Under review as a conference paper at ICLR 2025

APPENDIX

[A__Benchmark Details|
IA.1 Feasible Questions|
IA.1.1 ATIS Assumptions|

IA.1.2° Advising Assumptions|
|A.1.3 EHRSQL Assumptions|.

|A.2.1 Step 1: Template Review and Modification|

IA.2.2 Step 2: Paraphrase Generation|
|A.2.3 Step 3: Pair Construction|.
|A.2.4 Step 4: Review and Quality Control| .
IA.3 Infeasible Questions|.
|A.3.1 Missing-Schema)
IA.3.2 Ambiguous|

on-oVLf

IA.4 Comparison of keyword-based and template-based infeasible data creation|.

B Detailed Performancel

14

15
15
16
16
16
18
18
18
18
18
19
19
21
21
23

24
24
26

Under review as a conference paper at ICLR 2025

A BENCHMARK DETAILS

A.1 FEASIBLE QUESTIONS

Tables[6]and [7]show data statistics based on query difficulty and sample questions for feasible ques-
tions. For assigning query difficulty, we adopted the SQL hardness criteria from DIN-SQL (Pourreza
& Rafieil [2023)) across all datasets, classifying the samples into three levels: easy, medium, and
hard. The easy category includes single-table queries that do not require joins or nesting. The

medium category includes queries that involve joins (including implicit joins) but excludes nesting.
The hard category covers queries that may contain joins, sub-queries, and set operations.

Table 6: Data statistics based on query difficulty. “EHRSQL does not contain any medium-difficulty
samples. We use the MIMIC-IV portion of the EHRSQL dataset for our work.

ATIS Advising EHRSQL*
easy medium hard easy medium hard easy hard
Train 83 400 140 83 508 107 308 2325
Valid 37 259 111 67 309 75 79 480
Test 39 256 102 78 312 69 74 485
All 159 915 353 228 1129 251 461 3290

Table 7: Examples of feasible questions. Questions and their corresponding SQL queries in domain-
specific datasets tend to be long, making it challenging for the model to handle such lengthy queries.

Dataset Difficulty Question SQL Query
SELECT DISTINCT AIRPORTalias0. AIRPORT_LOCATION FROM
easy Can you tell me the location of LGA? AIRPORT AS AIRPORTalias0 WHERE
AIRPORTalias0.AIRPORT_CODE = "LGA”
SELECT DISTINCT FLIGHTalias0.FLIGHT_ID FROM AIRPORT AS
ATIS medium Can you provide a list of flights that arrive at DAL? Qiggggiﬁ:zg:AI;IliIPF(’)}II{TI‘éfS()l]:)IiEIC:’I:I’P]%KE?’O AV\I\II%ERE
FLIGHTalias0.TO_AIRPORT = AIRPORTalias0.AIRPORT_CODE
SELECT DISTINCT SELECT DISTINCT FLIGHTaliasO.FLIGHT_ID
hard What would be the cheapest flight from ATLANTA FROM AIRPORT_SERVICE AS AIRPORT_SERVICEalias0 ,
to DENVER on 10/ 12/1991? ... [38 lines omitted involving query nesting] ...
FLIGHTaliasO.FLIGHT_ID = FLIGHT _FAREaliasO.FLIGHT_ID
Give me the course number of the Investigations SELECT DISTINCT COURSEaliasO.NUMBER FROM COURSE AS
easy class COURSEalias0 WHERE COURSEalias0.NAME LIKE
’ "%Investigations%”
SELECT DISTINCT COURSEalias0O.DEPARTMENT ,
Please provide me with the PreMajor courses that COURSEAalias0.NUMBER FROM COURSE AS COURSEaliasO
medium T ilable in Fall 2015 INNER JOIN COURSE_OFFERING AS COURSE_OFFERINGalias0
Advising [9 lines omitted involving joins] ...
=2015
SELECT DISTINCT INSTRUCTORalias0.NAME FROM COURSE AS
COURSE.alias0 INNER JOIN COURSE_OFFERING AS
hard S0, mostrecently, (aught SCAND 104 before - cQURSE OFFERINGalias0 ON COURSExlias).COURSE_ID =
: ... [18 lines omitted involving query nesting] ...
COURSE.alias0.NUMBER = 104
- What are the ways to consume metformin SELECT DISTINCT prescriptions.route FROM prescriptions WHERE
ceasy (glucophage)? prescriptions.drug = "metformin (glucophage)’
What was the change in arterial blood pressure SELECT (SELECT chart§vents.valuenum FROM charteyents
EHRSQL systolic in patient 10037975 second measured on WHERE chartevel?ls.stay,ld IN ((SELECT lcustays.slaAy,l‘d FROM .
hard icustays WHERE icustays.hadm_id IN (SELECT admissions.hadm_id

the first ICU visit compared to the first value
measured on the first ICU visit?

... [15 lines omitted involving query nesting] ...

ASCLIMIT 1)

SQL Assumptions Domain-specific datasets are commonly handled in a single-table setting (as
in our work), which frequently relies on dataset-specific question-to-SQL assumptions (Suhr et al.,
2020). During preprocessing and re-annotating the questions, we document these SQL mapping
assumptions for each dataset in a separate file. This allows models using in-context learning (which
typically requires a long context length) to reference the knowledge. Fine-tuned models can access
this knowledge during training. Assumptions that are not explicitly stated or implicitly present in
the training question-SQL pairs should not be used without the user’s consent, as this could lead to
potential harm. Below are the SQL assumptions for the three datasets.

15

Under review as a conference paper at ICLR 2025

A.l.1

ATIS ASSUMPTIONS

Use SQLite for SQL query generation.

Unless otherwise specified, the values in the question are case-sensitive and are identical to the
values stored in the database.

When retrieving the result, use DISTINCT for the selected columns.

For retrieving the top N results, exclude counts and return relevant items only.
When asked to retrieve “flight,” return “FLIGHT.FLIGHT_ID.”

When asked to retrieve “fares,” return “FARE.FARE_ID.”

Treat phrases like “is it possible,” “can you confirm whether,” or “verify” as true/false questions.

WEIGHT and PAY _LOAD are measured in pounds; CAPACITY refers to the number of passen-
gers (seats); WING_SPAN and LENGTH are in feet; CRUISING_SPEED is in miles per hour;
RANGE_MILES refers to miles.

A.1.2 ADVISING ASSUMPTIONS

Use SQLite for SQL query generation.

- Unless otherwise specified, the values in the question are case-sensitive and are identical to the
values stored in the database.

When retrieving the result, use DISTINCT for the selected columns.
When retrieving the top N results, return the relevant rows without including aggregate counts.
Use “DISTINCT COURSE.DEPARTMENT, COURSE.NUMBER” when retrieving courses.

Use “DISTINCT SEMESTER.SEMESTER, SEMESTER.YEAR” when retrieving information
about semesters.

Interpret questions involving “is it possible”, “can you confirm whether”, or “verify” as true/false
queries.

‘When asked about instructors, return “DISTINCT INSTRUCTOR.NAME”.

Differentiate between “course offering” (COURSE_OFFERING) and “course” (COURSE) when
responding to queries.

Use “AREA.AREA” for broader course categories such as theory, software, or intelligent systems;
use “COURSE.NAME?” for specific course names.

Use a LIKE operator with “%” wildcards for queries involving “PROGRAM.NAME”,
“AREA.AREA”, or “COURSE.DESCRIPTION".

Map “Upper-level CS” to “ULCS” in the database.

For columns containing “HAS_*”, use “Y” for true conditions and “N” for false conditions.

Al3

EHRSQL ASSUMPTIONS

7

Use SQLite for SQL query generation.

Use DENSE_RANK() for ranking results.

For the top N results, return only the relevant items, excluding their counts.

Use DISTINCT in queries asking about the cost of some events, drug routes, or counting patients
or hospital/ICU visits.

When calculating the total cost, compute the sum of patient’s expenses for diagnoses, procedures,
lab events, and prescriptions at a hospital admission level.

The time of diagnosis occurs at the time of hospital admission, and procedures occur at the time of
hospital discharge.

99 ¢

Treat questions starts with “is it possible,” “can you confirm,” or “verify” as true/false questions.

Calculate a patient’s age once per hospital admission. The age remains constant even if the hospital
stay exceeds one year.

16

Under review as a conference paper at ICLR 2025

- When referring to events related to inputs, the values must be found in the inputevents table; simi-
larly, for output events, the values must be found in the outputevents table.

- Vital-related events are stored in chartevents, not in inputevents or outputevents.

- Values are distinct across tables. For example, “propofol” in the inputevents table does not appear
in the prescription table.

- When calculating the N-year survival rate:
- A patient is considered deceased if a death record exists between their first diagnosis and N
years later.

- If no death record exists within N years, or if death occurs afterward, the patient is considered
survived.

- Express the result as a percentage or proportion (values between 0 and 1).
- Abnormality is defined only for the following values with these ranges:

- Temperature Celsius: (35.5, 38.1)

- 02 saturation pulseoxymetry: (95.0, 100.0)

- Heart Rate: (60.0, 100.0)

- Respiratory Rate: (12.0, 18.0)

- Arterial Blood Pressure systolic: (90.0, 120.0)

- Arterial Blood Pressure diastolic: (60.0, 90.0)

- Arterial Blood Pressure mean: (60.0, 110.0)

- Time References:

- Interpret “now” as 2100-12-31 23:59:00, “today” as 2100-12-31, “this month” as December of

2100, and “this year” as 2100.

- “3 months” refers to 365/4 days, and “6 months” refers to 365/2 days when calculating a
duration.

- “This month/02” and “last month/02” refer to the 2nd day of the current and previous month,
respectively.

- “11/this year” refers to November of this year; “11/2100 year” refers to November 2100;
“12/31/this year” refers to December 31st of this year.

- Dates like “12/06/2100” are in MM/DD/YYYY format.

- When a question involves the time of diagnosis in relation to other types of events, use the first
diagnosis time for each patient.

- A “current hospital visit/encounter” refers to records where the hospital discharge time does
not exist, indicating a current patient; a “last hospital visit” is only if the hospital discharge
time is present; the first hospital visit is simply the first order of the visit.

- Entity Mapping Assumptions:

- Use “temperature celsius” for body temperature.

- Use “02 saturation pulseoxymetry” for SaO2.

- Use “heart rate” for heart rate.

- Use “respiratory rate” for respiration rate.

- Use “arterial blood pressure systolic” for systolic blood pressure.

- Use “arterial blood pressure diastolic” for diastolic blood pressure.

- Use “arterial blood pressure mean” for mean blood pressure.

- Use “daily weight” for weight.

- Use “height (cm)” for height.

- Use “m” for male and “f” for female.

- Except for the above, use the value as it is.

17

Under review as a conference paper at ICLR 2025

A.2 RE-ANNOTATION DETAILS

Our preliminary data analysis revealed that ATIS and Advising require significant preprocessing due
to issues such as query duplication, low-quality natural language questions, null results (SQL queries
returning empty results), and inconsistent question-to-SQL assumptions across samples (e.g., SQL
annotations with varying definitions of the current time). To address this we follow four data re-
annotation steps below:

A.2.1 STEP 1: TEMPLATE REVIEW AND MODIFICATION

Template Sorting Domain-specific datasets contain unique SQL query structures that reflect user
intents. For example, “I need a flight from city_namel to city_name0” and “Give me a list of
flights going from city_namel to city_name0” are two different paraphrases for the same SQL
structure. These datasets also include information about the entities or values used in each sample;
for example, ‘BOSTON’ is a value for the ‘city_nameO’ placeholder, which is sampled from a
specific column. We refer to questions with placeholders as question templates. To validate the data,
we first sort it by unique SQL structures.

SQL Query Validation In cases of query duplication (such as in ATIS and Advising), where ques-
tions conveying the same intent are matched with differently labeled SQL structures (Finegan-Dollak
et al.,[2018])), we merge these duplicates. Query duplication can be problematic for model evaluation,
as it may lead to misleading results, particularly when assessing model performance on ‘familiar’
vs. ‘unfamiliar’ questions (Section [A). To address this, we first identify samples that share identical
placeholders (e.g., “I need a flight from city_namel to city_name0” and “Which airline pro-
vides service in city_nameO and city_namel” bothuse ‘city_name0’ and ‘city_namel’ as
placeholders) and then assess their semantic equivalence. Once samples with identical semantics are
found, we merge them by selecting the shortest SQL query to represent the group. In this step, we
also verify whether the SQL queries accurately reflect the intended meanings of the corresponding
questions.

A.2.2 STEP 2: PARAPHRASE GENERATION

Because ATIS, Advising, and EHRSQL are pre-GPT era datasets with all samples being human-
curated, many of them are of low quality and sound unnatural, with limited diversity in the questions.
To address this, we use GPT-40 to paraphrase at least 20 questions for each question template, ensur-
ing that these paraphrases maintain the placeholders and align with the intended meanings. During
this process, we make sure that each generated question does not assume any specific knowledge
unique to individual questions. For example, in Advising, one question might assume ‘I’ refers to
student 1, while another assumes ‘I’ refers to student 2. We eliminate such cases. Only the common
assumptions that are applied extensively in SQL annotations are retained and documented.

A.2.3 STEP 3: PAIR CONSTRUCTION

We merge question templates and paraphrases to construct a complete text-to-SQL dataset. During
merging, we also insert sampled values (actual data stored in the database) into the placeholders in
question paraphrases and SQL structures (now referred to SQL queries). Then, we execute these
queries to see if we return null results from the database. Null results refer to cases where the SQL
query returns ‘Null’ or ‘[]” upon execution, which may cause false positives in text-to-SQL model
evaluation. If a null result is returned, we sample new values again from the database.

A.2.4 STEP 4: REVIEW AND QUALITY CONTROL

All annotators engage in real-time discussion to resolve any disagreements in reviewing the cre-
ated question-SQL pairs and SQL assumption text. Frequent disagreements involved determining
whether the questions and the SQL assumptions included all necessary information to generate the
annotated SQL queries. Discussions continue until a consensus is reached.

18

Under review as a conference paper at ICLR 2025

A.3 INFEASIBLE QUESTIONS

There are three types of infeasible questions in TrustSQL: missing-schema, ambiguous, and
non-sgl. Our design choice is to make these questions similar to feasible questions in surface
form while keeping it infeasible. So, we first define candidate keywords that assures infeasibility
and ask annotators to incorporate that into existing feasible questions.

A.3.1 MISSING-SCHEMA

To create questions that refer to non-existent columns, we first generate a list of ‘hypothetical’
columns that are similar to the database (which may not always be realistic). We create questions
that refer to these hypothetical columns for each database by assuming they exist. For example:
“Give me all aircraft types whose TURBOPROP engines are from HONEYWELL.” Note that the
Aircraft table in ATIS contains columns like ‘manufacturer’ and ‘propulsion,” but no column named
‘engine_manufacturer.” Below are the hypothetical columns we create for each database:

Hypothetical Columns in ATIS

AIRCRAFT Table:
COST, ENGINE_MANUFACTURER, FUEL_CAPACITY, MANUFACTURE_DATE,
MAX_ALTITUDE, MAX_SPEED, PRODUCTION_STATUS

AIRLINE Table:
ANNUAL_PASSENGER_COUNT, EMPLOYEE_COUNT, FOUNDER, FOUNDING_YEAR,
HEADQUARTERS, HUB_AIRPORT

AIRPORT Table:
ENTRANCE_DIRECTION, GATE_COUNT, NUM_LOUNGE, PARKING_CAPACITY,
RUNWAY_LENGTH, TRANSIT_HOTEL

FLIGHT Table:
IN_FLIGHT_ENTERTAINMENT, WIFI_AVAILABLE

FOOD_SERVICE Table:
ALLERGENS, IS_VEGAN

GROUND_SERVICE Table:
OPERATIONAL_HOURS

RESTRICTION Table:
SUNDAY_STAY_REQUIREMENT

Hypothetical Columns in Advising

COURSE Table:
AP_IB_CREDIT_WAIVER, GRADING_-METHOD, RATING

COURSE_OFFERING Table:
ATTENDANCE, DELIVERY_METHOD, GRADING.TYPE, HONORS_TRACK, LANGUAGE,
TEXTBOOK_PUBLISHER, WAITLIST_COUNT

INSTRUCTOR Table:
AGE, IS_DEPARTMENT_CHAIR, OFFICE_ADDRESS, RATING, TOTAL_GPA

STUDENT Table:
ADVISOR, AGE, FINANCIAL_AID, HONOR_ROLL_STATUS, INTERNATIONAL_STUDENT

19

Under review as a conference paper at ICLR 2025

STUDENT_RECORD Table:
STUDY_ABROAD

Hypothetical Columns in EHRSQL

admissions:
age_atmarriage, arrival_time, attending.physician_-id, department_id

cost:
billing_code, payment_status

d_labitems:
lab_priority

inputevents:
provider_id

labevents:
equipment, requester_id, turnaround.-time

microbiologyevents:
requester_id, specimen_quality

patients:
address, blood_type, emergency.contact, insurance_duration,
is_veteran, name, next_of_kin, occupation, place_of birth

procedures _icd:
anesthesia_duration, anesthesia_type, consent_date, physician_-id,
procedure_duration

20

Under review as a conference paper at ICLR 2025

A.3.2 AMBIGUOUS

For ambiguous questions, we have two sub-types: referential ambiguity and vagueness (Shah &
Jinwalal [2015). This is different from existing works that focus solely on column ambiguity (i.e.,
referring to multiple valid candidates for columns). However, since the definition of ambiguity
involves being unable to answer without further clarification, this condition also holds. Questions
with referential ambiguity include words where it is unclear who or what they refer to (e.g., ‘this,’
‘she’). For example, “Has this patient been admitted to an emergency room?” (where ‘this patient’
is unclear in reference). Questions with vagueness contain words that are imprecise or lack clear
boundaries (e.g., ‘early, ‘best’), such as in “Which upper-leval CS courses in Winter 2016 ended
early?” (where ‘early’ is not precisely defined). We include this because a model should not rely
on unstated commonsense to resolve vagueness, as it may conflict with the user’s intent and cause
potential harm. Any allowed assumptions should be explicitly stated (Appendix|A.1.1}[A.1.2}[A.1.3)
or be implicitly demonstrated in the question-SQL pairs within the training data.

Table 8] provides examples of infeasible questions due to ambiguity.

Table 8: Examples of ambiguous questions.

Dataset Question Reason
Show me the details of the flights that leave around 17:00. (”ar\(/)?ﬁ::iin ‘13;?00)
ATIS Please give me the earliest time a flight takes off from BALTIMORE to BOSTON and the Referential ambiguity
subsequent information. (’subsequent information”)
What are the IDs of the fares of DL airline’s flights from BOSTON to PHILADELPHIA Vagueness
that are economic? (“economic”)
Vagueness

‘Who have been the instructors for CMPLXSYS 270 in recent years? », »
(recent” years)

Referential ambiguity
("those” 200-level courses)
Vagueness
(suitable”)
Referential ambiguity
("’this” patient)
Vagueness
("middle-aged”)
Vaugeness
("extra attention”)

Advising Which of those 200-level courses were 3-credit courses?

What EECS courses are suitable for students whose total credits are less than 200?

When was that first maximum pt for this patient in 12/this year?

EHRSQL Can you show the five most commonly prescribed drugs for middle-aged patients?

Can you find the patients who needed extra attention during their treatment?

A.3.3 NoON-SQL

Non-SQL refers to questions that request operations or tasks outside SQL’s standard scope. We use
12 types of non-SQL tasks as keywods across all datasets: ‘Time Series Forecasting’, ‘Advanced
Statistical Analysis’, ‘Feature Importance’, ‘Clustering’, ‘Causal Inference’, ‘Data Preprocessing’,
‘Outlier Detection’, “Web Search’, ‘Sentiment Analysis’, ‘Data-to-Text’, ‘Data Visualization’, and
‘Assistive Tasks’.

Table [9] shows examples of non-sql type questions.

21

Under review as a conference paper at ICLR 2025

Table 9: Examples of non-SQL questions.

Dataset Question Reason
‘What is the earliest available flight from CHICAGO to NASHVILLE that includes breakfast
. . . Web Search
service as found on current flight search engines?
ATIS Tell me the current status of my flight from BOSTON to NEW YORK. Assistive Task

How can you use a t-test to compare the average cost of Delta flights to other airlines for

trips from Boston to Washington? Advanced Statistical Analysis)

Can you create a scatter plot of course credits versus the clarity score for all EECS courses? Data Visualization
Advising ‘What is the textual summary of courses that started before 09:00 in Spring 2020? Data-to-Text
Can you encode the ”AREA” column for all courses into word vectors? Data Preprocessing
What are the key predictors of successful weaning from mechanical ventilation in ICU patients? Feature Importance
EHRSQL p, you detect any signs of frustration in patient 10018354’s records related to delayed procedures? Sentiment Analysis
Were there any seasonal patterns in drug prescriptions for patient admitted this year? Time Series Analysis

22

Under review as a conference paper at ICLR 2025

A.4 COMPARISON OF KEYWORD-BASED AND TEMPLATE-BASED INFEASIBLE DATA
CREATION

The keyword-based question creation method used in this work combines the strengths of template-
based and template-free annotation methods. Annotators are provided with specific keywords and
sample feasible questions. They modify these questions to make them infeasible by incorporating
the keyword’s intent. This approach introduces greater semantic diversity and creates infeasible
questions that closely resemble real user questions, enhancing the dataset’s realism and the model’s
ability to handle complex scenarios. Below are illustrative examples:

Template-based method Consider this infeasible question template: “When is the next earliest
hospital visit of patient 0000?"—where no record exists for the next hospital appointment in the
database. Possible paraphrases generated from this template can be the following:

* “What is the soonest upcoming hospital visit scheduled for patient 00007’
* “When is the next scheduled appointment for patient 0000?”

While this method can effectively handle common unanswerable questions (missing-schema), the
diversity of the question pool generated using this method may be limited.

Keyword-based method Suppose the keyword ‘appointment’ is provided, along with sample fea-
sible questions. The task is to modify these questions to include the keyword, making them infeasi-
ble.

Sampled feasible questions:

* “Has patient 0000 gotten any medication this year?”’
* “Provide the count of hospital visits for patient 0000.”

Annotated infeasible questions (infeasible keyword is now inserted):

* “Has patient 0000 gotten any medication this year and do they have any upcoming appointments?”

* “Provide the count of hospital visits for patient 0000 including any scheduled upcoming appoint-
ments.”

By incorporating the keyword into existing feasible questions to make them infeasible, this method
ensures both semantic diversity and guarantees that the annotated questions are indeed infeasible.
This approach allows us to create a wider range of infeasible questions that closely resemble real
user questions.

23

Under review as a conference paper at ICLR 2025

B DETAILED PERFORMANCE

B.1 DETAILED TASK PERFORMANCE

Tables [I0] and [IT] present the RS of the models on familiar and unfamiliar questions in the feasible
data, respectively. Additionally, Table[12]|shows the RS of the models on infeasible questions.

As expected, the models generally perform better on familiar questions than on unfamiliar ones.
Notably, the T5-3B model using the + MAXENT and +MAXPROB methods achieved non-negative
RS even under the strictest safety requirements for familiar questions by abstaining from answering
both unfamiliar feasible questions and infeasible ones. This suggests that less powerful models like
T5-3B may be more reliable when they only answer questions they are confident about, thereby
avoiding the risk of generating incorrect SQL queries. We also observed a correlation between the
RS and query difficulty, indicating that models tend to have higher reliability scores on simpler
queries. When detecting infeasible questions, most models found ambiguous questions to be
the most challenging. This highlights the need for methods that enable models to detect subtle
ambiguities to improve reliability.

ATIS Advising EHRSQL
@, [@, N Py Oy
(easy / medium / hard) (easy / medium / hard) (easy / medium /hard) (easy / medium/hard) (easy/hard) (easy/hard)
SQLCODER2 100/68.4/81.8 100/-12.5K/-7.1K 92.9/91.4/79.5 -3.2K/-3.8K/-9.3K 100/72.8 100/-15.1K
+INE! 18.5/24.1/43.2 18.5/-3.0K/43.2 75.0/65.0/66.7 -3.2K/-2.2K/66.7 114/3.4 11.4/-947.2
+ERRY 100/78.2/84.1 100/-4.1K /-3.5K 89.3/89.6/87.2 89.3/-1.6K/-2.3K 100/80.9 100/-2.8K
oL ,+,H\I,Fi+,Ef]§T, 18.5/27.8/40.9 18.5/27.8/40.9 71.4762.6/66.7 71.4/-1.6K/66.7 11.4/43 114743
GPT-40 100/94.0/ 100 100/-2.3K / 100 100/95.1 /100 100/-2.2K / 100 100/98.3 100/-852.3
+INF 88.9/78.9/63.6 88.9/-1.7K/63.6 60.7/43.6/46.2 60.7/-2.2K/46.2 97.7156.6 97.7/-418.7
+ERRT 63.0/16.5/4.5 63.0/16.5/4.5 67.9/454/179 67.9/-516.6/17.9 13.6/12.3 13.6/12.3
+INF+ERRY 63.0/15.0/4.5 63.0/15.0/4.5 39.3/22.7/179 39.3/-539.3/17.9 13.6/7.2 13.6/72
T5-3B 100/ 66.9/22.7 100/-13.1K / -30.6K 92.9/93.9/79.5 -3.2K /-2.7K/-9.3K 100/71.1 100/-16.1K
+MAXENT 81.5/19.5/22.7 81.5/19.5/22.7 32.1/12.3/2.6 32.1/12.3/2.6 47.7117.0 47.7117.0
+MAXPROB 100/32.3/36.4 100/32.3/36.4 71.4/46.6/25.6 71.4/46.6/25.6 63.6/19.6 63.6/19.6
+FEATMD 11.1/1.5/0.0 11.1/1.5/70.0 32.1/33.7/25.6 32.1/-528.2/25.6 9.1/7.7 9.1/-943.0
UE +FEATRMD 0.0/0.0/6.8 0.0/0.0/6.8 25.0/33.1/23.1 25.0/-1.1K/23.1 23/2.1 23/-4732
GPT-40 100/94.0/ 100 100/-2.3K/ 100 100/95.1/100 100/ -2.2K / 100 100/98.3 100/ -852.3
+VERBAL 70.4/70.7/65.9 70.4/-59K/65.9 89.3/93.3/84.6 89.3/-277K /84.6 88.6/83.0 -2.5K/-867.7
+VOTE-SQL 333/22.6/114 33.3/22.6/11.4 50.0/53.4/61.5 50.0/53.4/61.5 72.7154.9 7271549
+VOTE-ANS 96.3/88.0/90.9 96.3/-508.3/90.9 39.3/423/15.4 39.3/-519.6/15.4 100/95.7 100/-379.6

Table 10: Model comparison for ‘familiar’ feasible questions by query difficulty. The scores in the
shaded cells represent SQL generation performance without abstention. All metrics are in % and
numbers in thousands are abbreviated as K for readability.

24

Under review as a conference paper at ICLR 2025

ATIS Advising EHRSQL
D [N of Dy Dy Px
(easy / medium / hard) (easy / medium / hard) (easy / medium / hard) (easy / medium / hard) (easy / hard) (easy / hard)
SQLCODER2 -100/-80.5/-58.6 -79.4K /-71.6K / -63.0K -32.0/23.5/33.3 -60.5K /-35.0K /-30.5K -60.0/-38.4 -89.4K/-77.3K
+INET 0.0/-29.3/6.9 0.0/-23.2K/-4.1K -40.0/24.8/26.7 -53.2K/-21.5K/-21.3K -10.0/0.0 -18.6K/-2.2K
+ERRT -8.3/-11.4/0.0 -6.6K /-16.8K /-13.7K -10.0/28.2/33.3 -9.2K/-9.8K /-6.1K -10.0/56 -33.5K/-21.4K
oL 7+7II\17F1+7E121§T7 0.0/-4.9/10.3 0.0/-3.9K/10.3 -10.0/26.2/23.3 -9.2K/-6.1K /-6.1K 0.0/1.6 -7.4K/-4452
GPT-40 100/49.6/51.7 100/-19.9K /-19.1K 88.0/85.2/86.7 -5.4K/-6.7K / -6.0K 86.7/552 -7.4K/-25.0K
+INET 75.0/33.3/34.5 75.0/-16.7K/-19.1K 48.0/51.7/36.7 -54K/-12K/-6.1K 83.3/33.2 83.3/-14.3K
+ERRT 91.7/10.6/0.0 91.7/-634.1/0.0 68.0/34.9/33 -54K/-12K /33 6.7/2.8 -3.7K /-890.8
+INF +ERRY 75.0/11.4/0.0 75.0/11.4/0.0 36.0/20.8/0.0 -5.5K/-594.0/0.0 10.0/2.0 10.0/-444.8
T5-3B -100/-80.5/-79.3 -79.4K /-71.6K /-71.2K -16.0/31.5/40.0 -53.1K/-31.3K/-27.4K -26.7/-46.4 -70.8K/-81.8K
+MAXENT 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.7/0.0 0.0/0.7/0.0 0.0/0.4 0.0/04
+MAXPROB 0.0/0.0/0.0 0.0/0.0/0.0 -8.0/4.7/0.0 -7.3K/4.7/0.0 0.0/0.4 0.0/04
+FEATMD 0.0/0.0/0.0 0.0/0.0/0.0 0.0/2.0/0.0 0.0/2.0/0.0 0.0/0.0 0.0/0.0
UE +FEATRMD 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0 0.0/0.0
GPT-40 100/49.6/51.7 100/-19.9K/-19.1K 88.0/85.2/86.7 -5.4K/-6.7K / -6.0K 86.7/552 -7.4K/-25.0K
+VERBAL 91.7/39.8/37.9 91.7/-83K/-1.3K 74.0/68.5/43.3 -73K/-2.4K /433 80.0/48.8 -3.6K/-11.6K
+VOTE-SQL 50.0/13.8/8.6 50.0/-1.3K/-4.1K 38.0/23.5/6.7 -1.8K/23.5/6.7 40.0/18.8 40.0/-1.8K
+VOTE-ANS 91.7/52.8/60.3 91.7/-6.4K /-6.8K 30.0/31.5/0.0 -5.5K/-3.0K/0.0 86.7/48.4 86.7/-8.4K

Table 11: Model comparison for ‘unfamiliar’ feasible questions by query difficulty. The scores in
the shaded cells represent SQL generation performance without abstention. All metrics are in % and
numbers in thousands are abbreviated as K for readability.

ATIS EHRSQL
D, Dy 3, e @, n
(missing / ambig / non-sql) (missing / ambig / non-sql) (missing / ambig / non-sql) (missing / ambig / non-sql) (missing / ambig / non-sql) (missing / ambig / non-sql)

Advising

SQLCODER2 -100/-100/-100 -79.4K /-79.4K / -79.4K -100/-100/-100 -91.7K/-91.7K / -91.7K -100/-100/-100 -111.8K/-111.8K/-111.8K
+INF! 82.0/59.1/81.8 -7.1K/-16.2K/-7.1K 71.1/9.87/46.4 -13.2K/-41.3K/-24.5K 91.4/77.4/90.3 -4.7K /-12.5K /-5.3K
+ERR! 95.5/56.1/86.4 -1.7K/-17.4K /-5.3K 52.6/28.1/63.4 -21.6K/-32.9K /-16.7K 74.3/6.5/67.7 -14.3K /-52.2K /-17.9K

o f}'\I,F'f,E‘}‘i', 98.5/95.5/100 -497.7/-1.7K/ 100 90.8/71.2/90.8 -4.1K/-13.1K/ -4.1K 97.9/86.0/ 100 -1.1K/-7.7K / 100

GPT-40 -72.9/-97.0/-83.3 -68.6K / -78.2K / -72.8K -92.1/-98.7/-96.1 -88.1K /-91.1K / -89.9K -91.4/-97.8/-77.4 -107.0K / -110.6K / -99.2K
+INF! 71.4/66.7/93.9 -11.3K/-13.2K /-2.3K 71.1/73.9/98.7 -13.2K/-11.9K /-500.0 90.4/78.5/95.7 -5.3K/-11.9K/-2.3K
+ERRF 74417271803 -10.1K /-10.7K / -7.7K 71.1/62.1/73.9 -13.2K/-17.3K/-11.9K 86.1/87.1/73.1 -7.7K/-7.1K / -14.9K
+INFH+ERRY 86.5/97.0/100 -5.3K/-1.1K/ 100 89.5/89.5/98.7 -4.7K / -4.7K / -500.0 97.9/98.9/98.9 -1.1K /-501.6 /-501.6

T5-3B -100/-100/-100 -79.4K /-79.4K / -79.4K -100/-100/-100 -91.7K/-91.7K / -91.7K -100/-100/-100 -111.8K/-111.8K/-111.8K
+MAXENT 98.5/92.4/97.0 -497.7/-2.9K /-1.1K 97.4/93.5/97.4 -1.1IK/-29K/-1.1K 98.9/97.8/100 -498.4/-1.1K/ 100
+MAXPROB 97.0/92.4/97.0 -1.1IK/-29K/-1.1K 90.8/79.1/94.8 -4.1K/-9.5K /-2.3K 97.9/97.8/100 -1.1K/-1.1K / 100
+FEATMD 1007100/ 100 1007100/ 100 1007100/ 100 100/100/100 100/ 100/ 100 1007100/ 100

UE +FEATRMD 100/100/ 100 100/100/ 100 100/100/ 100 100/100/ 100 100/100/ 100 100/100/ 100

GPT-40 -72.9/-97.0/-83.3 -68.6K / -78.2K / -72.8K -92.1/-98.7/-96.1 -88.1K /-91.1K / -89.9K -91.4/-978/-774 -107.0K /-110.6K /-99.2K
+VERBAL 60.9/57.6/90.9 -15.4K /-16.8K / -3.5K 32.9/203/64.7 -30.7K /-36.5K / -16.1K 50.8/22.6/88.2 -27.4K /-43.2K /-6.5K
+VOTE-SQL 92.5/93.9/98.5 -2.9K/-23K/-502.3 81.6/75.2/93.5 -8.4K/-11.3K/-2.9K 94.7/87.1/97.8 -2.9K/-7.1K/-1.1K
+VOTE-ANS 63.9/57.6166.7 -142K /-16.8K /-13.2K 43.4/39.9/79.1 -25.9K /-27.5K /-9.5K 60.4/31.2/72.0 -22.0K/-38.4K/-15.5K

Table 12: Model comparison for infeasible data, categorized by the types on infeasibe questions.
‘missing’ and ‘ambig’ refer to missing-schema and ambiguous, respectively. All metrics are
in % and numbers in thousands are abbreviated as K for readability.

25

Under review as a conference paper at ICLR 2025

B.2 SQL GENERATION PERFORMANCE

ATIS

Advising

EHRSQL

familiar
(all | easy / medium / hard)

unfamiliar
(all | easy / medium / hard)

familiar
(all | easy / medium / hard)

unfamiliar
(all | easy / medium / hard)

familiar
(all | easy / hard)

unfamiliar
(all | easy / hard)

T5-3B 80.9|100/83.5/61.4 9.3/0.0/9.8/10.3 93.9182.1/96.9/89.7 33.6(38.0/35.6/16.7 87.8(100/85.5 27.9]36.7/26.8
SQLCODER2 87.7|100/84.2/90.9 12.410.0/9.8/20.7 93.5[89.3/95.1/89.7 32.8(20.0/40.9/13.3 88.5]100/86.4 29.620.0/30.8
GPT-40 98.0[100/97.0/100 76.7|100/74.8/75.9 99.1]100/99.4/97.4 90.8 [92.0/90.6/90.0 99.3]100/99.1 79.3]93.3/77.6

o BINSOL o igaies 007 78 eeaiisiies 747 (ss0reed /s 3992065 66l 6Trets
MAC-5OL 72.1(88.9/71.4/63.6 65.3|100/67.5/53.4 79.1]82.1/85.9/48.7 76.4(82.0/77.9/60.0 68.8(88.6/65.1 65.7]83.3/63.6

(Wang et al.{2023c}

Table 13: Performance of SQL generators in execution accuracy. DIN-SQL and MAC-SQL also
use GPT-4o.

Table [13] shows the execution accuracy of the baseline SQL generators used in the experiments,
along with two state-of-the-art text-to-SQL models (i.e., DIN-SQL and MAC-SQL). GPT-40
outperforms on unfamiliar questions, demonstrating better generalizability than T5-3B and SQL-
CODER2. Since DIN-SQL and MAC-SQL are designed for cross-database settings (with extra
effort put into adapting their prompts based on TrustSQL samples for these experiments), they still
underperform compared to GPT-40, which benefits from retrieving relevant question-to-SQL pairs
from the training set for a given input question.

26

Under review as a conference paper at ICLR 2025

C MODEL IMPLEMENTATION

C.1 FINE-TUNING
C.1.1 CLASSIFIER-BASED MODELS

SQL Generator For SQLCODER?2, we include both the question and the database schema, for-
matted in DIN-SQL. We fine-tune a SQLCoder 7B-2 model for 20 epochs with a learning rate of
2 x 1074, using two NVIDIA A100 GPUs.

Infeasible Question Detector We fine-tune another SQLCoder 7B-2 model (+INF') to classify
input question types using the TriageSQL dataset (Zhang et al.| 2020), which contains five types:
‘small talk’, ‘ambiguous’, ‘lack of data’, ‘unanswerable by SQL’, and ‘answerable’. Since the raw
data is imbalanced, we sample 10,000 instances from each category to create a balanced training set.
The model is fine-tuned for 1 epoch using two NVIDIA A100 GPUs. We consider a question to be
infeasible if the model predicts any type other than ‘answerable’.

SQL Error Detector We also utilize SQLCoder 7B-2 for detecting SQL errors (+ERRT). Specif-
ically, we generate training data based on the sample-level accuracy of SQL generation by SQL-
CODER?2 on the validation set. For each sample, we provide the question, the generated SQL, and
the database schema to the model, and fine-tune it to predict whether the generated SQL is valid.
The model is trained for 10 epochs with a learning rate of 2 x 10~4, using two NVIDIA A100 GPUs.

C.1.2 UNCERTAINTY-ESTIMATION-BASED MODELS

SQL Generator For training T5-3B, we prepare the input data as questions followed by a serial-
ized schema that lists all tables and columns for each database (Suhr et al., [2020). We fine-tune the
model using BF16 precision and the Adam optimizer with a learning rate of 1 x 10~%, continuing
the training until the validation loss ceases to decrease. The training is conducted using NVIDIA
RTX A6000 GPUs.

Abstention Through Uncertainty Estimation We leverage T5-3B to implement four uncer-
tainty estimation methods: +MAXENT, +MAXPROB, FEATMD, and FEATRMD. Specifically,
+MAXENT uses the entropy of the model’s output distribution as an uncertainty measure, while
+MAXPROB relies on the maximum probability from the output distribution. For FEATMD and
FEATRMD, which are feature-based methods, we use the encoder representations as features to
compute the Mahalanobis distance and relative Mahalanobis distance, respectively. In our pre-
liminary analysis, we found that methods utilizing features from the decoder and binary logits, as
proposed in (Ren et al.,|2022), did not perform as effectively as these baselines.

Unlike most uncertainty estimation works, which report performance based on the area under the
ROC curve (AUROC), TrustSQL requires setting a specific threshold to decide whether to provide
answers from the generated SQL or to abstain. We apply an automatic threshold selection method
to all uncertainty-estimation-based models, using a penalty parameter c, as outlined below:

1. For each sample in the validation set, assign a score of +1 if the model’s decision is correct
(i.e., the generated SQL is accurate), and a score of —c if the decision is incorrect.

2. Sort the samples in descending order based on their confidence scores (e.g., lower entropy
corresponds to higher confidence). This assumes that samples with higher confidence are
more likely to result in correct SQL generation.

3. Compute the cumulative sum of the scores. Select the threshold at which the cumulative
score stops increasing. If multiple thresholds yield the same maximum cumulative score,
choose the one corresponding to the higher confidence level. This process is illustrated in

Figure
4. Apply this threshold during inference on the test data.

27

Under review as a conference paper at ICLR 2025

Cumulative score:

+1 42 +3 142 +3
Individual score: +1 +1 +11-1 +1

+2 43 +2
-1 +1 -1

+1

+2
-1

+1
-1

+0
-1

A2
-1 -1

<

High confidence

threshold

v

Low confidence

Figure 2: Samples sorted in descending confidence scores, with 14 samples and ¢ = 1 for illustrative
purposes.

C.2 IN-CONTEXT LEARNING

For in-context learning, we leverage GPT—4(E| as the backbone LLM.

SQL Generator We solve TrustSQL in a single-database setting using GPT-40 (GPT-40), where
we are allowed to use samples from the training data. As a result, we retrieve eight question-SQL
pairs selected based on the maximal marginal relevance (MMR) criterion. MMR ensures a balance
between relevance and diversity, helping us select question-SQL pairs that are both highly relevant
to the input question and diverse enough to avoid redundancy.

~

Task: Translate the following questions into corresponding SQL queries based on the database schema

provided below.

Database Schema:
{database_schema}

Foreign Keys:
{foreign_keys}

SQL Assumptions:
{sgl_assumption}

Question: {questionl}
SQL: {sql1}

Question: {question8}
SQL: {sql18}

Question: {question}
SQL:

C.2.1

CLASSIFIER-BASED MODELS

Infeasible Question Detector We employ zero-shot chain-of-thought prompting, providing defi-
nitions for the three categories of infeasible questions, followed by the database schema, to generate
either ‘Feasible’ or ‘Infeasible’ responses (+INF*). The model follows a reasoning step to arrive at
its decision.

Task: Given a natural language question, classify it as either “feasible” or “infeasible” for generating
a corresponding SQL query.

Definitions:

- Feasible: The question can be accurately translated into an SQL query using the information

available in the database.

- Infeasible: The question cannot be translated into an SQL query due to intrinsic limitations, such as

Sgpt-40-2024-08-06

28

Under review as a conference paper at ICLR 2025

a lack of context, incompatibility with the database schema, or the inherent limitations of SQL.

Consider the following cases when determining infeasibility:

- Missing Schema (missing-schema): The question refers to database elements (e.g., tables, columns)
that are not present in the provided schema.

- Query Ambiguity (ambiguous): The question contains vague, ambiguous, or subjective terms,
making it unclear how to map or filter the requested information into an SQL query.

- Non-SQL (non-sql): The question requires operations or tasks (e.g., machine learning, advanced
statistical analysis, deep domain expertise) that cannot be performed using standard SQL capabilities.

Database Schema:
{database_schema}

Assumptions:
{sql_assumption}

Now, determine if the following question is “feasible” or “infeasible” to generate a corresponding
SQL query.

Response Format:
{

"chain-of-thought-reasoning" : "Explain your reasoning here.",
"answer" : "feasible or infeasible"

}
Question: {question}

SQL Error Detector We adapt DIN-SQL’s zero-shot self-correction prompt to generate ‘Correct’
or ‘Incorrect’ labels based on the input question and the SQL output from GPT-40 (+ERRY). The
prompt is shown below:

Task: Based on the question and predicted SQL, are you sure the SQL below is correct? If you
consider the SQL is correct, answer me with ‘correct’. If not, answer me with ‘incorrect’. Only output
your response without explanation.

Database Schema:
{database_schema}

Assumptions:
{sgl_-assumption}

Foreign_keys = {foreign_keys}
Primary_keys = {primary_keys}
Question: {question}

Predicted SQL: {predicted_sql}
Answer:

C.2.2 UNCERTAINTY-ESTIMATION-BASED MODELS

For +VOTE-SQL and +VOTE-ANS, we use the same prompt as GPT-40 but sample five times to
check the consistency of the output.

For + VERBAL, we also use the same prompt, but providing both eight examples of correct and in-
correct question-SQL pairs. Incorrect pairs are created by randomly pairing questions with unrelated
SQL queries. Each pair is then labeled as either ‘True’ or ‘False,” depending on its validity.

29

	Introduction
	Related Works
	Problem Definition
	Data Construction
	Database selection
	Feasible questions
	Infeasible questions
	Data Overview

	Experiments
	Models
	Fine-tuning
	In-Context Learning

	Evaluation Metrics

	Results
	Full data, DQ DQc
	Feasible Data, DQ
	Discussion

	Conclusion
	Benchmark Details
	Feasible Questions
	ATIS Assumptions
	Advising Assumptions
	EHRSQL Assumptions

	Re-annotation Details
	Step 1: Template Review and Modification
	Step 2: Paraphrase Generation
	Step 3: Pair Construction
	Step 4: Review and Quality Control

	Infeasible Questions
	Missing-Schema
	Ambiguous
	Non-SQL

	Comparison of keyword-based and template-based infeasible data creation

	Detailed Performance
	Detailed Task Performance
	SQL Generation Performance

	Model Implementation
	Fine-tuning
	Classifier-based Models
	Uncertainty-Estimation-Based Models

	In-Context Learning
	Classifier-based Models
	Uncertainty-Estimation-Based Models

