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A BENCHMARK DETAILS

A.1 FEASIBLE QUESTIONS

Tables 6 and 7 show data statistics based on query difficulty and sample questions for feasible ques-
tions. For assigning query difficulty, we adopted the SQL hardness criteria from DIN-SQL (Pourreza
& Rafiei, 2023) across all datasets, classifying the samples into three levels: easy, medium, and
hard. The easy category includes single-table queries that do not require joins or nesting. The
medium category includes queries that involve joins (including implicit joins) but excludes nesting.
The hard category covers queries that may contain joins, sub-queries, and set operations.

Table 6: Data statistics based on query difficulty. ∗EHRSQL does not contain any medium-difficulty
samples. We use the MIMIC-IV portion of the EHRSQL dataset for our work.

ATIS Advising EHRSQL∗

easy medium hard easy medium hard easy hard

Train 83 400 140 83 508 107 308 2325
Valid 37 259 111 67 309 75 79 480
Test 39 256 102 78 312 69 74 485

All 159 915 353 228 1129 251 461 3290

Table 7: Examples of feasible questions. Questions and their corresponding SQL queries in domain-
specific datasets tend to be long, making it challenging for the model to handle such lengthy queries.

Dataset Difficulty Question SQL Query

ATIS

easy Can you tell me the location of LGA?
SELECT DISTINCT AIRPORTalias0.AIRPORT LOCATION FROM
AIRPORT AS AIRPORTalias0 WHERE
AIRPORTalias0.AIRPORT CODE = ”LGA”

medium Can you provide a list of flights that arrive at DAL?

SELECT DISTINCT FLIGHTalias0.FLIGHT ID FROM AIRPORT AS
AIRPORTalias0 , FLIGHT AS FLIGHTalias0 WHERE
AIRPORTalias0.AIRPORT CODE = ”DAL” AND
FLIGHTalias0.TO AIRPORT = AIRPORTalias0.AIRPORT CODE

hard What would be the cheapest flight from ATLANTA
to DENVER on 10 / 12 / 1991?

SELECT DISTINCT SELECT DISTINCT FLIGHTalias0.FLIGHT ID
FROM AIRPORT SERVICE AS AIRPORT SERVICEalias0 ,
... [38 lines omitted involving query nesting] ...
FLIGHTalias0.FLIGHT ID = FLIGHT FAREalias0.FLIGHT ID

Advising

easy Give me the course number of the Investigations
class.

SELECT DISTINCT COURSEalias0.NUMBER FROM COURSE AS
COURSEalias0 WHERE COURSEalias0.NAME LIKE
”%Investigations%”

medium Please provide me with the PreMajor courses that
were available in Fall 2015.

SELECT DISTINCT COURSEalias0.DEPARTMENT ,
COURSEalias0.NUMBER FROM COURSE AS COURSEalias0
INNER JOIN COURSE OFFERING AS COURSE OFFERINGalias0
... [9 lines omitted involving joins] ...
= 2015

hard Who, most recently, taught SCAND 104 before
2016?

SELECT DISTINCT INSTRUCTORalias0.NAME FROM COURSE AS
COURSEalias0 INNER JOIN COURSE OFFERING AS
COURSE OFFERINGalias0 ON COURSEalias0.COURSE ID =
... [18 lines omitted involving query nesting] ...
COURSEalias0.NUMBER = 104

EHRSQL

easy What are the ways to consume metformin
(glucophage)?

SELECT DISTINCT prescriptions.route FROM prescriptions WHERE
prescriptions.drug = ’metformin (glucophage)’

hard

What was the change in arterial blood pressure
systolic in patient 10037975 second measured on
the first ICU visit compared to the first value
measured on the first ICU visit?

SELECT ( SELECT chartevents.valuenum FROM chartevents
WHERE chartevents.stay id IN ( SELECT icustays.stay id FROM
icustays WHERE icustays.hadm id IN ( SELECT admissions.hadm id
... [15 lines omitted involving query nesting] ...
ASC LIMIT 1 )

SQL Assumptions Domain-specific datasets are commonly handled in a single-table setting (as
in our work), which frequently relies on dataset-specific question-to-SQL assumptions (Suhr et al.,
2020). During preprocessing and re-annotating the questions, we document these SQL mapping
assumptions for each dataset in a separate file. This allows models using in-context learning (which
typically requires a long context length) to reference the knowledge. Fine-tuned models can access
this knowledge during training. Assumptions that are not explicitly stated or implicitly present in
the training question-SQL pairs should not be used without the user’s consent, as this could lead to
potential harm. Below are the SQL assumptions for the three datasets.
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A.1.1 ATIS ASSUMPTIONS

- Use SQLite for SQL query generation.

- Unless otherwise specified, the values in the question are case-sensitive and are identical to the
values stored in the database.

- When retrieving the result, use DISTINCT for the selected columns.

- For retrieving the top N results, exclude counts and return relevant items only.

- When asked to retrieve “flight,” return “FLIGHT.FLIGHT ID.”

- When asked to retrieve “fares,” return “FARE.FARE ID.”

- Treat phrases like “is it possible,” “can you confirm whether,” or “verify” as true/false questions.

- WEIGHT and PAY LOAD are measured in pounds; CAPACITY refers to the number of passen-
gers (seats); WING SPAN and LENGTH are in feet; CRUISING SPEED is in miles per hour;
RANGE MILES refers to miles.

A.1.2 ADVISING ASSUMPTIONS

- Use SQLite for SQL query generation.

- - Unless otherwise specified, the values in the question are case-sensitive and are identical to the
values stored in the database.

- When retrieving the result, use DISTINCT for the selected columns.

- When retrieving the top N results, return the relevant rows without including aggregate counts.

- Use “DISTINCT COURSE.DEPARTMENT, COURSE.NUMBER” when retrieving courses.

- Use “DISTINCT SEMESTER.SEMESTER, SEMESTER.YEAR” when retrieving information
about semesters.

- Interpret questions involving “is it possible”, “can you confirm whether”, or “verify” as true/false
queries.

- When asked about instructors, return “DISTINCT INSTRUCTOR.NAME”.

- Differentiate between “course offering” (COURSE OFFERING) and “course” (COURSE) when
responding to queries.

- Use “AREA.AREA” for broader course categories such as theory, software, or intelligent systems;
use “COURSE.NAME” for specific course names.

- Use a LIKE operator with “%” wildcards for queries involving “PROGRAM.NAME”,
“AREA.AREA”, or “COURSE.DESCRIPTION”.

- Map “Upper-level CS” to “ULCS” in the database.

- For columns containing “HAS *”, use “Y” for true conditions and “N” for false conditions.

A.1.3 EHRSQL ASSUMPTIONS

- Use SQLite for SQL query generation.
- Use DENSE RANK() for ranking results.
- For the top N results, return only the relevant items, excluding their counts.
- Use DISTINCT in queries asking about the cost of some events, drug routes, or counting patients

or hospital/ICU visits.
- When calculating the total cost, compute the sum of patient’s expenses for diagnoses, procedures,

lab events, and prescriptions at a hospital admission level.
- The time of diagnosis occurs at the time of hospital admission, and procedures occur at the time of

hospital discharge.
- Treat questions starts with “is it possible,” “can you confirm,” or “verify” as true/false questions.
- Calculate a patient’s age once per hospital admission. The age remains constant even if the hospital

stay exceeds one year.
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- When referring to events related to inputs, the values must be found in the inputevents table; simi-
larly, for output events, the values must be found in the outputevents table.

- Vital-related events are stored in chartevents, not in inputevents or outputevents.

- Values are distinct across tables. For example, “propofol” in the inputevents table does not appear
in the prescription table.

- When calculating the N-year survival rate:

- A patient is considered deceased if a death record exists between their first diagnosis and N
years later.

- If no death record exists within N years, or if death occurs afterward, the patient is considered
survived.

- Express the result as a percentage or proportion (values between 0 and 1).

- Abnormality is defined only for the following values with these ranges:

- Temperature Celsius: (35.5, 38.1)
- O2 saturation pulseoxymetry: (95.0, 100.0)
- Heart Rate: (60.0, 100.0)
- Respiratory Rate: (12.0, 18.0)
- Arterial Blood Pressure systolic: (90.0, 120.0)
- Arterial Blood Pressure diastolic: (60.0, 90.0)
- Arterial Blood Pressure mean: (60.0, 110.0)

- Time References:

- Interpret “now” as 2100-12-31 23:59:00, “today” as 2100-12-31, “this month” as December of
2100, and “this year” as 2100.

- “3 months” refers to 365/4 days, and “6 months” refers to 365/2 days when calculating a
duration.

- “This month/02” and “last month/02” refer to the 2nd day of the current and previous month,
respectively.

- “11/this year” refers to November of this year; “11/2100 year” refers to November 2100;
“12/31/this year” refers to December 31st of this year.

- Dates like “12/06/2100” are in MM/DD/YYYY format.
- When a question involves the time of diagnosis in relation to other types of events, use the first

diagnosis time for each patient.
- A “current hospital visit/encounter” refers to records where the hospital discharge time does

not exist, indicating a current patient; a “last hospital visit” is only if the hospital discharge
time is present; the first hospital visit is simply the first order of the visit.

- Entity Mapping Assumptions:

- Use “temperature celsius” for body temperature.
- Use “o2 saturation pulseoxymetry” for SaO2.
- Use “heart rate” for heart rate.
- Use “respiratory rate” for respiration rate.
- Use “arterial blood pressure systolic” for systolic blood pressure.
- Use “arterial blood pressure diastolic” for diastolic blood pressure.
- Use “arterial blood pressure mean” for mean blood pressure.
- Use “daily weight” for weight.
- Use “height (cm)” for height.
- Use “m” for male and “f” for female.
- Except for the above, use the value as it is.
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A.2 RE-ANNOTATION DETAILS

Our preliminary data analysis revealed that ATIS and Advising require significant preprocessing due
to issues such as query duplication, low-quality natural language questions, null results (SQL queries
returning empty results), and inconsistent question-to-SQL assumptions across samples (e.g., SQL
annotations with varying definitions of the current time). To address this we follow four data re-
annotation steps below:

A.2.1 STEP 1: TEMPLATE REVIEW AND MODIFICATION

Template Sorting Domain-specific datasets contain unique SQL query structures that reflect user
intents. For example, “I need a flight from city name1 to city name0” and “Give me a list of
flights going from city name1 to city name0” are two different paraphrases for the same SQL
structure. These datasets also include information about the entities or values used in each sample;
for example, ‘BOSTON’ is a value for the ‘city name0’ placeholder, which is sampled from a
specific column. We refer to questions with placeholders as question templates. To validate the data,
we first sort it by unique SQL structures.

SQL Query Validation In cases of query duplication (such as in ATIS and Advising), where ques-
tions conveying the same intent are matched with differently labeled SQL structures (Finegan-Dollak
et al., 2018), we merge these duplicates. Query duplication can be problematic for model evaluation,
as it may lead to misleading results, particularly when assessing model performance on ‘familiar’
vs. ‘unfamiliar’ questions (Section A). To address this, we first identify samples that share identical
placeholders (e.g., “I need a flight from city name1 to city name0” and “Which airline pro-
vides service in city name0 and city name1” both use ‘city name0’ and ‘city name1’ as
placeholders) and then assess their semantic equivalence. Once samples with identical semantics are
found, we merge them by selecting the shortest SQL query to represent the group. In this step, we
also verify whether the SQL queries accurately reflect the intended meanings of the corresponding
questions.

A.2.2 STEP 2: PARAPHRASE GENERATION

Because ATIS, Advising, and EHRSQL are pre-GPT era datasets with all samples being human-
curated, many of them are of low quality and sound unnatural, with limited diversity in the questions.
To address this, we use GPT-4o to paraphrase at least 20 questions for each question template, ensur-
ing that these paraphrases maintain the placeholders and align with the intended meanings. During
this process, we make sure that each generated question does not assume any specific knowledge
unique to individual questions. For example, in Advising, one question might assume ‘I’ refers to
student 1, while another assumes ‘I’ refers to student 2. We eliminate such cases. Only the common
assumptions that are applied extensively in SQL annotations are retained and documented.

A.2.3 STEP 3: PAIR CONSTRUCTION

We merge question templates and paraphrases to construct a complete text-to-SQL dataset. During
merging, we also insert sampled values (actual data stored in the database) into the placeholders in
question paraphrases and SQL structures (now referred to SQL queries). Then, we execute these
queries to see if we return null results from the database. Null results refer to cases where the SQL
query returns ‘Null’ or ‘[]’ upon execution, which may cause false positives in text-to-SQL model
evaluation. If a null result is returned, we sample new values again from the database.

A.2.4 STEP 4: REVIEW AND QUALITY CONTROL

All annotators engage in real-time discussion to resolve any disagreements in reviewing the cre-
ated question-SQL pairs and SQL assumption text. Frequent disagreements involved determining
whether the questions and the SQL assumptions included all necessary information to generate the
annotated SQL queries. Discussions continue until a consensus is reached.
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A.3 INFEASIBLE QUESTIONS

There are three types of infeasible questions in TrustSQL: missing-schema, ambiguous, and
non-sql. Our design choice is to make these questions similar to feasible questions in surface
form while keeping it infeasible. So, we first define candidate keywords that assures infeasibility
and ask annotators to incorporate that into existing feasible questions.

A.3.1 MISSING-SCHEMA

To create questions that refer to non-existent columns, we first generate a list of ‘hypothetical’
columns that are similar to the database (which may not always be realistic). We create questions
that refer to these hypothetical columns for each database by assuming they exist. For example:
“Give me all aircraft types whose TURBOPROP engines are from HONEYWELL.” Note that the
Aircraft table in ATIS contains columns like ‘manufacturer’ and ‘propulsion,’ but no column named
‘engine manufacturer.’ Below are the hypothetical columns we create for each database:

Hypothetical Columns in ATIS

AIRCRAFT Table:
COST, ENGINE MANUFACTURER, FUEL CAPACITY, MANUFACTURE DATE,
MAX ALTITUDE, MAX SPEED, PRODUCTION STATUS

AIRLINE Table:
ANNUAL PASSENGER COUNT, EMPLOYEE COUNT, FOUNDER, FOUNDING YEAR,
HEADQUARTERS, HUB AIRPORT

AIRPORT Table:
ENTRANCE DIRECTION, GATE COUNT, NUM LOUNGE, PARKING CAPACITY,
RUNWAY LENGTH, TRANSIT HOTEL

FLIGHT Table:
IN FLIGHT ENTERTAINMENT, WIFI AVAILABLE

FOOD SERVICE Table:
ALLERGENS, IS VEGAN

GROUND SERVICE Table:
OPERATIONAL HOURS

RESTRICTION Table:
SUNDAY STAY REQUIREMENT

Hypothetical Columns in Advising

COURSE Table:
AP IB CREDIT WAIVER, GRADING METHOD, RATING

COURSE OFFERING Table:
ATTENDANCE, DELIVERY METHOD, GRADING TYPE, HONORS TRACK, LANGUAGE,
TEXTBOOK PUBLISHER, WAITLIST COUNT

INSTRUCTOR Table:
AGE, IS DEPARTMENT CHAIR, OFFICE ADDRESS, RATING, TOTAL GPA

STUDENT Table:
ADVISOR, AGE, FINANCIAL AID, HONOR ROLL STATUS, INTERNATIONAL STUDENT
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STUDENT RECORD Table:
STUDY ABROAD

Hypothetical Columns in EHRSQL

admissions:
age at marriage, arrival time, attending physician id, department id

cost:
billing code, payment status

d labitems:
lab priority

inputevents:
provider id

labevents:
equipment, requester id, turnaround time

microbiologyevents:
requester id, specimen quality

patients:
address, blood type, emergency contact, insurance duration,
is veteran, name, next of kin, occupation, place of birth

procedures icd:
anesthesia duration, anesthesia type, consent date, physician id,
procedure duration
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A.3.2 AMBIGUOUS

For ambiguous questions, we have two sub-types: referential ambiguity and vagueness (Shah &
Jinwala, 2015). This is different from existing works that focus solely on column ambiguity (i.e.,
referring to multiple valid candidates for columns). However, since the definition of ambiguity
involves being unable to answer without further clarification, this condition also holds. Questions
with referential ambiguity include words where it is unclear who or what they refer to (e.g., ‘this,’
‘she’). For example, “Has this patient been admitted to an emergency room?” (where ‘this patient’
is unclear in reference). Questions with vagueness contain words that are imprecise or lack clear
boundaries (e.g., ‘early,’ ‘best’), such as in “Which upper-leval CS courses in Winter 2016 ended
early?” (where ‘early’ is not precisely defined). We include this because a model should not rely
on unstated commonsense to resolve vagueness, as it may conflict with the user’s intent and cause
potential harm. Any allowed assumptions should be explicitly stated (Appendix A.1.1, A.1.2, A.1.3)
or be implicitly demonstrated in the question-SQL pairs within the training data.

Table 8 provides examples of infeasible questions due to ambiguity.

Table 8: Examples of ambiguous questions.

Dataset Question Reason

ATIS

Show me the details of the flights that leave around 17:00. Vagueness
(”around” 17:00)

Please give me the earliest time a flight takes off from BALTIMORE to BOSTON and the
subsequent information.

Referential ambiguity
(”subsequent information”)

What are the IDs of the fares of DL airline’s flights from BOSTON to PHILADELPHIA
that are economic?

Vagueness
(”economic”)

Advising

Who have been the instructors for CMPLXSYS 270 in recent years? Vagueness
(”recent” years)

Which of those 200-level courses were 3-credit courses? Referential ambiguity
(”those” 200-level courses)

What EECS courses are suitable for students whose total credits are less than 200? Vagueness
(”suitable”)

EHRSQL

When was that first maximum pt for this patient in 12/this year? Referential ambiguity
(”this” patient)

Can you show the five most commonly prescribed drugs for middle-aged patients? Vagueness
(”middle-aged”)

Can you find the patients who needed extra attention during their treatment? Vaugeness
(”extra attention”)

A.3.3 NON-SQL

Non-SQL refers to questions that request operations or tasks outside SQL’s standard scope. We use
12 types of non-SQL tasks as keywods across all datasets: ‘Time Series Forecasting’, ‘Advanced
Statistical Analysis’, ‘Feature Importance’, ‘Clustering’, ‘Causal Inference’, ‘Data Preprocessing’,
‘Outlier Detection’, ‘Web Search’, ‘Sentiment Analysis’, ‘Data-to-Text’, ‘Data Visualization’, and
‘Assistive Tasks’.

Table 9 shows examples of non-sql type questions.
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Table 9: Examples of non-SQL questions.

Dataset Question Reason

ATIS

What is the earliest available flight from CHICAGO to NASHVILLE that includes breakfast
service as found on current flight search engines? Web Search

Tell me the current status of my flight from BOSTON to NEW YORK. Assistive Task

How can you use a t-test to compare the average cost of Delta flights to other airlines for
trips from Boston to Washington? Advanced Statistical Analysis)

Advising

Can you create a scatter plot of course credits versus the clarity score for all EECS courses? Data Visualization

What is the textual summary of courses that started before 09:00 in Spring 2020? Data-to-Text

Can you encode the ”AREA” column for all courses into word vectors? Data Preprocessing

EHRSQL

What are the key predictors of successful weaning from mechanical ventilation in ICU patients? Feature Importance

Do you detect any signs of frustration in patient 10018354’s records related to delayed procedures? Sentiment Analysis

Were there any seasonal patterns in drug prescriptions for patient admitted this year? Time Series Analysis
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A.4 COMPARISON OF KEYWORD-BASED AND TEMPLATE-BASED INFEASIBLE DATA
CREATION

The keyword-based question creation method used in this work combines the strengths of template-
based and template-free annotation methods. Annotators are provided with specific keywords and
sample feasible questions. They modify these questions to make them infeasible by incorporating
the keyword’s intent. This approach introduces greater semantic diversity and creates infeasible
questions that closely resemble real user questions, enhancing the dataset’s realism and the model’s
ability to handle complex scenarios. Below are illustrative examples:

Template-based method Consider this infeasible question template: ”When is the next earliest
hospital visit of patient 0000?”—where no record exists for the next hospital appointment in the
database. Possible paraphrases generated from this template can be the following:

• “What is the soonest upcoming hospital visit scheduled for patient 0000?”
• “When is the next scheduled appointment for patient 0000?”

While this method can effectively handle common unanswerable questions (missing-schema), the
diversity of the question pool generated using this method may be limited.

Keyword-based method Suppose the keyword ‘appointment’ is provided, along with sample fea-
sible questions. The task is to modify these questions to include the keyword, making them infeasi-
ble.

Sampled feasible questions:

• “Has patient 0000 gotten any medication this year?”
• “Provide the count of hospital visits for patient 0000.”

Annotated infeasible questions (infeasible keyword is now inserted):

• “Has patient 0000 gotten any medication this year and do they have any upcoming appointments?”
• “Provide the count of hospital visits for patient 0000 including any scheduled upcoming appoint-

ments.”

By incorporating the keyword into existing feasible questions to make them infeasible, this method
ensures both semantic diversity and guarantees that the annotated questions are indeed infeasible.
This approach allows us to create a wider range of infeasible questions that closely resemble real
user questions.
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B DETAILED PERFORMANCE

B.1 DETAILED TASK PERFORMANCE

Tables 10 and 11 present the RS of the models on familiar and unfamiliar questions in the feasible
data, respectively. Additionally, Table 12 shows the RS of the models on infeasible questions.

As expected, the models generally perform better on familiar questions than on unfamiliar ones.
Notably, the T5-3B model using the +MAXENT and +MAXPROB methods achieved non-negative
RS even under the strictest safety requirements for familiar questions by abstaining from answering
both unfamiliar feasible questions and infeasible ones. This suggests that less powerful models like
T5-3B may be more reliable when they only answer questions they are confident about, thereby
avoiding the risk of generating incorrect SQL queries. We also observed a correlation between the
RS and query difficulty, indicating that models tend to have higher reliability scores on simpler
queries. When detecting infeasible questions, most models found ambiguous questions to be
the most challenging. This highlights the need for methods that enable models to detect subtle
ambiguities to improve reliability.

ATIS Advising EHRSQL

Φ1
(easy / medium / hard)

ΦN
(easy / medium / hard)

Φ1
(easy / medium / hard)

ΦN
(easy / medium / hard)

Φ1
(easy / hard)

ΦN
(easy / hard)

CL

SQLCODER2 100 / 68.4 / 81.8 100 / -12.5K / -7.1K 92.9 / 91.4 / 79.5 -3.2K / -3.8K / -9.3K 100 / 72.8 100 / -15.1K

+INF† 18.5 / 24.1 / 43.2 18.5 / -3.0K / 43.2 75.0 / 65.0 / 66.7 -3.2K / -2.2K / 66.7 11.4 / 3.4 11.4 / -947.2

+ERR† 100 / 78.2 / 84.1 100 / -4.1K / -3.5K 89.3 / 89.6 / 87.2 89.3 / -1.6K / -2.3K 100 / 80.9 100 / -2.8K

+INF†+ERR† 18.5 / 27.8 / 40.9 18.5 / 27.8 / 40.9 71.4 / 62.6 / 66.7 71.4 / -1.6K / 66.7 11.4 / 4.3 11.4 / 4.3

GPT-4O 100 / 94.0 / 100 100 / -2.3K / 100 100 / 95.1 / 100 100 / -2.2K / 100 100 / 98.3 100 / -852.3

+INF† 88.9 / 78.9 / 63.6 88.9 / -1.7K / 63.6 60.7 / 43.6 / 46.2 60.7 / -2.2K / 46.2 97.7 / 56.6 97.7 / -418.7

+ERR† 63.0 / 16.5 / 4.5 63.0 / 16.5 / 4.5 67.9 / 45.4 / 17.9 67.9 / -516.6 / 17.9 13.6 / 12.3 13.6 / 12.3

+INF‡+ERR‡ 63.0 / 15.0 / 4.5 63.0 / 15.0 / 4.5 39.3 / 22.7 / 17.9 39.3 / -539.3 / 17.9 13.6 / 7.2 13.6 / 7.2

UE

T5-3B 100 / 66.9 / 22.7 100 / -13.1K / -30.6K 92.9 / 93.9 / 79.5 -3.2K / -2.7K / -9.3K 100 / 71.1 100 / -16.1K

+MAXENT 81.5 / 19.5 / 22.7 81.5 / 19.5 / 22.7 32.1 / 12.3 / 2.6 32.1 / 12.3 / 2.6 47.7 / 17.0 47.7 / 17.0

+MAXPROB 100 / 32.3 / 36.4 100 / 32.3 / 36.4 71.4 / 46.6 / 25.6 71.4 / 46.6 / 25.6 63.6 / 19.6 63.6 / 19.6

+FEATMD 11.1 / 1.5 / 0.0 11.1 / 1.5 / 0.0 32.1 / 33.7 / 25.6 32.1 / -528.2 / 25.6 9.1 / 7.7 9.1 / -943.0

+FEATRMD 0.0 / 0.0 / 6.8 0.0 / 0.0 / 6.8 25.0 / 33.1 / 23.1 25.0 / -1.1K / 23.1 2.3 / 2.1 2.3 / -473.2

GPT-4O 100 / 94.0 / 100 100 / -2.3K / 100 100 / 95.1 / 100 100 / -2.2K / 100 100 / 98.3 100 / -852.3

+VERBAL 70.4 / 70.7 / 65.9 70.4 / -5.9K / 65.9 89.3 / 93.3 / 84.6 89.3 / -2.7K / 84.6 88.6 / 83.0 -2.5K / -867.7

+VOTE-SQL 33.3 / 22.6 / 11.4 33.3 / 22.6 / 11.4 50.0 / 53.4 / 61.5 50.0 / 53.4 / 61.5 72.7 / 54.9 72.7 / 54.9

+VOTE-ANS 96.3 / 88.0 / 90.9 96.3 / -508.3 / 90.9 39.3 / 42.3 / 15.4 39.3 / -519.6 / 15.4 100 / 95.7 100 / -379.6

Table 10: Model comparison for ‘familiar’ feasible questions by query difficulty. The scores in the
shaded cells represent SQL generation performance without abstention. All metrics are in % and
numbers in thousands are abbreviated as K for readability.
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ATIS Advising EHRSQL

Φ1
(easy / medium / hard)

ΦN
(easy / medium / hard)

Φ1
(easy / medium / hard)

ΦN
(easy / medium / hard)

Φ1
(easy / hard)

ΦN
(easy / hard)

CL

SQLCODER2 -100 / -80.5 / -58.6 -79.4K / -71.6K / -63.0K -32.0 / 23.5 / 33.3 -60.5K / -35.0K / -30.5K -60.0 / -38.4 -89.4K / -77.3K

+INF† 0.0 / -29.3 / 6.9 0.0 / -23.2K / -4.1K -40.0 / 24.8 / 26.7 -53.2K / -21.5K / -21.3K -10.0 / 0.0 -18.6K / -2.2K

+ERR† -8.3 / -11.4 / 0.0 -6.6K / -16.8K / -13.7K -10.0 / 28.2 / 33.3 -9.2K / -9.8K / -6.1K -10.0 / 5.6 -33.5K / -21.4K

+INF†+ERR† 0.0 / -4.9 / 10.3 0.0 / -3.9K / 10.3 -10.0 / 26.2 / 23.3 -9.2K / -6.1K / -6.1K 0.0 / 1.6 -7.4K / -445.2

GPT-4O 100 / 49.6 / 51.7 100 / -19.9K / -19.1K 88.0 / 85.2 / 86.7 -5.4K / -6.7K / -6.0K 86.7 / 55.2 -7.4K / -25.0K

+INF† 75.0 / 33.3 / 34.5 75.0 / -16.7K / -19.1K 48.0 / 51.7 / 36.7 -5.4K / -1.2K / -6.1K 83.3 / 33.2 83.3 / -14.3K

+ERR† 91.7 / 10.6 / 0.0 91.7 / -634.1 / 0.0 68.0 / 34.9 / 3.3 -5.4K / -1.2K / 3.3 6.7 / 2.8 -3.7K / -890.8

+INF‡+ERR‡ 75.0 / 11.4 / 0.0 75.0 / 11.4 / 0.0 36.0 / 20.8 / 0.0 -5.5K / -594.0 / 0.0 10.0 / 2.0 10.0 / -444.8

UE

T5-3B -100 / -80.5 / -79.3 -79.4K / -71.6K / -71.2K -16.0 / 31.5 / 40.0 -53.1K / -31.3K / -27.4K -26.7 / -46.4 -70.8K / -81.8K

+MAXENT 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 0.7 / 0.0 0.0 / 0.7 / 0.0 0.0 / 0.4 0.0 / 0.4

+MAXPROB 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 -8.0 / 4.7 / 0.0 -7.3K / 4.7 / 0.0 0.0 / 0.4 0.0 / 0.4

+FEATMD 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 2.0 / 0.0 0.0 / 2.0 / 0.0 0.0 / 0.0 0.0 / 0.0

+FEATRMD 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0

GPT-4O 100 / 49.6 / 51.7 100 / -19.9K / -19.1K 88.0 / 85.2 / 86.7 -5.4K / -6.7K / -6.0K 86.7 / 55.2 -7.4K / -25.0K

+VERBAL 91.7 / 39.8 / 37.9 91.7 / -8.3K / -1.3K 74.0 / 68.5 / 43.3 -7.3K / -2.4K / 43.3 80.0 / 48.8 -3.6K / -11.6K

+VOTE-SQL 50.0 / 13.8 / 8.6 50.0 / -1.3K / -4.1K 38.0 / 23.5 / 6.7 -1.8K / 23.5 / 6.7 40.0 / 18.8 40.0 / -1.8K

+VOTE-ANS 91.7 / 52.8 / 60.3 91.7 / -6.4K / -6.8K 30.0 / 31.5 / 0.0 -5.5K / -3.0K / 0.0 86.7 / 48.4 86.7 / -8.4K

Table 11: Model comparison for ‘unfamiliar’ feasible questions by query difficulty. The scores in
the shaded cells represent SQL generation performance without abstention. All metrics are in % and
numbers in thousands are abbreviated as K for readability.

ATIS Advising EHRSQL

Φ1
(missing / ambig / non-sql)

ΦN
(missing / ambig / non-sql)

Φ1
(missing / ambig / non-sql)

ΦN
(missing / ambig / non-sql)

Φ1
(missing / ambig / non-sql)

ΦN
(missing / ambig / non-sql)

CL

SQLCODER2 -100 / -100 / -100 -79.4K / -79.4K / -79.4K -100 / -100 / -100 -91.7K / -91.7K / -91.7K -100 / -100 / -100 -111.8K / -111.8K / -111.8K

+INF† 82.0 / 59.1 / 81.8 -7.1K / -16.2K / -7.1K 71.1 / 9.8 / 46.4 -13.2K / -41.3K / -24.5K 91.4 / 77.4 / 90.3 -4.7K / -12.5K / -5.3K

+ERR† 95.5 / 56.1 / 86.4 -1.7K / -17.4K / -5.3K 52.6 / 28.1 / 63.4 -21.6K / -32.9K / -16.7K 74.3 / 6.5 / 67.7 -14.3K / -52.2K / -17.9K

+INF†+ERR† 98.5 / 95.5 / 100 -497.7 / -1.7K / 100 90.8 / 71.2 / 90.8 -4.1K / -13.1K / -4.1K 97.9 / 86.0 / 100 -1.1K / -7.7K / 100

GPT-4O -72.9 / -97.0 / -83.3 -68.6K / -78.2K / -72.8K -92.1 / -98.7 / -96.1 -88.1K / -91.1K / -89.9K -91.4 / -97.8 / -77.4 -107.0K / -110.6K / -99.2K

+INF‡ 71.4 / 66.7 / 93.9 -11.3K / -13.2K / -2.3K 71.1 / 73.9 / 98.7 -13.2K / -11.9K / -500.0 90.4 / 78.5 / 95.7 -5.3K / -11.9K / -2.3K

+ERR‡ 74.4 / 72.7 / 80.3 -10.1K / -10.7K / -7.7K 71.1 / 62.1 / 73.9 -13.2K / -17.3K / -11.9K 86.1 / 87.1 / 73.1 -7.7K / -7.1K / -14.9K

+INF‡+ERR‡ 86.5 / 97.0 / 100 -5.3K / -1.1K / 100 89.5 / 89.5 / 98.7 -4.7K / -4.7K / -500.0 97.9 / 98.9 / 98.9 -1.1K / -501.6 / -501.6

UE

T5-3B -100 / -100 / -100 -79.4K / -79.4K / -79.4K -100 / -100 / -100 -91.7K / -91.7K / -91.7K -100 / -100 / -100 -111.8K / -111.8K / -111.8K

+MAXENT 98.5 / 92.4 / 97.0 -497.7 / -2.9K / -1.1K 97.4 / 93.5 / 97.4 -1.1K / -2.9K / -1.1K 98.9 / 97.8 / 100 -498.4 / -1.1K / 100

+MAXPROB 97.0 / 92.4 / 97.0 -1.1K / -2.9K / -1.1K 90.8 / 79.1 / 94.8 -4.1K / -9.5K / -2.3K 97.9 / 97.8 / 100 -1.1K / -1.1K / 100

+FEATMD 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100

+FEATRMD 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100 100 / 100 / 100

GPT-4O -72.9 / -97.0 / -83.3 -68.6K / -78.2K / -72.8K -92.1 / -98.7 / -96.1 -88.1K / -91.1K / -89.9K -91.4 / -97.8 / -77.4 -107.0K / -110.6K / -99.2K

+VERBAL 60.9 / 57.6 / 90.9 -15.4K / -16.8K / -3.5K 32.9 / 20.3 / 64.7 -30.7K / -36.5K / -16.1K 50.8 / 22.6 / 88.2 -27.4K / -43.2K / -6.5K

+VOTE-SQL 92.5 / 93.9 / 98.5 -2.9K / -2.3K / -502.3 81.6 / 75.2 / 93.5 -8.4K / -11.3K / -2.9K 94.7 / 87.1 / 97.8 -2.9K / -7.1K / -1.1K

+VOTE-ANS 63.9 / 57.6 / 66.7 -14.2K / -16.8K / -13.2K 43.4 / 39.9 / 79.1 -25.9K / -27.5K / -9.5K 60.4 / 31.2 / 72.0 -22.0K / -38.4K / -15.5K

Table 12: Model comparison for infeasible data, categorized by the types on infeasibe questions.
‘missing’ and ‘ambig’ refer to missing-schema and ambiguous, respectively. All metrics are
in % and numbers in thousands are abbreviated as K for readability.
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B.2 SQL GENERATION PERFORMANCE

ATIS Advising EHRSQL

familiar
(all | easy / medium / hard)

unfamiliar
(all | easy / medium / hard)

familiar
(all | easy / medium / hard)

unfamiliar
(all | easy / medium / hard)

familiar
(all | easy / hard)

unfamiliar
(all | easy / hard)

T5-3B 80.9 | 100 / 83.5 / 61.4 9.3 | 0.0 / 9.8 / 10.3 93.9 | 82.1 / 96.9 / 89.7 33.6 | 38.0 / 35.6 / 16.7 87.8 | 100 / 85.5 27.9 | 36.7 / 26.8

SQLCODER2 87.7 | 100 / 84.2 / 90.9 12.4 | 0.0 / 9.8 / 20.7 93.5 | 89.3 / 95.1 / 89.7 32.8 | 20.0 / 40.9 / 13.3 88.5 | 100 / 86.4 29.6 | 20.0 / 30.8

GPT-4O 98.0 | 100 / 97.0 / 100 76.7 | 100 / 74.8 / 75.9 99.1 | 100 / 99.4 / 97.4 90.8 | 92.0 / 90.6 / 90.0 99.3 | 100 / 99.1 79.3 | 93.3 / 77.6

DIN-SQL
(Pourreza & Rafiei, 2023) 67.6 | 88.9 / 65.4 / 61.4 45.1 | 100 / 40.7 / 43.1 77.8 | 96.4 / 74.8 / 76.9 74.7 | 94.0 / 66.4 / 83.3 69.5 | 93.2 / 65.1 66.1 | 76.7 / 64.8

MAC-SQL
(Wang et al., 2023c) 72.1 | 88.9 / 71.4 / 63.6 65.3 | 100 / 67.5 / 53.4 79.1 | 82.1 / 85.9 / 48.7 76.4 | 82.0 / 77.9 / 60.0 68.8 | 88.6 / 65.1 65.7 | 83.3 / 63.6

Table 13: Performance of SQL generators in execution accuracy. DIN-SQL and MAC-SQL also
use GPT-4o.

Table 13 shows the execution accuracy of the baseline SQL generators used in the experiments,
along with two state-of-the-art text-to-SQL models (i.e., DIN-SQL and MAC-SQL). GPT-4O
outperforms on unfamiliar questions, demonstrating better generalizability than T5-3B and SQL-
CODER2. Since DIN-SQL and MAC-SQL are designed for cross-database settings (with extra
effort put into adapting their prompts based on TrustSQL samples for these experiments), they still
underperform compared to GPT-4O, which benefits from retrieving relevant question-to-SQL pairs
from the training set for a given input question.
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C MODEL IMPLEMENTATION

C.1 FINE-TUNING

C.1.1 CLASSIFIER-BASED MODELS

SQL Generator For SQLCODER2, we include both the question and the database schema, for-
matted in DIN-SQL. We fine-tune a SQLCoder 7B-2 model for 20 epochs with a learning rate of
2× 10−4, using two NVIDIA A100 GPUs.

Infeasible Question Detector We fine-tune another SQLCoder 7B-2 model (+INF†) to classify
input question types using the TriageSQL dataset (Zhang et al., 2020), which contains five types:
‘small talk’, ‘ambiguous’, ‘lack of data’, ‘unanswerable by SQL’, and ‘answerable’. Since the raw
data is imbalanced, we sample 10,000 instances from each category to create a balanced training set.
The model is fine-tuned for 1 epoch using two NVIDIA A100 GPUs. We consider a question to be
infeasible if the model predicts any type other than ‘answerable’.

SQL Error Detector We also utilize SQLCoder 7B-2 for detecting SQL errors (+ERR†). Specif-
ically, we generate training data based on the sample-level accuracy of SQL generation by SQL-
CODER2 on the validation set. For each sample, we provide the question, the generated SQL, and
the database schema to the model, and fine-tune it to predict whether the generated SQL is valid.
The model is trained for 10 epochs with a learning rate of 2×10−4, using two NVIDIA A100 GPUs.

C.1.2 UNCERTAINTY-ESTIMATION-BASED MODELS

SQL Generator For training T5-3B, we prepare the input data as questions followed by a serial-
ized schema that lists all tables and columns for each database (Suhr et al., 2020). We fine-tune the
model using BF16 precision and the Adam optimizer with a learning rate of 1 × 10−4, continuing
the training until the validation loss ceases to decrease. The training is conducted using NVIDIA
RTX A6000 GPUs.

Abstention Through Uncertainty Estimation We leverage T5-3B to implement four uncer-
tainty estimation methods: +MAXENT, +MAXPROB, FEATMD, and FEATRMD. Specifically,
+MAXENT uses the entropy of the model’s output distribution as an uncertainty measure, while
+MAXPROB relies on the maximum probability from the output distribution. For FEATMD and
FEATRMD, which are feature-based methods, we use the encoder representations as features to
compute the Mahalanobis distance and relative Mahalanobis distance, respectively. In our pre-
liminary analysis, we found that methods utilizing features from the decoder and binary logits, as
proposed in (Ren et al., 2022), did not perform as effectively as these baselines.

Unlike most uncertainty estimation works, which report performance based on the area under the
ROC curve (AUROC), TrustSQL requires setting a specific threshold to decide whether to provide
answers from the generated SQL or to abstain. We apply an automatic threshold selection method
to all uncertainty-estimation-based models, using a penalty parameter c, as outlined below:

1. For each sample in the validation set, assign a score of +1 if the model’s decision is correct
(i.e., the generated SQL is accurate), and a score of −c if the decision is incorrect.

2. Sort the samples in descending order based on their confidence scores (e.g., lower entropy
corresponds to higher confidence). This assumes that samples with higher confidence are
more likely to result in correct SQL generation.

3. Compute the cumulative sum of the scores. Select the threshold at which the cumulative
score stops increasing. If multiple thresholds yield the same maximum cumulative score,
choose the one corresponding to the higher confidence level. This process is illustrated in
Figure 2.

4. Apply this threshold during inference on the test data.
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High confidence Low confidence

+1 +1 +1 +1-1 -1 -1+1 +1
+1 +2 +3 +2 +3 +2 +3 +2 +3 +2 +1 +0 -1 -2

Individual score:
Cumulative score:

threshold

-1 -1 -1-1 -1

Figure 2: Samples sorted in descending confidence scores, with 14 samples and c = 1 for illustrative
purposes.

C.2 IN-CONTEXT LEARNING

For in-context learning, we leverage GPT-4o5 as the backbone LLM.

SQL Generator We solve TrustSQL in a single-database setting using GPT-4o (GPT-4O), where
we are allowed to use samples from the training data. As a result, we retrieve eight question-SQL
pairs selected based on the maximal marginal relevance (MMR) criterion. MMR ensures a balance
between relevance and diversity, helping us select question-SQL pairs that are both highly relevant
to the input question and diverse enough to avoid redundancy.

Task: Translate the following questions into corresponding SQL queries based on the database schema
provided below.

Database Schema:
{database schema}

Foreign Keys:
{foreign keys}

SQL Assumptions:
{sql assumption}

Question: {question1}
SQL: {sql1}

...

Question: {question8}
SQL: {sql8}

Question: {question}
SQL:

C.2.1 CLASSIFIER-BASED MODELS

Infeasible Question Detector We employ zero-shot chain-of-thought prompting, providing defi-
nitions for the three categories of infeasible questions, followed by the database schema, to generate
either ‘Feasible’ or ‘Infeasible’ responses (+INF‡). The model follows a reasoning step to arrive at
its decision.

Task: Given a natural language question, classify it as either “feasible” or “infeasible” for generating
a corresponding SQL query.

Definitions:
- Feasible: The question can be accurately translated into an SQL query using the information
available in the database.
- Infeasible: The question cannot be translated into an SQL query due to intrinsic limitations, such as

5gpt-4o-2024-08-06
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a lack of context, incompatibility with the database schema, or the inherent limitations of SQL.

Consider the following cases when determining infeasibility:
- Missing Schema (missing-schema): The question refers to database elements (e.g., tables, columns)
that are not present in the provided schema.
- Query Ambiguity (ambiguous): The question contains vague, ambiguous, or subjective terms,
making it unclear how to map or filter the requested information into an SQL query.
- Non-SQL (non-sql): The question requires operations or tasks (e.g., machine learning, advanced
statistical analysis, deep domain expertise) that cannot be performed using standard SQL capabilities.

Database Schema:
{database schema}

Assumptions:
{sql assumption}

=====

Now, determine if the following question is “feasible” or “infeasible” to generate a corresponding
SQL query.

Response Format:

{
"chain-of-thought-reasoning" : "Explain your reasoning here.",
"answer" : "feasible or infeasible"

}

Question: {question}

SQL Error Detector We adapt DIN-SQL’s zero-shot self-correction prompt to generate ‘Correct’
or ‘Incorrect’ labels based on the input question and the SQL output from GPT-4O (+ERR‡). The
prompt is shown below:

Task: Based on the question and predicted SQL, are you sure the SQL below is correct? If you
consider the SQL is correct, answer me with ‘correct’. If not, answer me with ‘incorrect’. Only output
your response without explanation.

Database Schema:
{database schema}

Assumptions:
{sql assumption}

Foreign keys = {foreign keys}

Primary keys = {primary keys}

Question: {question}
Predicted SQL: {predicted sql}
Answer:

C.2.2 UNCERTAINTY-ESTIMATION-BASED MODELS

For +VOTE-SQL and +VOTE-ANS, we use the same prompt as GPT-4O but sample five times to
check the consistency of the output.

For +VERBAL, we also use the same prompt, but providing both eight examples of correct and in-
correct question-SQL pairs. Incorrect pairs are created by randomly pairing questions with unrelated
SQL queries. Each pair is then labeled as either ‘True’ or ‘False,’ depending on its validity.
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