD stream for an accurate prediction of the specific task. The TD stream consists
of successive convolutional and interpolation layers and, unless stated otherwise, is a replica of the
BU stream in terms of layers types and number of channels. We use the convolutional layers in the
TD network as an efficient way to induce the modification tensors, which multiply the feature-maps
along BU2. The task is supplied to the network at the top of the TD stream as an one-hot-vector,
passes through an embedding layer. A single branch is attached to the top of BU2.

A similar implementation was used for the CLEVR, CELEB-A and CUB200 experiments while using
VGG-11, VGG-7 and ResNet-18 as backbones. The exact number of parameters in the architectures
is listed in table 21

3.2 LOCALIZATION AUXILIARY LOSS
In our architecture, a fine-resolution localization loss can be naturally integrated at the end of the

top-down stream. This can be useful for interpretability and visualization and may also help attending
relevant objects in the image, based on the current task and the image content.
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Table 2: Number of parameters in the M-MNIST, CLEVR, CELEB-A and CUB200 architectures

Module / Architecture Multi-MNIST | CLEVR | CELEB-A | CUB-200
Recognition backbone 21,250 7,448,256 387,936 4,900,032
Each branch 3,000 7,473,152 819,456 8,192
TD with laterals 6,651 8,306,688 180,224 3,052,544
task embedding 320 1568 1568 1568
Single-Task architecture 24,250 14,921,408 1,207,392 4,908,224

Multi-branched architecture 21,250 + 3000 - K
TD modulation architecture 30,901 4+ 320 - K

7,448,256 4+ 7,473,152 - K
23,228,096 + 1568 - K

387,936 + 819,456 - K
1,387,616 + 1568 - K

We used this option in the CLEVR and CUB200 experiments, where a single dot marked the ground
truth location of the center of the objects (CLEVR) or the specific bird part (CUB200). Specifically,
in training our architecture, we add an auxiliary loss at the end of the TD stream. The target is a
224x224 mask, where a single pixel, blurred by a Gaussian kernel with a standard deviation of 3
pixels, is marked. Training one task at a time, we minimize the cross-entropy loss over the 224x224
image at the end of the TD softmax output. This TD output allows us to create a visual attention map
in inference time, which illustrates the relative weights assigned by the network to different locations
in the image. Examples of interest are given in section [4.3|for the CLEVR and CUB200 experiments.

For a fair comparison we have also added an auxiliary localization loss to the multi-branch and to the
channel modulation architectures, by changing the branch structure and adding an additional FC layer
to predict the object’s location. We used a regression loss with respect to the x, y coordinates of the
ground-truth dot annotations of the relevant objects, normalized to the range of (—1,1). Adding the
auxiliary loss was found beneficial in the CLEVR and CUB200 experiments; however, the accuracies
were still lower than ours (see main text) and lack an immediate visual interpretation. A possible
explanation for the accuracy gap, is that in our architecture, the auxiliary loss explicitly guides an
early attention process of the main recognition network, while in the other architectures the regression
loss induces a late attention process only.

3.3 COMPARISON OF FOUR ARCHITECTURES - DESIGN CHOICES

Figures [Ta] and [Tb] demonstrate the average accuracy of the 9-classes (M-MNIST) and 40-tasks
(CLEVR) experiments as a function of the number of parameters in four types of architectures. The
large markers correspond to the architectures that have been used in the main text. The exact design
choices of all the other architectures in the multi-MNIST experiment, marked with small markers, are
as follows:

Multi-branch architectures: For the MultiMNIST experiments, we use an architecture based on
LeNet. In our experiments we follow Sener & Koltun (2018) and use the two 5x5 convolutional
layers and the first fully-connected layer as the shared BU backbone module and the two other
fully-connected layers as the branch module. Two other possible design choices are to divide the
network into shared layers and branches, after the first two convolutional layers (corresponding to the
right blue circle) or after the second FC layer (corresponding to the left blue circle).

Channel-Modulation architectures: The channel modulation architecture consists of a BU mod-
ule and a single branch. Here, three trainable FC layers (EMB module) create the task embeddings
with an appropriate channel dimensions. In our experiments we used the original LeNet, based on two
convolutional layers which correspond to featuremaps with 10 and 20 channels. The architectures
that correspond to the two small cyan stars were obtained by increasing the number of channels in
the convolutional layers to (15, 25) and to (20, 30).

Our Control Network: In the experiments we used a TD stream which is a replica of the BU
stream in terms of channel dimensions (1, 10 and 20 channels in its feature-maps). This is a reasonable
design choice since, given any BU architecture, it fixes our BU-TD-BU architecture to a standard
structure and prevents an extensive neural architecture search, which might be application dependent.
However, for demonstrating our advantages in term of accuracy vs. model size we created cheaper
architectures which use a reduced number of channels along the layers in the TD stream. The three
left red stars in figure[Ta] correspond to networks with 1, 4 and 6 channels in their TD stream. The
right red star corresponds to a wider network, with (15, 25) channels in the BU convolutional layers
and 10 channels in its TD convolutional layers.

4,900,032 + 8,192 - K
7,960, 768 + 1568 - K
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Figure 1: Comparison of four architectures by average accuracy vs. model size. Our approach shows better
accuracy compared with alternatives with the same model size. top-left is better. (a) Multi-MNIST (b) CLEVR

The additional architectures in the CLEVR experiment, marked with small markers in Figure
were similarly designed. The figures show that our family of architectures corresponds to the highest
(red) curve in the plot (top-left is better), indicating higher performance than alternatives for a similar
number of parameters.

4 ADDITIONAL RESULTS

In this section, we present the experimental results not included in the main text.
4.1 MULTI-MNIST EXPERIMENT

Table[3|shows the mean accuracy and the standard deviation of 5 independent trainings and evaluations
for each of the results in the Multi-MNIST experiment, higher is better. Our architecture achieves
consistently better accuracies per task than any of the other alternatives. Comparing to the single
task baseline we achieve better accuracies while using much less parameters (the third column
shows the ratio between the number of parameters and a standard LeNet architecture). Scaling the
number of tasks in our architecture costs almost no additional resources. On the 4-tasks and 9-tasks
experiments our architecture uses less parameters than the uniform scaling approach with a large
accuracy gap. The channel modulation and the task routing approaches achieve better accuracies than
the uniform scaling approach, but their results are significantly lower than ours. Further optimizing
our architecture in terms of model size can be done, but outside the scope of the current work.

Table 3: Performance (mean =+ std of 5 repetitions) on Multi-MNIST, higher is better. Our architecture achieves
significantly better results than any of the other alternatives.

Tasks ALG #P ”TL” acc ”L” ace ”BL” acc ”TM” acc ”C” ace ”BM” acc TR ace ”R” ace ”BR” acc
2 Single task x2 96.99 +0.1 95.93 +0.1
Uniform sca x1.12 95.86 +0.1 94.75 +0.2
MOO x1.12 96.25 £0.3 95.38 £0.2
ch-mod x1.002 96.53 +0.1 95.21 +0.1
task-routing x1.002 95.67 £0.2 94.57 £0.2
Ours x1.29 97.16 £0.1 96.19 £0.1
4 Single task x4 95.73 £0.1 94.81 +0.1 93.11 £0.2 9297 +0.1
Uniform sca x1.37 92.86 £0.3 91.80 £0.3 88.88 +0.7 89.30 £0.6
MOO x1.37 92.96 £0.2 92.08 £0.3 89.87 0.3 90.04 £0.5
ch-mod x1.007 9329 £0.2 92.11 £0.3 90.09 £0.2 90.05 £0.4
task-routing x1.007 93.66 +£0.2 92.86 +0.1 90.73 £0.2 91.10 0.1
Ours x1.32 95.76 £0.1 95.11 £0.1 93.81 £0.3 93.89 £0.3
9 Single task x9 93.44 +0.1 83.05 +£0.2 89.61 0.4 88.19 0.5 75.01 £0.2 86.57 £0.3 92.54 £0.5 81.05 £0.2 90.10 £0.3
Uniform sca x1.99 83.87 0.9 68.63 £1.0 78.81 £0.2 77.76 £0.3 63.14 £0.6 76.11 £0.3 81.49 £0.6 64.98 +£0.7 78.44 £0.8
MOO x1.99 81.47 +£1.3 70.59 £0.6 78.02 +1.1 76.83 +1.1 66.04 +£0.7 75.98 £0.3 80.55 +£0.6 68.95 +0.5 77.78 £0.7
ch-mod x1.015 86.23 +0.5 69.99 £0.4 81.27 0.9 79.90 £0.5 61.70 £0.9 75.69 £1.0 84.56 0.4 68.23 £0.7 81.43 0.5
task-routing x1.015 88.26 0.6 74.99 £0.3 84.52 0.7 82.88 0.5 67.76 £0.9 80.75 +0.6 87.06 0.3 74.13 £0.5 84.35 0.7
Ours x1.39 93.90 £0.2 84.18 £0.3 91.20 £0.4 90.21 +£0.4 77.19 £0.3 88.14 £0.2 93.55 +0.2 8296 +0.1 91.29 +0.4
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Figure 2: Read out experiment results - 9 tasks. The representation at the top of BU2 in our architecture (a)
is task selective and shows almost chance-level accuracies when predicting other tasks (b) generates only the
corresponding digit. (c, d) Other architectures, on the other hand, demonstrate less specificity to the selected
task.

4.1.1 TASK SPECIFICITY FOR THE 9-CLASSES EXPERIMENT

Following by the task-selectivity properties found in the 4-classes experiment (see main text) we
performed a similar experiment on the 9-classes Multi-MNIST images. Briefly, the representation
at the top of BU2 is task-dependent. Measuring its specificity is obtained by reading out each and
every of the tasks representation (accumulated with a pre-trained frozen architecture) and predicting
the digits for all of the locations, each with its own trainable branch. A specificity measure of our
architecture is summarized in figure 2a] The figure shows that the learned representation of each
task is highly adjusted to the instructed task and shows almost chance-level accuracies on the other
branches. Similarly, a generative branch (two linear layers with a ReL.U between) that predicts an
image-size segmentation-map from the frozen representation (trained with respect to the original
images with a binary cross entropy loss) generates the corresponding digit only. Examples of interests
are demonstrated in figure [2b] for various tasks. Performing the digit prediction experiment on the
shared representation at the top of BU1 network achieves accuracies in the range of (17%, 24%) for
all of the branches (BU1 is not task-selective). This “average-representation’ is then fed to the TD
network to be conditioned on a specific task.

We compared the task-selectivity results of our architecture to other methods and performed the same
experiment on the single task and channel-modulation architectures. The results are presented in
figures 2c]and[2d] The results show that the task-dependent representations in these architectures are
less task-selective, showing that early spatial and image-dependent modifications of the feature-maps
along the recognition network sharpen task selectivity which is likely to be beneficial in the scope of
multi-task learning.

4.1.2 ADDITIONAL ABLATIONS AND COMPARISONS

Number of channels in the TD stream. Table fa] compares the results accuracies of our proposed
architecture (first line, where the TD stream is a replica of the BU stream which has 1, 10 and 20
channels in its feature-maps) with cheaper architectures which use a reduced number of channels
along the layers in the TD stream. Our experiments show a trend line (accuracies decrease when
the number of channels in the TD stream decreases) and illustrate how optimizing the number of
channels along the TD stream in terms of efficiency-accuracy trade-off can be obtained.
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Table 4: Ablations on Multi-MNIST

(a) number of channels (b) connectivity type
9-classes experiment 2-classes experiment
#ch #P av. acc. td bu2 av. acc
dup x1.39 88.07 + o+ 96.10
6 x1.10 87.13 + X 96.67
4 x1.06 86.52 X 4+ 96.23
1 x1.01 86.03 X X 95.98
(c) lateral importance (d) several branches
9-classes experiment 4-classes experiment
av. acc branches #P av. acc.
all 88.07 1 x1.32 94.64
lateral 3only  80.91 4 X 94.78
lateral 2 only  87.40 ext, 1 X 95.01
lateral 1 only  86.27 ext, 4 X 95.04

Connectivity types. Our architecture uses two sets of lateral connections; the first set passes informa-
tion from the BU1 stream to the TD stream, and the second passes information from the TD stream to
the BU2 stream. Table [Ab]compares the results (mean of 5 repetitions) of our proposed architecture
when using different connectivity types to the TD stream (first column) and to the BU2 stream
(second column). Here + is an addition connectivity and X is a multiplication connectivity. The
table shows higher accuracy when using additive connectivity along the TD stream and multiplicative
connectivity along the BU2 stream.

Contribution of the lateral connections. Our architecture in the Multi-MNIST case modifies the
recognition network using 3 lateral connections. Table {c|shows the resulting accuracy when using
only one lateral connection at a time. Using all 3 lateral connections yields better accuracy than using
any of them separately. Interestingly, using only the highest level lateral connection results in low
accuracy, suggesting that controling the units in the first featuremaps of the network according to the
task is beneficial to the recognition process.

Number of branches. Our architecture uses a single branch only. Table 4d|shows that using four
branches, one for each task, further improves the results by 0.24 points. This might be explained by
low-capacity of the branch. Consistent with this possibility, extending the branch capacity (using a
FC layer with channel size 80 instead of 50) eliminates this gap.

4.2 CUB200 EXPERIMENT

Table [5]shows the mean accuracy of 5 independent trainings and evaluations phases for each of the
results in the CUB200 experiment.

4.3 ADDITIONAL QUALITATIVE EXAMPLES

To examine the use of the TD channel for interpretability, we trained The network with an auxiliary
localization cross-entropy loss in the last layer of the TD stream (details in section 1.2 and in main
text). Figures (3}6) present several examples of interest from the validation set of CUB200 and
CLEVR (1645 tasks) not included in the main text.
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Table 5: Performance on CUB200, higher is better. Our architecture is scalable with the number of tasks and
outperforms other methods. All models trained for 200 epochs with Ir 1e-4 using a resnet-18 backbone.

Single task  Uniform Scaling MOO ch-mod ch-mod +loc tsk-rout +loc Ours + loc
wing 78.28 81.68 81.67 82.44 82.65 82.98 84.60
uppertail 75.45 79.67 80.00 82.21 82.09 81.58 82.73
throat 74.49 77.22 77.54 79.29 79.65 79.22 81.54
nape 70.73 75.29 75.44 77.17 77.57 76.92 80.06
leg 62.22 64.57 65.75 69.31 68.37 69.46 68.55
eye 89.65 90.23 90.62 91.63 92.08 92.28 90.96
back 75.25 79.92 80.10 81.89 82.05 82.58 82.99
breast 75.62 78.93 78.89 80.47 80.78 80.58 83.14
forehead 70.78 74.16 74.13 76.95 77.42 76.68 78.55
belly 77.61 80.57 80.72 82.46 82.31 82.01 83.96
crown 72.05 75.11 75.23 77.98 78.05 78.11 79.48
bill 69.95 72.48 72.95 76.63 75.83 78.06 74.07
mean 74.34 77.49 77.75 79.87 79.91 80.04 80.89
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Figure 3: Qualitative examples illustrating the identification of the relevant regions that most affected the network
prediction. In all images the target part (the task, shown in the upper part of each image), is precisely localized
and the prediction (shown in the lower part of each image) follows the ground truth. Best viewed in color and
zooming in.
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Figure 4: Error cases. Left 2 images are in fact correct results, counted as failure cases due to annotations errors.
Our network successfully localized the target part and correctly predicts its color. Right 2 images demonstrate
bad localization examples. Ground truth classes were still predicted, with a very high score, possibly due to the
correlated nature of the tasks. Best viewed in color and zooming in.
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What is the size of the object above the brown rubber sphere?

What is the color of the object to the right of the cylinder?

Figure 5: CLEVR, 1645 tasks. First row: What is the size of the object above the brown rubber sphere?,
Second row: What is the color of the object to the right of the cylinder? The network successfully localizes
the target objects and correctly predicts their size/color. Best viewed in color and zooming in.

What is the shape of the object below the small metal object?

What is the shape of the object below the small metal object? - Error cases

Figure 6: CLEVR, 1645 tasks. What is the shape of the object below the small metal object? First row:
occlusion cases. The network successfully predicts the shape although the occlusion. Second row: error cases.
Best viewed in color and zooming in.
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