
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A Benchmark Details 15

A.1 Feasible Questions . 15

A.1.1 ATIS Assumptions . 16

A.1.2 Advising Assumptions . 16

A.1.3 EHRSQL Assumptions . 16

A.2 Re-annotation Details . 18

A.2.1 Step 1: Template Review and Modification 18

A.2.2 Step 2: Paraphrase Generation . 18

A.2.3 Step 3: Pair Construction . 18

A.2.4 Step 4: Review and Quality Control . 18

A.3 Infeasible Questions . 19

A.3.1 Missing-Schema . 19

A.3.2 Ambiguous . 21

A.3.3 Non-SQL . 21

A.4 Comparison of keyword-based and template-based infeasible data creation 23

B Detailed Performance 24

B.1 Detailed Task Performance . 24

B.2 SQL Generation Performance . 26

C Model Implementation 27

C.1 Fine-tuning . 27

C.1.1 Classifier-based Models . 27

C.1.2 Uncertainty-Estimation-Based Models . 27

C.2 In-Context Learning . 28

C.2.1 Classifier-based Models . 28

C.2.2 Uncertainty-Estimation-Based Models . 29

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A BENCHMARK DETAILS

A.1 FEASIBLE QUESTIONS

Tables 6 and 7 show data statistics based on query difficulty and sample questions for feasible ques-
tions. For assigning query difficulty, we adopted the SQL hardness criteria from DIN-SQL (Pourreza
& Rafiei, 2023) across all datasets, classifying the samples into three levels: easy, medium, and
hard. The easy category includes single-table queries that do not require joins or nesting. The
medium category includes queries that involve joins (including implicit joins) but excludes nesting.
The hard category covers queries that may contain joins, sub-queries, and set operations.

Table 6: Data statistics based on query difficulty. ∗EHRSQL does not contain any medium-difficulty
samples. We use the MIMIC-IV portion of the EHRSQL dataset for our work.

ATIS Advising EHRSQL∗

easy medium hard easy medium hard easy hard

Train 83 400 140 83 508 107 308 2325
Valid 37 259 111 67 309 75 79 480
Test 39 256 102 78 312 69 74 485

All 159 915 353 228 1129 251 461 3290

Table 7: Examples of feasible questions. Questions and their corresponding SQL queries in domain-
specific datasets tend to be long, making it challenging for the model to handle such lengthy queries.

Dataset Difficulty Question SQL Query

ATIS

easy Can you tell me the location of LGA?
SELECT DISTINCT AIRPORTalias0.AIRPORT LOCATION FROM
AIRPORT AS AIRPORTalias0 WHERE
AIRPORTalias0.AIRPORT CODE = ”LGA”

medium Can you provide a list of flights that arrive at DAL?

SELECT DISTINCT FLIGHTalias0.FLIGHT ID FROM AIRPORT AS
AIRPORTalias0 , FLIGHT AS FLIGHTalias0 WHERE
AIRPORTalias0.AIRPORT CODE = ”DAL” AND
FLIGHTalias0.TO AIRPORT = AIRPORTalias0.AIRPORT CODE

hard What would be the cheapest flight from ATLANTA
to DENVER on 10 / 12 / 1991?

SELECT DISTINCT SELECT DISTINCT FLIGHTalias0.FLIGHT ID
FROM AIRPORT SERVICE AS AIRPORT SERVICEalias0 ,
... [38 lines omitted involving query nesting] ...
FLIGHTalias0.FLIGHT ID = FLIGHT FAREalias0.FLIGHT ID

Advising

easy Give me the course number of the Investigations
class.

SELECT DISTINCT COURSEalias0.NUMBER FROM COURSE AS
COURSEalias0 WHERE COURSEalias0.NAME LIKE
”%Investigations%”

medium Please provide me with the PreMajor courses that
were available in Fall 2015.

SELECT DISTINCT COURSEalias0.DEPARTMENT ,
COURSEalias0.NUMBER FROM COURSE AS COURSEalias0
INNER JOIN COURSE OFFERING AS COURSE OFFERINGalias0
... [9 lines omitted involving joins] ...
= 2015

hard Who, most recently, taught SCAND 104 before
2016?

SELECT DISTINCT INSTRUCTORalias0.NAME FROM COURSE AS
COURSEalias0 INNER JOIN COURSE OFFERING AS
COURSE OFFERINGalias0 ON COURSEalias0.COURSE ID =
... [18 lines omitted involving query nesting] ...
COURSEalias0.NUMBER = 104

EHRSQL

easy What are the ways to consume metformin
(glucophage)?

SELECT DISTINCT prescriptions.route FROM prescriptions WHERE
prescriptions.drug = ’metformin (glucophage)’

hard

What was the change in arterial blood pressure
systolic in patient 10037975 second measured on
the first ICU visit compared to the first value
measured on the first ICU visit?

SELECT (SELECT chartevents.valuenum FROM chartevents
WHERE chartevents.stay id IN (SELECT icustays.stay id FROM
icustays WHERE icustays.hadm id IN (SELECT admissions.hadm id
... [15 lines omitted involving query nesting] ...
ASC LIMIT 1)

SQL Assumptions Domain-specific datasets are commonly handled in a single-table setting (as
in our work), which frequently relies on dataset-specific question-to-SQL assumptions (Suhr et al.,
2020). During preprocessing and re-annotating the questions, we document these SQL mapping
assumptions for each dataset in a separate file. This allows models using in-context learning (which
typically requires a long context length) to reference the knowledge. Fine-tuned models can access
this knowledge during training. Assumptions that are not explicitly stated or implicitly present in
the training question-SQL pairs should not be used without the user’s consent, as this could lead to
potential harm. Below are the SQL assumptions for the three datasets.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.1.1 ATIS ASSUMPTIONS

- Use SQLite for SQL query generation.

- Unless otherwise specified, the values in the question are case-sensitive and are identical to the
values stored in the database.

- When retrieving the result, use DISTINCT for the selected columns.

- For retrieving the top N results, exclude counts and return relevant items only.

- When asked to retrieve “flight,” return “FLIGHT.FLIGHT ID.”

- When asked to retrieve “fares,” return “FARE.FARE ID.”

- Treat phrases like “is it possible,” “can you confirm whether,” or “verify” as true/false questions.

- WEIGHT and PAY LOAD are measured in pounds; CAPACITY refers to the number of passen-
gers (seats); WING SPAN and LENGTH are in feet; CRUISING SPEED is in miles per hour;
RANGE MILES refers to miles.

A.1.2 ADVISING ASSUMPTIONS

- Use SQLite for SQL query generation.

- - Unless otherwise specified, the values in the question are case-sensitive and are identical to the
values stored in the database.

- When retrieving the result, use DISTINCT for the selected columns.

- When retrieving the top N results, return the relevant rows without including aggregate counts.

- Use “DISTINCT COURSE.DEPARTMENT, COURSE.NUMBER” when retrieving courses.

- Use “DISTINCT SEMESTER.SEMESTER, SEMESTER.YEAR” when retrieving information
about semesters.

- Interpret questions involving “is it possible”, “can you confirm whether”, or “verify” as true/false
queries.

- When asked about instructors, return “DISTINCT INSTRUCTOR.NAME”.

- Differentiate between “course offering” (COURSE OFFERING) and “course” (COURSE) when
responding to queries.

- Use “AREA.AREA” for broader course categories such as theory, software, or intelligent systems;
use “COURSE.NAME” for specific course names.

- Use a LIKE operator with “%” wildcards for queries involving “PROGRAM.NAME”,
“AREA.AREA”, or “COURSE.DESCRIPTION”.

- Map “Upper-level CS” to “ULCS” in the database.

- For columns containing “HAS *”, use “Y” for true conditions and “N” for false conditions.

A.1.3 EHRSQL ASSUMPTIONS

- Use SQLite for SQL query generation.
- Use DENSE RANK() for ranking results.
- For the top N results, return only the relevant items, excluding their counts.
- Use DISTINCT in queries asking about the cost of some events, drug routes, or counting patients

or hospital/ICU visits.
- When calculating the total cost, compute the sum of patient’s expenses for diagnoses, procedures,

lab events, and prescriptions at a hospital admission level.
- The time of diagnosis occurs at the time of hospital admission, and procedures occur at the time of

hospital discharge.
- Treat questions starts with “is it possible,” “can you confirm,” or “verify” as true/false questions.
- Calculate a patient’s age once per hospital admission. The age remains constant even if the hospital

stay exceeds one year.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

- When referring to events related to inputs, the values must be found in the inputevents table; simi-
larly, for output events, the values must be found in the outputevents table.

- Vital-related events are stored in chartevents, not in inputevents or outputevents.

- Values are distinct across tables. For example, “propofol” in the inputevents table does not appear
in the prescription table.

- When calculating the N-year survival rate:

- A patient is considered deceased if a death record exists between their first diagnosis and N
years later.

- If no death record exists within N years, or if death occurs afterward, the patient is considered
survived.

- Express the result as a percentage or proportion (values between 0 and 1).

- Abnormality is defined only for the following values with these ranges:

- Temperature Celsius: (35.5, 38.1)
- O2 saturation pulseoxymetry: (95.0, 100.0)
- Heart Rate: (60.0, 100.0)
- Respiratory Rate: (12.0, 18.0)
- Arterial Blood Pressure systolic: (90.0, 120.0)
- Arterial Blood Pressure diastolic: (60.0, 90.0)
- Arterial Blood Pressure mean: (60.0, 110.0)

- Time References:

- Interpret “now” as 2100-12-31 23:59:00, “today” as 2100-12-31, “this month” as December of
2100, and “this year” as 2100.

- “3 months” refers to 365/4 days, and “6 months” refers to 365/2 days when calculating a
duration.

- “This month/02” and “last month/02” refer to the 2nd day of the current and previous month,
respectively.

- “11/this year” refers to November of this year; “11/2100 year” refers to November 2100;
“12/31/this year” refers to December 31st of this year.

- Dates like “12/06/2100” are in MM/DD/YYYY format.
- When a question involves the time of diagnosis in relation to other types of events, use the first

diagnosis time for each patient.
- A “current hospital visit/encounter” refers to records where the hospital discharge time does

not exist, indicating a current patient; a “last hospital visit” is only if the hospital discharge
time is present; the first hospital visit is simply the first order of the visit.

- Entity Mapping Assumptions:

- Use “temperature celsius” for body temperature.
- Use “o2 saturation pulseoxymetry” for SaO2.
- Use “heart rate” for heart rate.
- Use “respiratory rate” for respiration rate.
- Use “arterial blood pressure systolic” for systolic blood pressure.
- Use “arterial blood pressure diastolic” for diastolic blood pressure.
- Use “arterial blood pressure mean” for mean blood pressure.
- Use “daily weight” for weight.
- Use “height (cm)” for height.
- Use “m” for male and “f” for female.
- Except for the above, use the value as it is.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.2 RE-ANNOTATION DETAILS

Our preliminary data analysis revealed that ATIS and Advising require significant preprocessing due
to issues such as query duplication, low-quality natural language questions, null results (SQL queries
returning empty results), and inconsistent question-to-SQL assumptions across samples (e.g., SQL
annotations with varying definitions of the current time). To address this we follow four data re-
annotation steps below:

A.2.1 STEP 1: TEMPLATE REVIEW AND MODIFICATION

Template Sorting Domain-specific datasets contain unique SQL query structures that reflect user
intents. For example, “I need a flight from city name1 to city name0” and “Give me a list of
flights going from city name1 to city name0” are two different paraphrases for the same SQL
structure. These datasets also include information about the entities or values used in each sample;
for example, ‘BOSTON’ is a value for the ‘city name0’ placeholder, which is sampled from a
specific column. We refer to questions with placeholders as question templates. To validate the data,
we first sort it by unique SQL structures.

SQL Query Validation In cases of query duplication (such as in ATIS and Advising), where ques-
tions conveying the same intent are matched with differently labeled SQL structures (Finegan-Dollak
et al., 2018), we merge these duplicates. Query duplication can be problematic for model evaluation,
as it may lead to misleading results, particularly when assessing model performance on ‘familiar’
vs. ‘unfamiliar’ questions (Section A). To address this, we first identify samples that share identical
placeholders (e.g., “I need a flight from city name1 to city name0” and “Which airline pro-
vides service in city name0 and city name1” both use ‘city name0’ and ‘city name1’ as
placeholders) and then assess their semantic equivalence. Once samples with identical semantics are
found, we merge them by selecting the shortest SQL query to represent the group. In this step, we
also verify whether the SQL queries accurately reflect the intended meanings of the corresponding
questions.

A.2.2 STEP 2: PARAPHRASE GENERATION

Because ATIS, Advising, and EHRSQL are pre-GPT era datasets with all samples being human-
curated, many of them are of low quality and sound unnatural, with limited diversity in the questions.
To address this, we use GPT-4o to paraphrase at least 20 questions for each question template, ensur-
ing that these paraphrases maintain the placeholders and align with the intended meanings. During
this process, we make sure that each generated question does not assume any specific knowledge
unique to individual questions. For example, in Advising, one question might assume ‘I’ refers to
student 1, while another assumes ‘I’ refers to student 2. We eliminate such cases. Only the common
assumptions that are applied extensively in SQL annotations are retained and documented.

A.2.3 STEP 3: PAIR CONSTRUCTION

We merge question templates and paraphrases to construct a complete text-to-SQL dataset. During
merging, we also insert sampled values (actual data stored in the database) into the placeholders in
question paraphrases and SQL structures (now referred to SQL queries). Then, we execute these
queries to see if we return null results from the database. Null results refer to cases where the SQL
query returns ‘Null’ or ‘[]’ upon execution, which may cause false positives in text-to-SQL model
evaluation. If a null result is returned, we sample new values again from the database.

A.2.4 STEP 4: REVIEW AND QUALITY CONTROL

All annotators engage in real-time discussion to resolve any disagreements in reviewing the cre-
ated question-SQL pairs and SQL assumption text. Frequent disagreements involved determining
whether the questions and the SQL assumptions included all necessary information to generate the
annotated SQL queries. Discussions continue until a consensus is reached.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.3 INFEASIBLE QUESTIONS

There are three types of infeasible questions in TrustSQL: missing-schema, ambiguous, and
non-sql. Our design choice is to make these questions similar to feasible questions in surface
form while keeping it infeasible. So, we first define candidate keywords that assures infeasibility
and ask annotators to incorporate that into existing feasible questions.

A.3.1 MISSING-SCHEMA

To create questions that refer to non-existent columns, we first generate a list of ‘hypothetical’
columns that are similar to the database (which may not always be realistic). We create questions
that refer to these hypothetical columns for each database by assuming they exist. For example:
“Give me all aircraft types whose TURBOPROP engines are from HONEYWELL.” Note that the
Aircraft table in ATIS contains columns like ‘manufacturer’ and ‘propulsion,’ but no column named
‘engine manufacturer.’ Below are the hypothetical columns we create for each database:

Hypothetical Columns in ATIS

AIRCRAFT Table:
COST, ENGINE MANUFACTURER, FUEL CAPACITY, MANUFACTURE DATE,
MAX ALTITUDE, MAX SPEED, PRODUCTION STATUS

AIRLINE Table:
ANNUAL PASSENGER COUNT, EMPLOYEE COUNT, FOUNDER, FOUNDING YEAR,
HEADQUARTERS, HUB AIRPORT

AIRPORT Table:
ENTRANCE DIRECTION, GATE COUNT, NUM LOUNGE, PARKING CAPACITY,
RUNWAY LENGTH, TRANSIT HOTEL

FLIGHT Table:
IN FLIGHT ENTERTAINMENT, WIFI AVAILABLE

FOOD SERVICE Table:
ALLERGENS, IS VEGAN

GROUND SERVICE Table:
OPERATIONAL HOURS

RESTRICTION Table:
SUNDAY STAY REQUIREMENT

Hypothetical Columns in Advising

COURSE Table:
AP IB CREDIT WAIVER, GRADING METHOD, RATING

COURSE OFFERING Table:
ATTENDANCE, DELIVERY METHOD, GRADING TYPE, HONORS TRACK, LANGUAGE,
TEXTBOOK PUBLISHER, WAITLIST COUNT

INSTRUCTOR Table:
AGE, IS DEPARTMENT CHAIR, OFFICE ADDRESS, RATING, TOTAL GPA

STUDENT Table:
ADVISOR, AGE, FINANCIAL AID, HONOR ROLL STATUS, INTERNATIONAL STUDENT

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

STUDENT RECORD Table:
STUDY ABROAD

Hypothetical Columns in EHRSQL

admissions:
age at marriage, arrival time, attending physician id, department id

cost:
billing code, payment status

d labitems:
lab priority

inputevents:
provider id

labevents:
equipment, requester id, turnaround time

microbiologyevents:
requester id, specimen quality

patients:
address, blood type, emergency contact, insurance duration,
is veteran, name, next of kin, occupation, place of birth

procedures icd:
anesthesia duration, anesthesia type, consent date, physician id,
procedure duration

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.3.2 AMBIGUOUS

For ambiguous questions, we have two sub-types: referential ambiguity and vagueness (Shah &
Jinwala, 2015). This is different from existing works that focus solely on column ambiguity (i.e.,
referring to multiple valid candidates for columns). However, since the definition of ambiguity
involves being unable to answer without further clarification, this condition also holds. Questions
with referential ambiguity include words where it is unclear who or what they refer to (e.g., ‘this,’
‘she’). For example, “Has this patient been admitted to an emergency room?” (where ‘this patient’
is unclear in reference). Questions with vagueness contain words that are imprecise or lack clear
boundaries (e.g., ‘early,’ ‘best’), such as in “Which upper-leval CS courses in Winter 2016 ended
early?” (where ‘early’ is not precisely defined). We include this because a model should not rely
on unstated commonsense to resolve vagueness, as it may conflict with the user’s intent and cause
potential harm. Any allowed assumptions should be explicitly stated (Appendix A.1.1, A.1.2, A.1.3)
or be implicitly demonstrated in the question-SQL pairs within the training data.

Table 8 provides examples of infeasible questions due to ambiguity.

Table 8: Examples of ambiguous questions.

Dataset Question Reason

ATIS

Show me the details of the flights that leave around 17:00. Vagueness
(”around” 17:00)

Please give me the earliest time a flight takes off from BALTIMORE to BOSTON and the
subsequent information.

Referential ambiguity
(”subsequent information”)

What are the IDs of the fares of DL airline’s flights from BOSTON to PHILADELPHIA
that are economic?

Vagueness
(”economic”)

Advising

Who have been the instructors for CMPLXSYS 270 in recent years? Vagueness
(”recent” years)

Which of those 200-level courses were 3-credit courses? Referential ambiguity
(”those” 200-level courses)

What EECS courses are suitable for students whose total credits are less than 200? Vagueness
(”suitable”)

EHRSQL

When was that first maximum pt for this patient in 12/this year? Referential ambiguity
(”this” patient)

Can you show the five most commonly prescribed drugs for middle-aged patients? Vagueness
(”middle-aged”)

Can you find the patients who needed extra attention during their treatment? Vaugeness
(”extra attention”)

A.3.3 NON-SQL

Non-SQL refers to questions that request operations or tasks outside SQL’s standard scope. We use
12 types of non-SQL tasks as keywods across all datasets: ‘Time Series Forecasting’, ‘Advanced
Statistical Analysis’, ‘Feature Importance’, ‘Clustering’, ‘Causal Inference’, ‘Data Preprocessing’,
‘Outlier Detection’, ‘Web Search’, ‘Sentiment Analysis’, ‘Data-to-Text’, ‘Data Visualization’, and
‘Assistive Tasks’.

Table 9 shows examples of non-sql type questions.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 9: Examples of non-SQL questions.

Dataset Question Reason

ATIS

What is the earliest available flight from CHICAGO to NASHVILLE that includes breakfast
service as found on current flight search engines? Web Search

Tell me the current status of my flight from BOSTON to NEW YORK. Assistive Task

How can you use a t-test to compare the average cost of Delta flights to other airlines for
trips from Boston to Washington? Advanced Statistical Analysis)

Advising

Can you create a scatter plot of course credits versus the clarity score for all EECS courses? Data Visualization

What is the textual summary of courses that started before 09:00 in Spring 2020? Data-to-Text

Can you encode the ”AREA” column for all courses into word vectors? Data Preprocessing

EHRSQL

What are the key predictors of successful weaning from mechanical ventilation in ICU patients? Feature Importance

Do you detect any signs of frustration in patient 10018354’s records related to delayed procedures? Sentiment Analysis

Were there any seasonal patterns in drug prescriptions for patient admitted this year? Time Series Analysis

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.4 COMPARISON OF KEYWORD-BASED AND TEMPLATE-BASED INFEASIBLE DATA
CREATION

The keyword-based question creation method used in this work combines the strengths of template-
based and template-free annotation methods. Annotators are provided with specific keywords and
sample feasible questions. They modify these questions to make them infeasible by incorporating
the keyword’s intent. This approach introduces greater semantic diversity and creates infeasible
questions that closely resemble real user questions, enhancing the dataset’s realism and the model’s
ability to handle complex scenarios. Below are illustrative examples:

Template-based method Consider this infeasible question template: ”When is the next earliest
hospital visit of patient 0000?”—where no record exists for the next hospital appointment in the
database. Possible paraphrases generated from this template can be the following:

• “What is the soonest upcoming hospital visit scheduled for patient 0000?”
• “When is the next scheduled appointment for patient 0000?”

While this method can effectively handle common unanswerable questions (missing-schema), the
diversity of the question pool generated using this method may be limited.

Keyword-based method Suppose the keyword ‘appointment’ is provided, along with sample fea-
sible questions. The task is to modify these questions to include the keyword, making them infeasi-
ble.

Sampled feasible questions:

• “Has patient 0000 gotten any medication this year?”
• “Provide the count of hospital visits for patient 0000.”

Annotated infeasible questions (infeasible keyword is now inserted):

• “Has patient 0000 gotten any medication this year and do they have any upcoming appointments?”
• “Provide the count of hospital visits for patient 0000 including any scheduled upcoming appoint-

ments.”

By incorporating the keyword into existing feasible questions to make them infeasible, this method
ensures both semantic diversity and guarantees that the annotated questions are indeed infeasible.
This approach allows us to create a wider range of infeasible questions that closely resemble real
user questions.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B DETAILED PERFORMANCE

B.1 DETAILED TASK PERFORMANCE

Tables 10 and 11 present the RS of the models on familiar and unfamiliar questions in the feasible
data, respectively. Additionally, Table 12 shows the RS of the models on infeasible questions.

As expected, the models generally perform better on familiar questions than on unfamiliar ones.
Notably, the T5-3B model using the +MAXENT and +MAXPROB methods achieved non-negative
RS even under the strictest safety requirements for familiar questions by abstaining from answering
both unfamiliar feasible questions and infeasible ones. This suggests that less powerful models like
T5-3B may be more reliable when they only answer questions they are confident about, thereby
avoiding the risk of generating incorrect SQL queries. We also observed a correlation between the
RS and query difficulty, indicating that models tend to have higher reliability scores on simpler
queries. When detecting infeasible questions, most models found ambiguous questions to be
the most challenging. This highlights the need for methods that enable models to detect subtle
ambiguities to improve reliability.

ATIS Advising EHRSQL

Φ1
(easy / medium / hard)

ΦN
(easy / medium / hard)

Φ1
(easy / medium / hard)

ΦN
(easy / medium / hard)

Φ1
(easy / hard)

ΦN
(easy / hard)

CL

SQLCODER2 100 / 68.4 / 81.8 100 / -12.5K / -7.1K 92.9 / 91.4 / 79.5 -3.2K / -3.8K / -9.3K 100 / 72.8 100 / -15.1K

+INF† 18.5 / 24.1 / 43.2 18.5 / -3.0K / 43.2 75.0 / 65.0 / 66.7 -3.2K / -2.2K / 66.7 11.4 / 3.4 11.4 / -947.2

+ERR† 100 / 78.2 / 84.1 100 / -4.1K / -3.5K 89.3 / 89.6 / 87.2 89.3 / -1.6K / -2.3K 100 / 80.9 100 / -2.8K

+INF†+ERR† 18.5 / 27.8 / 40.9 18.5 / 27.8 / 40.9 71.4 / 62.6 / 66.7 71.4 / -1.6K / 66.7 11.4 / 4.3 11.4 / 4.3

GPT-4O 100 / 94.0 / 100 100 / -2.3K / 100 100 / 95.1 / 100 100 / -2.2K / 100 100 / 98.3 100 / -852.3

+INF† 88.9 / 78.9 / 63.6 88.9 / -1.7K / 63.6 60.7 / 43.6 / 46.2 60.7 / -2.2K / 46.2 97.7 / 56.6 97.7 / -418.7

+ERR† 63.0 / 16.5 / 4.5 63.0 / 16.5 / 4.5 67.9 / 45.4 / 17.9 67.9 / -516.6 / 17.9 13.6 / 12.3 13.6 / 12.3

+INF‡+ERR‡ 63.0 / 15.0 / 4.5 63.0 / 15.0 / 4.5 39.3 / 22.7 / 17.9 39.3 / -539.3 / 17.9 13.6 / 7.2 13.6 / 7.2

UE

T5-3B 100 / 66.9 / 22.7 100 / -13.1K / -30.6K 92.9 / 93.9 / 79.5 -3.2K / -2.7K / -9.3K 100 / 71.1 100 / -16.1K

+MAXENT 81.5 / 19.5 / 22.7 81.5 / 19.5 / 22.7 32.1 / 12.3 / 2.6 32.1 / 12.3 / 2.6 47.7 / 17.0 47.7 / 17.0

+MAXPROB 100 / 32.3 / 36.4 100 / 32.3 / 36.4 71.4 / 46.6 / 25.6 71.4 / 46.6 / 25.6 63.6 / 19.6 63.6 / 19.6

+FEATMD 11.1 / 1.5 / 0.0 11.1 / 1.5 / 0.0 32.1 / 33.7 / 25.6 32.1 / -528.2 / 25.6 9.1 / 7.7 9.1 / -943.0

+FEATRMD 0.0 / 0.0 / 6.8 0.0 / 0.0 / 6.8 25.0 / 33.1 / 23.1 25.0 / -1.1K / 23.1 2.3 / 2.1 2.3 / -473.2

GPT-4O 100 / 94.0 / 100 100 / -2.3K / 100 100 / 95.1 / 100 100 / -2.2K / 100 100 / 98.3 100 / -852.3

+VERBAL 70.4 / 70.7 / 65.9 70.4 / -5.9K / 65.9 89.3 / 93.3 / 84.6 89.3 / -2.7K / 84.6 88.6 / 83.0 -2.5K / -867.7

+VOTE-SQL 33.3 / 22.6 / 11.4 33.3 / 22.6 / 11.4 50.0 / 53.4 / 61.5 50.0 / 53.4 / 61.5 72.7 / 54.9 72.7 / 54.9

+VOTE-ANS 96.3 / 88.0 / 90.9 96.3 / -508.3 / 90.9 39.3 / 42.3 / 15.4 39.3 / -519.6 / 15.4 100 / 95.7 100 / -379.6

Table 10: Model comparison for ‘familiar’ feasible questions by query difficulty. The scores in the
shaded cells represent SQL generation performance without abstention. All metrics are in % and
numbers in thousands are abbreviated as K for readability.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

ATIS Advising EHRSQL

Φ1
(easy / medium / hard)

ΦN
(easy / medium / hard)

Φ1
(easy / medium / hard)

ΦN
(easy / medium / hard)

Φ1
(easy / hard)

ΦN
(easy / hard)

CL

SQLCODER2 -100 / -80.5 / -58.6 -79.4K / -71.6K / -63.0K -32.0 / 23.5 / 33.3 -60.5K / -35.0K / -30.5K -60.0 / -38.4 -89.4K / -77.3K

+INF† 0.0 / -29.3 / 6.9 0.0 / -23.2K / -4.1K -40.0 / 24.8 / 26.7 -53.2K / -21.5K / -21.3K -10.0 / 0.0 -18.6K / -2.2K

+ERR† -8.3 / -11.4 / 0.0 -6.6K / -16.8K / -13.7K -10.0 / 28.2 / 33.3 -9.2K / -9.8K / -6.1K -10.0 / 5.6 -33.5K / -21.4K

+INF†+ERR† 0.0 / -4.9 / 10.3 0.0 / -3.9K / 10.3 -10.0 / 26.2 / 23.3 -9.2K / -6.1K / -6.1K 0.0 / 1.6 -7.4K / -445.2

GPT-4O 100 / 49.6 / 51.7 100 / -19.9K / -19.1K 88.0 / 85.2 / 86.7 -5.4K / -6.7K / -6.0K 86.7 / 55.2 -7.4K / -25.0K

+INF† 75.0 / 33.3 / 34.5 75.0 / -16.7K / -19.1K 48.0 / 51.7 / 36.7 -5.4K / -1.2K / -6.1K 83.3 / 33.2 83.3 / -14.3K

+ERR† 91.7 / 10.6 / 0.0 91.7 / -634.1 / 0.0 68.0 / 34.9 / 3.3 -5.4K / -1.2K / 3.3 6.7 / 2.8 -3.7K / -890.8

+INF‡+ERR‡ 75.0 / 11.4 / 0.0 75.0 / 11.4 / 0.0 36.0 / 20.8 / 0.0 -5.5K / -594.0 / 0.0 10.0 / 2.0 10.0 / -444.8

UE

T5-3B -100 / -80.5 / -79.3 -79.4K / -71.6K / -71.2K -16.0 / 31.5 / 40.0 -53.1K / -31.3K / -27.4K -26.7 / -46.4 -70.8K / -81.8K

+MAXENT 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 0.7 / 0.0 0.0 / 0.7 / 0.0 0.0 / 0.4 0.0 / 0.4

+MAXPROB 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 -8.0 / 4.7 / 0.0 -7.3K / 4.7 / 0.0 0.0 / 0.4 0.0 / 0.4

+FEATMD 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 2.0 / 0.0 0.0 / 2.0 / 0.0 0.0 / 0.0 0.0 / 0.0

+FEATRMD 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0

GPT-4O 100 / 49.6 / 51.7 100 / -19.9K / -19.1K 88.0 / 85.2 / 86.7 -5.4K / -6.7K / -6.0K 86.7 / 55.2 -7.4K / -25.0K

+VERBAL 91.7 / 39.8 / 37.9 91.7 / -8.3K / -1.3K 74.0 / 68.5 / 43.3 -7.3K / -2.4K / 43.3 80.0 / 48.8 -3.6K / -11.6K

+VOTE-SQL 50.0 / 13.8 / 8.6 50.0 / -1.3K / -4.1K 38.0 / 23.5 / 6.7 -1.8K / 23.5 / 6.7 40.0 / 18.8 40.0 / -1.8K

+VOTE-ANS 91.7 / 52.8 / 60.3 91.7 / -6.4K / -6.8K 30.0 / 31.5 / 0.0 -5.5K / -3.0K / 0.0 86.7 / 48.4 86.7 / -8.4K

Table 11: Model comparison for ‘unfamiliar’ feasible questions by query difficulty. The scores in
the shaded cells represent SQL generation performance without abstention. All metrics are in % and
numbers in thousands are abbreviated as K for readability.

ATIS Advising EHRSQL

Φ1
(missing / ambig / non-sql)

ΦN
(missing / ambig / non-sql)

Φ1
(missing / ambig / non-sql)

ΦN
(missing / ambig / non-sql)

Φ1
(missing / ambig / non-sql)

ΦN
(missing / ambig / non-sql)

CL

SQLCODER2 -100 / -100 / -100 -79.4K / -79.4K / -79.4K -100 / -100 / -100 -91.7K / -91.7K / -91.7K -100 / -100 / -100 -111.8K / -111.8K / -111.8K

+INF† 82.0 / 59.1 / 81.8 -7.1K / -16.2K / -7.1K 71.1 / 9.8 / 46.4 -13.2K / -41.3K / -24.5K 91.4 / 77.4 / 90.3 -4.7K / -12.5K / -5.3K

+ERR† 95.5 / 56.1 / 86.4 -1.7K / -17.4K / -5.3K 52.6 / 28.1 / 63.4 -21.6K / -32.9K / -16.7K 74.3 / 6.5 / 67.7 -14.3K / -52.2K / -17.9K

+INF†+ERR† 98.5 / 95.5 / 100 -497.7 / -1.7K / 100 90.8 / 71.2 / 90.8 -4.1K / -13.1K / -4.1K 97.9 / 86.0 / 100 -1.1K / -7.7K / 100

GPT-4O -72.9 / -97.0 / -83.3 -68.6K / -78.2K / -72.8K -92.1 / -98.7 / -96.1 -88.1K / -91.1K / -89.9K -91.4 / -97.8 / -77.4 -107.0K / -110.6K / -99.2K

+INF‡ 71.4 / 66.7 / 93.9 -11.3K / -13.2K / -2.3K 71.1 / 73.9 / 98.7 -13.2K / -11.9K / -500.0 90.4 / 78.5 / 95.7 -5.3K / -11.9K / -2.3K

+ERR‡ 74.4 / 72.7 / 80.3 -10.1K / -10.7K / -7.7K 71.1 / 62.1 / 73.9 -13.2K / -17.3K / -11.9K 86.1 / 87.1 / 73.1 -7.7K / -7.1K / -14.9K

+INF‡+ERR‡ 86.5 / 97.0 / 100 -5.3K / -1.1K / 100 89.5 / 89.5 / 98.7 -4.7K / -4.7K / -500.0 97.9 / 98.9 / 98.9 -1.1K / -501.6 / -501.6

UE

T5-3B -100 / -100 / -100 -79.4K / -79.4K / -79.4K -100 / -100 / -100 -91.7K / -91.7K / -91.7K -100 / -100 / -100 -111.8K / -111.8K / -111.8K

+MAXENT 98.5 / 92.4 / 97.0 -497.7 / -2.9K / -1.1K 97.4 / 93.5 / 97.4 -1.1K / -2.9K / -1.1K 98.9 / 97.8 / 100 -498.4 / -1.1K / 100

+MAXPROB 97.0 / 92.4 / 97.0 -1.1K / -2.9K / -1.1K 90.8 / 79.1 / 94.8 -4.1K / -9.5K / -2.3K 97.9 / 97.8 / 100 -1.1K / -1.1K / 100

+FEATMD 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100

+FEATRMD 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100

GPT-4O -72.9 / -97.0 / -83.3 -68.6K / -78.2K / -72.8K -92.1 / -98.7 / -96.1 -88.1K / -91.1K / -89.9K -91.4 / -97.8 / -77.4 -107.0K / -110.6K / -99.2K

+VERBAL 60.9 / 57.6 / 90.9 -15.4K / -16.8K / -3.5K 32.9 / 20.3 / 64.7 -30.7K / -36.5K / -16.1K 50.8 / 22.6 / 88.2 -27.4K / -43.2K / -6.5K

+VOTE-SQL 92.5 / 93.9 / 98.5 -2.9K / -2.3K / -502.3 81.6 / 75.2 / 93.5 -8.4K / -11.3K / -2.9K 94.7 / 87.1 / 97.8 -2.9K / -7.1K / -1.1K

+VOTE-ANS 63.9 / 57.6 / 66.7 -14.2K / -16.8K / -13.2K 43.4 / 39.9 / 79.1 -25.9K / -27.5K / -9.5K 60.4 / 31.2 / 72.0 -22.0K / -38.4K / -15.5K

Table 12: Model comparison for infeasible data, categorized by the types on infeasibe questions.
‘missing’ and ‘ambig’ refer to missing-schema and ambiguous, respectively. All metrics are
in % and numbers in thousands are abbreviated as K for readability.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

B.2 SQL GENERATION PERFORMANCE

ATIS Advising EHRSQL

familiar
(all | easy / medium / hard)

unfamiliar
(all | easy / medium / hard)

familiar
(all | easy / medium / hard)

unfamiliar
(all | easy / medium / hard)

familiar
(all | easy / hard)

unfamiliar
(all | easy / hard)

T5-3B 80.9 | 100 / 83.5 / 61.4 9.3 | 0.0 / 9.8 / 10.3 93.9 | 82.1 / 96.9 / 89.7 33.6 | 38.0 / 35.6 / 16.7 87.8 | 100 / 85.5 27.9 | 36.7 / 26.8

SQLCODER2 87.7 | 100 / 84.2 / 90.9 12.4 | 0.0 / 9.8 / 20.7 93.5 | 89.3 / 95.1 / 89.7 32.8 | 20.0 / 40.9 / 13.3 88.5 | 100 / 86.4 29.6 | 20.0 / 30.8

GPT-4O 98.0 | 100 / 97.0 / 100 76.7 | 100 / 74.8 / 75.9 99.1 | 100 / 99.4 / 97.4 90.8 | 92.0 / 90.6 / 90.0 99.3 | 100 / 99.1 79.3 | 93.3 / 77.6

DIN-SQL
(Pourreza & Rafiei, 2023) 67.6 | 88.9 / 65.4 / 61.4 45.1 | 100 / 40.7 / 43.1 77.8 | 96.4 / 74.8 / 76.9 74.7 | 94.0 / 66.4 / 83.3 69.5 | 93.2 / 65.1 66.1 | 76.7 / 64.8

MAC-SQL
(Wang et al., 2023c) 72.1 | 88.9 / 71.4 / 63.6 65.3 | 100 / 67.5 / 53.4 79.1 | 82.1 / 85.9 / 48.7 76.4 | 82.0 / 77.9 / 60.0 68.8 | 88.6 / 65.1 65.7 | 83.3 / 63.6

Table 13: Performance of SQL generators in execution accuracy. DIN-SQL and MAC-SQL also
use GPT-4o.

Table 13 shows the execution accuracy of the baseline SQL generators used in the experiments,
along with two state-of-the-art text-to-SQL models (i.e., DIN-SQL and MAC-SQL). GPT-4O
outperforms on unfamiliar questions, demonstrating better generalizability than T5-3B and SQL-
CODER2. Since DIN-SQL and MAC-SQL are designed for cross-database settings (with extra
effort put into adapting their prompts based on TrustSQL samples for these experiments), they still
underperform compared to GPT-4O, which benefits from retrieving relevant question-to-SQL pairs
from the training set for a given input question.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

C MODEL IMPLEMENTATION

C.1 FINE-TUNING

C.1.1 CLASSIFIER-BASED MODELS

SQL Generator For SQLCODER2, we include both the question and the database schema, for-
matted in DIN-SQL. We fine-tune a SQLCoder 7B-2 model for 20 epochs with a learning rate of
2× 10−4, using two NVIDIA A100 GPUs.

Infeasible Question Detector We fine-tune another SQLCoder 7B-2 model (+INF†) to classify
input question types using the TriageSQL dataset (Zhang et al., 2020), which contains five types:
‘small talk’, ‘ambiguous’, ‘lack of data’, ‘unanswerable by SQL’, and ‘answerable’. Since the raw
data is imbalanced, we sample 10,000 instances from each category to create a balanced training set.
The model is fine-tuned for 1 epoch using two NVIDIA A100 GPUs. We consider a question to be
infeasible if the model predicts any type other than ‘answerable’.

SQL Error Detector We also utilize SQLCoder 7B-2 for detecting SQL errors (+ERR†). Specif-
ically, we generate training data based on the sample-level accuracy of SQL generation by SQL-
CODER2 on the validation set. For each sample, we provide the question, the generated SQL, and
the database schema to the model, and fine-tune it to predict whether the generated SQL is valid.
The model is trained for 10 epochs with a learning rate of 2×10−4, using two NVIDIA A100 GPUs.

C.1.2 UNCERTAINTY-ESTIMATION-BASED MODELS

SQL Generator For training T5-3B, we prepare the input data as questions followed by a serial-
ized schema that lists all tables and columns for each database (Suhr et al., 2020). We fine-tune the
model using BF16 precision and the Adam optimizer with a learning rate of 1 × 10−4, continuing
the training until the validation loss ceases to decrease. The training is conducted using NVIDIA
RTX A6000 GPUs.

Abstention Through Uncertainty Estimation We leverage T5-3B to implement four uncer-
tainty estimation methods: +MAXENT, +MAXPROB, FEATMD, and FEATRMD. Specifically,
+MAXENT uses the entropy of the model’s output distribution as an uncertainty measure, while
+MAXPROB relies on the maximum probability from the output distribution. For FEATMD and
FEATRMD, which are feature-based methods, we use the encoder representations as features to
compute the Mahalanobis distance and relative Mahalanobis distance, respectively. In our pre-
liminary analysis, we found that methods utilizing features from the decoder and binary logits, as
proposed in (Ren et al., 2022), did not perform as effectively as these baselines.

Unlike most uncertainty estimation works, which report performance based on the area under the
ROC curve (AUROC), TrustSQL requires setting a specific threshold to decide whether to provide
answers from the generated SQL or to abstain. We apply an automatic threshold selection method
to all uncertainty-estimation-based models, using a penalty parameter c, as outlined below:

1. For each sample in the validation set, assign a score of +1 if the model’s decision is correct
(i.e., the generated SQL is accurate), and a score of −c if the decision is incorrect.

2. Sort the samples in descending order based on their confidence scores (e.g., lower entropy
corresponds to higher confidence). This assumes that samples with higher confidence are
more likely to result in correct SQL generation.

3. Compute the cumulative sum of the scores. Select the threshold at which the cumulative
score stops increasing. If multiple thresholds yield the same maximum cumulative score,
choose the one corresponding to the higher confidence level. This process is illustrated in
Figure 2.

4. Apply this threshold during inference on the test data.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

High confidence Low confidence

+1 +1 +1 +1-1 -1 -1+1 +1
+1 +2 +3 +2 +3 +2 +3 +2 +3 +2 +1 +0 -1 -2

Individual score:
Cumulative score:

threshold

-1 -1 -1-1 -1

Figure 2: Samples sorted in descending confidence scores, with 14 samples and c = 1 for illustrative
purposes.

C.2 IN-CONTEXT LEARNING

For in-context learning, we leverage GPT-4o5 as the backbone LLM.

SQL Generator We solve TrustSQL in a single-database setting using GPT-4o (GPT-4O), where
we are allowed to use samples from the training data. As a result, we retrieve eight question-SQL
pairs selected based on the maximal marginal relevance (MMR) criterion. MMR ensures a balance
between relevance and diversity, helping us select question-SQL pairs that are both highly relevant
to the input question and diverse enough to avoid redundancy.

Task: Translate the following questions into corresponding SQL queries based on the database schema
provided below.

Database Schema:
{database schema}

Foreign Keys:
{foreign keys}

SQL Assumptions:
{sql assumption}

Question: {question1}
SQL: {sql1}

...

Question: {question8}
SQL: {sql8}

Question: {question}
SQL:

C.2.1 CLASSIFIER-BASED MODELS

Infeasible Question Detector We employ zero-shot chain-of-thought prompting, providing defi-
nitions for the three categories of infeasible questions, followed by the database schema, to generate
either ‘Feasible’ or ‘Infeasible’ responses (+INF‡). The model follows a reasoning step to arrive at
its decision.

Task: Given a natural language question, classify it as either “feasible” or “infeasible” for generating
a corresponding SQL query.

Definitions:
- Feasible: The question can be accurately translated into an SQL query using the information
available in the database.
- Infeasible: The question cannot be translated into an SQL query due to intrinsic limitations, such as

5gpt-4o-2024-08-06

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

a lack of context, incompatibility with the database schema, or the inherent limitations of SQL.

Consider the following cases when determining infeasibility:
- Missing Schema (missing-schema): The question refers to database elements (e.g., tables, columns)
that are not present in the provided schema.
- Query Ambiguity (ambiguous): The question contains vague, ambiguous, or subjective terms,
making it unclear how to map or filter the requested information into an SQL query.
- Non-SQL (non-sql): The question requires operations or tasks (e.g., machine learning, advanced
statistical analysis, deep domain expertise) that cannot be performed using standard SQL capabilities.

Database Schema:
{database schema}

Assumptions:
{sql assumption}

=====

Now, determine if the following question is “feasible” or “infeasible” to generate a corresponding
SQL query.

Response Format:

{
"chain-of-thought-reasoning" : "Explain your reasoning here.",
"answer" : "feasible or infeasible"

}

Question: {question}

SQL Error Detector We adapt DIN-SQL’s zero-shot self-correction prompt to generate ‘Correct’
or ‘Incorrect’ labels based on the input question and the SQL output from GPT-4O (+ERR‡). The
prompt is shown below:

Task: Based on the question and predicted SQL, are you sure the SQL below is correct? If you
consider the SQL is correct, answer me with ‘correct’. If not, answer me with ‘incorrect’. Only output
your response without explanation.

Database Schema:
{database schema}

Assumptions:
{sql assumption}

Foreign keys = {foreign keys}

Primary keys = {primary keys}

Question: {question}
Predicted SQL: {predicted sql}
Answer:

C.2.2 UNCERTAINTY-ESTIMATION-BASED MODELS

For +VOTE-SQL and +VOTE-ANS, we use the same prompt as GPT-4O but sample five times to
check the consistency of the output.

For +VERBAL, we also use the same prompt, but providing both eight examples of correct and in-
correct question-SQL pairs. Incorrect pairs are created by randomly pairing questions with unrelated
SQL queries. Each pair is then labeled as either ‘True’ or ‘False,’ depending on its validity.

29

	Introduction
	Related Works
	Problem Definition
	Data Construction
	Database selection
	Feasible questions
	Infeasible questions
	Data Overview

	Experiments
	Models
	Fine-tuning
	In-Context Learning

	Evaluation Metrics

	Results
	Full data, DQ DQc
	Feasible Data, DQ
	Discussion

	Conclusion
	Benchmark Details
	Feasible Questions
	ATIS Assumptions
	Advising Assumptions
	EHRSQL Assumptions

	Re-annotation Details
	Step 1: Template Review and Modification
	Step 2: Paraphrase Generation
	Step 3: Pair Construction
	Step 4: Review and Quality Control

	Infeasible Questions
	Missing-Schema
	Ambiguous
	Non-SQL

	Comparison of keyword-based and template-based infeasible data creation

	Detailed Performance
	Detailed Task Performance
	SQL Generation Performance

	Model Implementation
	Fine-tuning
	Classifier-based Models
	Uncertainty-Estimation-Based Models

	In-Context Learning
	Classifier-based Models
	Uncertainty-Estimation-Based Models

