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A COMPARISON WITH DAN ET AL. (2020), TAHERI ET AL. (2020) AND JAVANMARD &
SOLTANOLKOTABI (2020)

Dan et al. [2020] proposed an adversarial signal to noise ratio and studied the excess risk lower/upper bounds for learning
Gaussian mixture models. Compared to the setting studied in Dan et al. [2020], our setting covers additional label flipping
noises. More importantly, we study an estimator found by gradient descent that overfits the training data, while Dan et al.
[2020] studied a specific plug-in estimator which does not overfit the training data. Due to these differences, there is a
discrepancy in the risk bounds derived in both papers.

Taheri et al. [2020], Javanmard and Soltanolkotabi [2020] studied adversarial learning of linear models in the proportional
limit setting, i.e., d/n = O(1). In this setting, the data Gram matrix and the sample covariance matrix can be studied based
on random matrix theory/Gaussian comparison inequalities/convex Gaussian min-max theorem. In contrast, in our setting
where d > Õ(n2), the sample covariance matrix is singular but the n× n Gram matrix concentrates around its expectation.
Therefore, our setting is different from the proportional limit setting in Taheri et al. [2020], Javanmard and Soltanolkotabi
[2020], and these results are not directly comparable.

B PROOF OF KEY TECHNICAL LEMMAS

B.1 PROOF OF LEMMA ??

Proof. We first prove that L(θ1) ≤ 2n. To show this, we observe that θ1 = α0

∑n
k=1 zk. Therefore

L(θ1) =

n∑
k=1

exp(−θ⊤
1 zk + ϵ∥θ1∥q)

=

n∑
k=1

exp

(
− α0

n∑
i=1

z⊤i zk + α0ϵ
∥∥∥ n∑
i=1

zi

∥∥∥
q

)

≤
n∑
k=1

exp

(
α0n

(
c0
(
∥µ∥22 +

√
d log(n/δ)

)
+ ϵ

√
c0d
))

≤
n∑
k=1

exp(1/16) ≤ 2n,

where the first equality holds due to Lemma ?? and the fact that for any u ∈ Rd, ∥u∥q ≤ ∥u∥1 ≤
√
d∥u∥2, while the

second inequality is by the choice of sufficiently small α0 and the assumptions that d ≥ Cn∥µ∥22 and ϵ ≤ R for some
absolute constants C and R.

The rest part of Lemma ?? summarizes parts of the results in Li et al. [2020]. However, the results in Li et al. [2020] are
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derived under the setting that ∥xi∥2 ≤ 1, Therefore to prove lemma ??, we re-scale our data and model parameters and
convert our setting to the setting in Li et al. [2020].

By lemma ??, with probability at least 1 − δ, ∥xi∥22 ≤ c0d for all i ∈ [n]. We therefore denote B :=
√
c0d, and then

x̃i := xi/B has ℓ2-norm less than or equal to one. Further denote by βt the linear model parameters in Li et al. [2020]’s
algorithm, z̃i = yix̃i, ηt as their step sizes, ϵ̃ as their perturbation strength, and

γ̃ := max
∥θ∥2=1

min
i∈[n]

yiθ
⊤x̃i

as the ℓp margin. Then the adversarial training update rule in Li et al. [2020] is

βt+1 = βt −
ηt
n

n∑
i=1

∇β exp(−β⊤
t z̃k + ϵ̃∥βt∥q).

Note that our update rule is

θt+1 = θt − αt

n∑
k=1

∇θ exp(−θ⊤
t zk + ϵ∥θt∥q).

Now, in order to apply the results in Li et al. [2020], we convert our parameters to match their scaling. Since

θt+1 = θt − αt
∑
i

∇θ exp(−Bθ⊤
t zk/B + ϵ∥Bθt∥q/B)

= θt −
nBαt
n

∑
i

∇(Bθ) exp(−Bθ⊤
t zk/B + ϵ∥Bθt∥q/B).

Therefore

Bθt+1 = Bθt −
nB2αt

n

∑
i

∇(Bθ) exp(−Bθ⊤
t zk/B + ϵ∥Bθt∥q/B).

It is easy to observe that we can now apply Theorem 3.3 and Theorem 3.4 in Li et al. [2020] by setting βt = Bθt, ηt =
nB2αt, ϵ̃ = ϵ/B. Moreover, by x̃i = xi/B, ϵ̃ = ϵ/B and the definition of γ̃, we have γ̃ = γ̄/B. Based on these relations, it
is easy to see that under the conditions of Lemma ??, x̃i, ηt, ϵ̃, γ̃ satisfy the assumptions of Theorems 3.3 and 3.4 in Li et al.
[2020]. Now (??) is an intermediate result of the proof of Theorem 3.3 in Li et al. [2020], and (??) follows by Theorem 3.4
in Li et al. [2020].

B.2 PROOF OF LEMMA ??

Proof. We have

∥θt+1∥2 =

∥∥∥∥ t∑
m=0

αm · ∇L(θm)

∥∥∥∥
2

≤
t∑

m=0

αm∥∇L(θm)∥2

≤
t∑

m=0

αm

∥∥∥∥ n∑
k=1

(
zk − ϵ · ∂∥θm∥q

)
· exp

(
− z⊤k θm + ϵ∥θm∥q

)∥∥∥∥
2

,

where the first three inequalities hold by triangle inequality. By Lemma 2, we have

∥θt+1∥2 ≤
t∑

m=0

αm

n∑
k=1

(∥zk∥2 + ϵ
√
d) · exp

(
− z⊤k θm + ϵ∥θm∥q

)
≤ (

√
c0 + ϵ)

√
d

t∑
m=0

αm

n∑
k=1

· exp
(
− z⊤k θm + ϵ∥θm∥q

)
= (

√
c0 + ϵ)

√
d

t∑
m=0

αmL(θm),

where the second inequality is due to Lemma ??.



B.3 PROOF OF LEMMA ??

Proof. Denote Et
k = exp(−θ⊤

t zk) and Ai,jt = Et
i/E

t
j . The goal is to show that maxi,j A

i,j
t ≤ c3 for some constant

c3 = 5c20. We prove this by induction.

For the base case (t = 0), we have E0
k = exp(0) = 1. Therefore we have maxi,j A

i,j
0 = 1 ≤ 5c20.

For t > 0, to simplify the notation, let Et
1 and Et

2 denote values for the first and second samples and their ratio At := Et
1/E

t
2.

We want to show that At+1 ≤ 5c20 (note that a similar result can be obtained for any distinct pair thus the max also satisfies).

Notice that

At+1 =
exp(−θ⊤

t+1z1)

exp(−θ⊤
t+1z2)

=
exp(−θ⊤

t z1)

exp(−θ⊤
t z2)

· exp(αt∇L(θt)
⊤z1)

exp(αt∇L(θt)⊤z2)

= At ·
exp(−αt

∑n
k=1(zk − ϵ∂∥θt∥q)⊤z1 · exp(−θ⊤

t zk + ϵ∥θt∥q))
exp(−αt

∑n
k=1(zk − ϵ∂∥θt∥q)⊤z2 · exp(−θ⊤

t zk + ϵ∥θt∥q))

= At ·
exp(−αt(z1 − ϵ∂∥θt∥q)⊤z1 · exp(−θ⊤

t zk + ϵ∥θt∥q))
exp(−αt(z2 − ϵ∂∥θt∥q)⊤z2 · exp(−θ⊤

t zk + ϵ∥θt∥q))︸ ︷︷ ︸
I1

·
exp(−αt

∑n
k ̸=1(zk − ϵ∂∥θt∥q)⊤z1 · exp(−θ⊤

t zk + ϵ∥θt∥q))
exp(−αt

∑n
k ̸=2(zk − ϵ∂∥θt∥q)⊤z2 · exp(−θ⊤

t zk + ϵ∥θt∥q))︸ ︷︷ ︸
I2

. (1)

For term I1, note that by Lemma ?? we have √
d

c0
≤ ∥zk∥2 ≤

√
c0d.

Also since by Lemma 2, we have
∥∥∂∥θt∥q∥∥p = 1,

|z⊤k ∂∥θt∥q| ≤ ∥zk∥q ·
∥∥∂∥θt∥q∥∥p = ∥zk∥q ≤ ∥zk∥1 ≤

√
d∥zk∥2 ≤

√
c0d. (2)

Therefore, we have

I1 ≤ exp

(
− αt

( d

c0
− ϵ

√
c0d
)
exp(−θ⊤

t z1 + ϵ∥θt∥q) + αt

(
c0d+ ϵ

√
c0d
)
exp(−θ⊤

t z2 + ϵ∥θt∥q)
)

= exp

(
− αtE

t
2

(( d

c0
− ϵ

√
c0d
)
At −

(
c0d+ ϵ

√
c0d
))

exp
(
ϵ∥θt∥q

))
. (3)

For term I2, by (??) and (2) we have

I2 ≤ exp

(
αt

(
c0
(
∥µ∥22 +

√
d log(n/δ)

)
+ ϵ

√
c0d
)( n∑

k ̸=1

exp(−θ⊤
t zk + ϵ∥θt∥q) +

n∑
k ̸=2

exp(−θ⊤
t zk + ϵ∥θt∥q)

))

≤ exp

(
2αtL(θt)

(
c0
(
∥µ∥22 +

√
d log(n/δ)

)
+ ϵ

√
c0d
))

(4)

Substitute (3) and (4) into (1), we have

At+1 ≤ At · exp

(
− αtE

t
2

(( d

c0
− ϵ

√
c0d
)
At −

(
c0d+ ϵ

√
c0d
))

exp
(
ϵ∥θt∥q

))

· exp
(
2αtL(θt)

(
c0
(
∥µ∥22 +

√
d log(n/δ)

)
+ ϵ

√
c0d
))

. (5)



Let us consider two cases here. If (d/c0 − ϵ
√
c0d)At − (c0d + ϵ

√
c0d) > c0d, i.e., At > (2c0 + ϵ

√
c0)/(1/c0 − ϵ

√
c0),

we further have

At+1 ≤ At · exp
(
− αtE

t
2c0d exp

(
ϵ∥θt∥q

))
· exp

(
2αtL(θt)

(
c0
(
∥µ∥22 +

√
d log(n/δ)

)
+ ϵ

√
c0d
))

≤ At · exp
(
− αtE

t
2c0d exp

(
ϵ∥θt∥q

))
· exp

(
2αtnE

t
2

(
c0
(
∥µ∥22 +

√
d log(n/δ)

)
+ ϵ

√
c0d
)
exp

(
ϵ∥θt∥q

))
= At · exp

(
− αtE

t
2c0
(
d− 2n∥µ∥22 − 2n

√
d log(n/δ)− 2nϵ

√
c0
)
exp

(
ϵ∥θt∥q

))
≤ At,

where the second inequality is due to the fact that L(θt) =
∑n
k=1 E

t
k exp

(
ϵ∥θt∥q

)
and Et

2 = maxk E
t
k while the last

inequality holds since d ≥ C ·max{n∥µ∥22, n2 log(n/δ)}.

On the other hand, if At ≤ (2c0 + ϵ
√
c0)/(1/c0 − ϵ

√
c0), we have

At+1 ≤ At · exp
(
αtE

t
2

(
c0d+ ϵ

√
c0d
)
exp

(
ϵ∥θt∥q

))
· exp

(
2αtL(θt)

(
c0
(
∥µ∥22 +

√
d log(n/δ)

)
+ ϵ

√
c0d
))

≤ At · exp
(
αtL(θt)

(
c0d+ ϵ

√
c0d
))

· exp
(
2αtL(θt)

(
c0
(
∥µ∥22 +

√
d log(n/δ)

)
+ ϵ

√
c0d
))

≤ At · exp
(
2αtn

(
c0
(
2∥µ∥22 + 2

√
d log(n/δ) + d

)
+ 3ϵ

√
c0d
))

≤ (2c0 + ϵ
√
c0)/(1/c0 − ϵ

√
c0) · exp(1/8)

≤ 5c20,

where the first inequality is due to the fact that At > 0, the third inequality holds by Lemma ??, the fourth inequality is
because αt ≤ 1/(c0Cnd) and d ≥ C ·max{n∥µ∥22, n2 log(n/δ)} and the last inequality is because ϵ < C ′ and C ′ can be
chosen such that C ′ ≤ 1/(2c1.50 ) and we have 1/c0 − ϵ

√
c0 > 1/(2c0).

This concludes the proof.

B.4 PROOF OF LEMMA ??

Proof. Note that

µ⊤θt+1 = µ⊤
(
θt + αt

n∑
k=1

(
zk − ϵ∂∥θt∥q

)
exp(−θ⊤

t zk + ϵ∥θ∥1)
)

= µ⊤θt − αtϵ · µ⊤∂∥θt∥q · L(θt) + αt

n∑
k=1

(
µ⊤zk

)
exp(−θ⊤

t zk + ϵ∥θ∥q)
)

≥ µ⊤θt − αtϵ∥µ∥q · L(θt) + αt
∑
k∈C

(
µ⊤zk

)
exp(−θ⊤

t zk + ϵ∥θ∥q)
)

+ αt
∑
k∈N

(
µ⊤zk

)
exp(−θ⊤

t zk + ϵ∥θ∥q)
)
, (6)



where the inequality holds in the same way as in (2). By Lemma ?? ((??) and (??)), we further bound (6) by

µ⊤θt+1 ≥ µ⊤θt − αtϵ∥µ∥q · L(θt) +
αt
2

∑
k∈C

∥µ∥22 exp(−θ⊤
t zk + ϵ∥θ∥q)

)
− 3αt

2

∑
k∈N

∥µ∥22 exp(−θ⊤
t zk + ϵ∥θ∥q)

)
= µ⊤θt − αtϵ∥µ∥q · L(θt) +

αt
2
∥µ∥22L(θt)− 2αt∥µ∥22

∑
k∈N

exp(−θ⊤
t zk + ϵ∥θ∥q)

)
. (7)

Note that we have ∑
k∈N

exp(−θ⊤
t zk + ϵ∥θ∥q) =

∑
k∈N

exp(−θ⊤
t zk) · exp(ϵ∥θ∥q)

≤ c3(η + c1)n ·
(
max
k

Ek

)
· exp(ϵ∥θ∥q)

≤ c3(η + c1)L(θt)

≤ 1

8
L(θt),

where the first inequality is due to Lemma ?? and the last inequality is because η < 1/C and c1 can be chosen arbitrarily
small given sufficient large C. Therefore, (7) can be further written as

µ⊤θt+1 ≥ µ⊤θt − αtϵ∥µ∥q · L(θt) +
αt
2
∥µ∥22L(θt)−

αt
4
∥µ∥22L(θt)

= µ⊤θt + αt

(
∥µ∥22
4

− ϵ∥µ∥q
)
· L(θt)

=

(
∥µ∥22
4

− ϵ∥µ∥q
)
·

t∑
m=0

αmL(θm), (8)

where the last equality is due the fact that θ0 = 0. Now we multiply ∥w∥2/∥θt+1∥2 on both sides of (8) and take t → ∞

lim
t→∞

∥w∥2(µ⊤θt+1)

∥θt+1∥2
≥ lim
t→∞

(
∥µ∥22
4

− ϵ∥µ∥q
)

∥w∥2
∥θt+1∥2

·
t∑

m=0

αmL(θm).

Since ∥w∥2 = 1, and by Lemma ??, it is easy to observe that w = limt→∞ θt/∥θt∥2, we have

µ⊤w ≥
(
∥µ∥22
4

− ϵ∥µ∥q
)
· lim
t→∞

∑t
m=0 αmL(θm)

∥θt+1∥2

≥
(
∥µ∥22
4

− ϵ∥µ∥q
)

1

(
√
c0 + ϵ)

√
d
.

where the last inequality is due to Lemma ??. Note that Lemma ?? also suggests that ∥θt/∥θt∥2 −w∥2 ≤ c3 log n/ log t,
we have

µ⊤w = µ⊤
(
w − θt

∥θt∥2
+

θt
∥θt∥2

)
≤ ∥µ∥2 ·

∥∥∥∥w − θt
∥θt∥2

∥∥∥∥
2

+
µ⊤θt
∥θt∥2

≤ c3∥µ∥2 log n
log t

+
µ⊤θt
∥θt∥2

.

Therefore,

µ⊤θt
∥θt∥2

≥ µ⊤w − c3∥µ∥2 log n
log t

≥
(
∥µ∥22
4

− ϵ∥µ∥q
)

1

(
√
c0 + ϵ)

√
d
− c3∥µ∥2 log n

log t
.



C AUXILIARY LEMMAS

Theorem 1 (Proposition 5.10 in Vershynin [2010]). Let X1, X2, . . . , Xn be independent centered sub-Gaussian random
variables, and let K = maxi ∥Xi∥ψ2

. Then for every a = (a1, a2, . . . , an) ∈ Rn and for every t > 0, we have

P
(∣∣∣∣ n∑

i=1

aiXi

∣∣∣∣ > t

)
≤ exp

(
− Ct2

K2∥a∥22

)
,

where C > 0 is a constant.

Lemma 2. For any θ ∈ Rd, ∥∥∂∥θ∥q∥∥2 ≤
√
d,
∥∥∂∥θ∥q∥∥p = 1.

Proof. Note that we have

(∂∥θ∥q)i =
θq−1
i

∥θ∥q−1
q

· sign(θ),

and since for any vector u ∈ Rd, ∥u∥q ≥ ∥u∥∞, ∥u∥2 ≤
√
d∥u∥∞, we have

∥∥∂∥θ∥q∥∥2 =

∥∥θ◦(q−1)
∥∥
2

∥θ∥q−1
q

≤
√
d∥θ∥q−1

∞

∥θ∥q−1
q

≤
√
d,

where ◦ denotes element-wise power. This concludes the first part of the lemma. For the second part, by p-norm definition,
we have

∥∥∂∥θ∥q∥∥p =
∥∥θ◦(q−1)

∥∥
p

∥θ∥q−1
q

=
1

∥θ∥q−1
q

( d∑
i=1

(θq−1
i )p

)1/p
=

1

∥θ∥q−1
q

(( d∑
i=1

θqi

)1/q)q−1

= 1.

D ADDITIONAL EXPERIMENTS

In this section, we present the additional experiments covering more settings as well as more complex models such as 2-layer
neural network.

D.1 ADVERSARIALLY TRAINED LINEAR CLASSIFIER UNDER VARIOUS SETTINGS

In Figures 1,2,3, we plot the adversarial risk of adversarially trained linear classifiers versus the training iterations t for
different perturbation level ϵ for various combinations of dimension d and ∥µ∥2. Specifically, in Figure 3, we can observe
that with moderate perturbations and sufficient over-parameterization, adversarially trained linear classifiers can achieve
near-optimal adversarial risk.

D.2 ADVERSARIALLY TRAINED 2-LAYER NEURAL NETWORKS

We have also conducted extra experiments on 2-layer neural networks with ReLU activation functions (one extra fix-
dimension hidden layer). The data generation process are the same as our linear experiments. Note that in this setting, we no
longer have the closed-form solutions to the inner maximization problem. Therefore, we following Madry et al. [2018] and
use 10-step Projected Gradient Descent to get the inner maximizer.

As can be seen from Figure 4, the empirical results on 2-layer ReLU network suggest very similar trends as the linear
classifier for both adversarial risk and standard risk. This further backs up our theoretical conclusions.
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Figure 1: Risk and adversarial risk of adversarially trained linear classifiers versus the training iterations t for different
perturbation level ϵ. The label noise level is set as η = 0.1, the training set size n = 50, dimension d = 200 and ∥µ∥2 = d0.4.
The train error reaches 0 for all experiments.
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Figure 2: Risk and adversarial risk of adversarially trained linear classifiers versus the training iterations t for different
perturbation level ϵ. The label noise level is set as η = 0.1, the training set size n = 50, dimension d = 1000 and
∥µ∥2 = d0.3. The train error reaches 0 for all experiments.
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Figure 3: Risk and adversarial risk of adversarially trained linear classifiers versus the training iterations t for different
perturbation level ϵ. The label noise level is set as η = 0.1, the training set size n = 50, dimension d = 1000 and
∥µ∥2 = d0.4. The train error reaches 0 for all experiments.
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Figure 4: Risk and adversarial risk of adversarially trained 2-layer ReLU network versus the dimension d under different
scalings of µ. (a)(b) show the results for ℓ2 perturbation with ϵ = 0.1 and (c)(d) show the results for ℓ∞ perturbation with
ϵ = 0.01. The training error reaches 0 for all experiments.
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