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ABSTRACT

Multi-task learning (MTL) aims to leverage shared knowledge across tasks to
improve generalization and parameter efficiency, yet balancing resources and miti-
gating interference remain open challenges. Architectural solutions often introduce
elaborate task-specific modules or routing schemes, increasing complexity and
overhead. In this work, we show that normalization layers alone are sufficient to
address many of these challenges. Simply replacing shared normalization with
task-specific variants already yields competitive performance, questioning the need
for complex designs. Building on this insight, we propose Task-Specific Sigmoid
Batch Normalization (TSσBN), a lightweight mechanism that enables tasks to
softly allocate network capacity while fully sharing feature extractors. TSσBN
improves stability across CNNs and Transformers, matching or exceeding perfor-
mance on NYUv2, Cityscapes, CelebA, and PascalContext, while remaining highly
parameter-efficient. Moreover, its learned gates provide a natural framework for
analyzing MTL dynamics, offering interpretable insights into capacity allocation,
filter specialization, and task relationships. Our findings suggest that complex
MTL architectures may be unnecessary and that task-specific normalization offers
a simple, interpretable, and efficient alternative.

1 INTRODUCTION

Multi-task learning (MTL) trains a single model to solve multiple tasks jointly, leveraging shared
representations to improve generalization and computational efficiency. Despite many successes,
MTL remains difficult to understand and control. Core challenges include task interference, where
competing gradients from divergent task requirements disrupt joint training (Zhang et al., 2022);
capacity allocation, where shared and task-specific resources must be balanced to avoid dominance
(Maziarz et al., 2019; Newell et al., 2019); and task similarity, where the degree of relatedness
determines how tasks should interact (Standley et al., 2020). Existing approaches typically address
only one of these issues. Optimization-based methods focus on mitigating interference by reweighting
losses or modifying gradients (Yu et al., 2020; Navon et al., 2022). Soft-sharing architectures attempt
to disentangle capacity by adding task-specific modules on top of a shared backbone, but in doing
so often introduce significant design complexity in deciding how modules should interact (Misra
et al., 2016; Liu et al., 2019). Neural architecture search methods learn to partition networks based
on data-driven estimates of task-relatedness (Guo et al., 2020; Sun et al., 2020).

In this work, we argue that normalization layers and in particular batch normalization (BN) (Ioffe,
2015) are a sufficient and highly effective solution for all the aforementioned challenges in MTL.
Our motivation stems from the following observations:
First, while neural networks are heavily over-parameterized, existing approaches struggle to resolve
tasks conflicts (Shi et al., 2023), indicating a failure to utilize the available network capacity optimally.
Second, BN has proven to be highly expressive - not only does it stabilize and accelerate training
(Santurkar et al., 2018; Bjorck et al., 2018), but it also demonstrates remarkable standalone perfor-
mance when used on random feature extractors (Rosenfeld & Tsotsos, 2019; Frankle et al., 2021)
and its ability to leverage features not explicitly optimized for a specific task (Zhao et al., 2024).
Third, BN can learn to ignore unimportant features (Frankle et al., 2021) or be explicitly regularized
to produce structured sparsity (Liu et al., 2017; Suteu & Guo, 2022). This can be leveraged for MTL
when unrelated tasks cannot fully share all features without interference and require disentanglement.
Fourth, normalization layers are extremely parameter-efficient, taking up typically less than 0.5% of a
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model’s size. This makes them particularly suitable as lightweight universal adapters for applications
where models need to scale to multiple tasks (Rebuffi et al., 2017; Bilen & Vedaldi, 2017).
Lastly, while using separate BN layers has been explored in applications that suffer from domain
shift (Wallingford et al., 2022; Xie et al., 2023; Chang et al., 2019; Deng et al., 2023), its potential
for single-domain MTL remains underexplored. Task-specific feature importance scores through BN
layers offer a powerful mechanism to understand capacity allocation and task relationships.

Motivated by these observations, we propose a minimalist soft-sharing approach to MTL, where
feature extractors are fully shared and only normalization layers are task-specific. Unlike prior soft-
sharing architectures that add complex modules or routing schemes, our design isolates normalization
as the sole mechanism for balancing tasks. Building on σBN (Suteu & Guo, 2022), we introduce
lightweight task-specific gates that modulate feature usage with negligible overhead, making the
approach broadly compatible, easy to implement, and resilient to task imbalance. Beyond performance
and efficiency, the learned σBN parameters naturally form a task-filter importance matrix, enabling a
structured analysis of capacity allocation, filter specialization, and task relationships, providing an
interpretable view of MTL that is largely absent in prior work.

Contributions:

• A minimal MTL baseline. We show that simply replacing shared normalization with
task-specific BatchNorm (TSBN) already delivers competitive performance out-of-the-box,
questioning the necessity of elaborate task-specific modules or routing schemes.

• An extended design with sigmoid normalization. We introduce TSσBN which improves sta-
bility and scale across CNNs and transformers. This variant achieves superior performance
on nearly all benchmarks while remaining parameter-efficient.

• An interpretable analysis framework. The use of σBN further provides a natural lens for
analyzing MTL dynamics. By interpreting learned feature importances, we obtain structured
insights into capacity allocation, filter specialization, and task relationships.

2 RELATED WORK

Soft parameter sharing methods tackle MTL interference architecturally by introducing task-specific
modules to a shared backbone. Design options include replicating backbones (Misra et al., 2016;
Ruder et al., 2019), adding attention mechanisms (Liu et al., 2019; Maninis et al., 2019), low-rank
adaptation modules (Liu et al., 2022b; Agiza et al., 2024) or allowing cross-talk at a decoder level
(Xu et al., 2018; Vandenhende et al., 2020b). However, these methods rely on task-specific feature
extractors to avoid negative transfer at the cost of forgoing the multi-task inductive bias. Furthermore,
adding task-specific capacity scales poorly with many tasks (Strezoski et al., 2019), and requires
extensive code modifications that hinder adaptation to new architectures. Although BatchNorm is
present in many of these systems, it is embedded in larger task-specific designs. In contrast, our
method isolates BatchNorm as the sole soft-sharing mechanism, showing that it is a sufficient solution
for competitive MTL while challenging unnecessary complexity.

Neural Architecture Search (NAS) methods reduce task interference by choosing which parameters
to share among tasks as hard-partitioned sub-networks. Some approaches use probabilistic sampling
(Sun et al., 2020; Bragman et al., 2019; Maziarz et al., 2019; Newell et al., 2019) or explicit
branching/grouping strategies based on task affinities (Vandenhende et al., 2020a; Guo et al., 2020;
Bruggemann et al., 2020; Standley et al., 2020; Fifty et al., 2021). Others use hypernetworks
(Raychaudhuri et al., 2022; Aich et al., 2023) which learn to generate MTL architectures conditioned
on user preferences. While our method also models task relationships and capacity allocation, it does
so without architecture search, relying solely on static modulation via normalization layers.

Mixture-of-Experts (MoE) methods address task interference by dynamically routing inputs to
specialized experts, enabling flexible capacity allocation among tasks (Ma et al., 2018; Hazimeh
et al., 2021; Tang et al., 2020). More recent work extends MoE designs to large-scale transformer
architectures for vision and language tasks (Fan et al., 2022; Chen et al., 2023; Ye & Xu, 2023; Yang
et al., 2024). Although effective, these methods rely on dynamic, per-sample routing that increases
architectural and training complexity. In contrast, our approach provides a static and lightweight
form of soft partitioning, achieving similar benefits with minimal changes to the wrapped backbone.
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Figure 1: Illustration of soft parameter sharing architectures in a two-task setting. Cross-Stitch
Networks (Misra et al., 2016) and MTAN (Liu et al., 2019) incorporate additional feature extractors,
which lead to scalability challenges as the number of tasks increases. Task-Specific σBN Networks
introduce only task-specific normalization layers, offering a highly parameter-efficient solution.

Domain-specific normalization has been widely used in settings with domain shift, where shared
BatchNorm fails due to mismatched feature statistics. In these cases, using separate BN statistics (Li
et al., 2016; Zajac et al., 2019) or layers (Chang et al., 2019) is necessary for model performance. Sim-
ilar motivations apply in meta-learning (Bronskill et al., 2020), conditional computation (Michalski
et al., 2019), continual learning (Xie et al., 2023), and multi-modal learning (Zhao et al., 2024). Most
relevant to our setting is multi-domain MTL (MDL) (Bilen & Vedaldi, 2017; Mudrakarta et al., 2019;
Wallingford et al., 2022; Deng et al., 2023), where task-specific BN is used as a lightweight adapter,
again driven by the need to handle domain shift. In contrast, our work introduces task-specific BN as
a deliberate and standalone mechanism for single-domain MTL, where domain shift is not present.

3 BATCHNORM AND σBATCHNORM

Batch normalization is a cornerstone for deep CNNs due to its versatility, efficiency, and wide-ranging
benefits, including improved training stability for faster convergence (Santurkar et al., 2018; Bjorck
et al., 2018), regularization effects (Luo et al., 2019), and the orthogonalization of representations
(Daneshmand et al., 2021). BN operates in two key steps - normalization and affine transformation:

BN(x; γ, β) = γx̂+ β, x̂ =
x− µB√
σ2
B + ϵ

(1)

The normalization step standardizes input activations using the mini-batch mean µB and variance σ2
B ,

while the affine transformation applies channel-specific learnable parameters, γ and β, to re-scale and
shift the normalized activations. Despite being only a fraction of the total network, these parameters
exhibit significant expressive power, as evidenced by studies showing high performance when
training only BN (Frankle et al., 2021). During inference, batch normalization (BN) uses training-time
population statistics, but mismatches with inference-time statistics can degrade performance(Summers
& Dinneen, 2020), making original BN unsuitable for domain shift scenarios. Consequently, various
BN variants have been proposed, primarily focusing on improved normalization (Huang et al., 2023).

In this work, we build on a variation of BN that focuses on the transformation post-normalization.
Originally introduced to determine feature importance in structured pruning, Sigmoid Batch Normal-
ization (Suteu & Guo, 2022) replaces the affine transformation with a single bounded scaler:

σBN(x; γ) = σ(γ)x̂, σ(γ) =
1

1 + e−γ
(2)

Using a single bounded scaler per feature has little impact on performance, but enables targeted
regularization and improves interpretability. These properties make σBN especially attractive for
multi-task learning, where understanding how tasks share limited capacity is critical. In this setting,
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Figure 2: Left: Distribution of cosine similarities between the gradients of NYUv2 tasks over the
shared convolutions in the early stages of training. Middle: t-SNE visualization of the encoder
representations for the first five CelebA tasks. Right: Encoder parameter count for various numbers
of tasks relative to a ResNet50 backbone. Overall, TSσBN has a greater concentration of orthogonal
gradients, produces well-separated task representations and has a negligible parameter growth.

σ(γ) acts as a static soft gate that can down-weight or disable features. This implicit static gating
contrasts with soft-sharing models, which explicitly partition capacity, and MoE methods, which
route features dynamically through task-specific gates. Furthermore, this formulation can be extended
to other normalization layers (Ba et al., 2016), as we show in experiments on transformers. Using
σBN as the only task-specific components, we create a parameter-efficient framework that sustains
performance while providing tools to analyze and influence capacity allocation and task relationships.

4 TASK-SPECIFIC σBATCHNORM NETWORKS

TSσBN networks are constructed by replacing every shared Batch Normalization layer with task-
specific σBN layers, as illustrated in Figure 1. This design allows tasks to normalize and modulate
the outputs of shared convolutional layers:

TSσBN(x; γt) = σ(γt)x̂, x̂ =
x− µB,t√
(σB,t)2 + ϵ

(3)

enabling better disentanglement of representations and reduced task interference. Unlike prior meth-
ods introducing additional task-specific capacity, TSσBN keeps all convolutions shared, preserving
the multi-task learning inductive bias toward generalizable representations. While domain-specific
BN has been used reactively in domain adaptation (Chang et al., 2019) to handle distribution shifts,
our work is the first to use it proactively as a standalone mechanism in single-input scenarios.

Task interference. Conflicting gradient updates between tasks is a central challenge in MTL, often
measured by negative cosine similarity (Zhao et al., 2018; Yu et al., 2020; Shi et al., 2023). Figure 2
(left) shows the gradient similarity distribution for shared convolutional parameters: in hard parameter
sharing, the distribution is nearly uniform, meaning roughly half of all updates conflict. MTAN
(Liu et al., 2019) partially alleviates this issue by introducing task-specific convolutions. In contrast,
TSσBN yields a sharp, zero-centered distribution with low variance, indicating gradients are mostly
orthogonal. This mirrors optimization-based methods that explicitly enforce orthogonality (Yu
et al., 2020; Suteu & Guo, 2019), yet TSσBN achieves it through a lightweight architectural change.
Figure 2 (middle) further supports this: on CelebA, task representations form well-separated clusters,
illustrating reduced interference. A full analysis across all tasks is provided in Appendix A.

Parameter Efficiency. Task-Specific σBN is highly parameter efficient since it does not introduce
additional feature extractors like related soft parameter sharing architectures. At the extreme end,
such as Single Task Learning or Cross-Stitch networks, the entire backbone is duplicated for each new
task. TSσBN on the other hand duplicates only σBN layers, whose parameters comprise a fraction
of the total model size. Figure 2 (right) shows how different approaches scale with additional tasks.
TSσBN adds an insignificant amount of new parameters, allowing it to scale to any number of tasks.

4
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Discriminative Learning Rates. We increase the learning rate of σBN parameters by a fixed multiple
(ασBN = 102) relative to other parameters, allowing them to allocate filters before these undergo
significant updates. This accelerates specialization and ensures capacity allocation occurs early in
training. A further advantage of σBN is its robustness to high learning rates: the sigmoid dampens
gradients, making training stable across scales, whereas vanilla BN is more sensitive and requires
careful tuning. The approach parallels transfer learning, where deeper layers are updated more
aggressively to drive adaptation (Howard & Ruder, 2018; Vlaar & Leimkuhler, 2022). We provide
ablations on how higher learning rates improve performance and filter allocation.

5 MTL ANALYSIS WITH TSσBN

A key advantage of the TSσBN design is the ability to quantify filter allocation through task-filter
importance matrices. Since each σBN layer introduces a dedicated scaling parameter γt,i per task
and filter, we construct a task-filter importance matrix I ∈ RT×F , where each entry It,i captures the
importance task t assigns to filter i. Applying the sigmoid function to the raw scaling parameters
It,i = σ(γt,i) ensures that values remain within [0, 1], facilitating interpretability and comparability
across tasks, layers, and models. Using this representation, TSσBN enables a principled analysis of
MTL dynamics, including capacity allocation, task relationships, and filter specialization.

5.1 CAPACITY ALLOCATION
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Figure 3: Decomposed task capacity into shared
and independent components using the TSσBN
framework. In all standard scenarios, tasks share
most capacity without signs of dominance.

One of the central challenges in multi-task learn-
ing is understanding how model capacity is al-
located among competing tasks. The TSσBN
task-filter importance matrix I can directly quan-
tify the total capacity of a task t as the normal-
ized sum of the importances it assigns to filters
Ct =

1
F

∑F
i=1 σ(γt,i). This measure provides

an overall assessment of the resources required
for each task; however, it does not account for
task relationships or shared capacity. A task
with high absolute capacity does not necessar-
ily imply it monopolizes filters, as it may rely
heavily on shared generic filters.

We apply an orthogonal projection-based decomposition to differentiate between task-specific and
shared capacity. Given the set of task importance vectors {I1, I2, ..., IT }, we decompose each task’s
capacity into an independent component and a shared component. Let A be the matrix formed by
stacking all task importance vectors except It. The projection of It onto the subspace spanned by the
other tasks is given by the projection matrix PA:

PAIt = A(ATA)−1AT It, (4)

The shared Ît = PAIt and independent I⊥t = It − Ît components of It can therefore be defined
so that I⊥t is orthogonal to the subspace spanned by the other task importance vectors. To derive a
capacity decomposition consistent with the original measure, we define the independent and shared
capacities as scaled versions of the total capacity:

Cindep
t =

∥I⊥t ∥2
∥It∥2

Ct, Cshared
t =

∥Ît∥2
∥It∥2

Ct. (5)

Because in this formulation the components are orthogonal, the L2 norm satisfies the Pythagorean
theorem, yielding C2

t = (Cshared
t )2 + (Cindep

t )2. This guarantees that a task’s total capacity is
preserved while providing an interpretable split between shared and independent resource usage.

Using our framework, we analyze task capacity allocation after training as shown in Figure 3. For
both SegNet and DeepLabV3 architectures, we find that most capacity is shared among tasks without
a single task dominating. For a more detailed analysis on the effects of task difficulty and similarity
on capacity allocation, we refer to Appendix E. Overall, this view offers interpretability into the
interaction between tasks and can be a powerful tool in real-world applications where relationships
are not known a priori.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5.2 TASK RELATIONSHIPS

A desirable feature for any multi-task learning model is the ability to derive task relationships, as this
can help gauge interference between tasks and provide insights into the joint optimization process.
To showcase this, we use the CelebA dataset, containing 40 binary facial attribute tasks, allowing us
to explore complex task relationships and hierarchies via TSσBN. Moreover, because these attributes
are semantically interpretable (e.g., "Smiling", "Mouth Slightly Open"), they enable meaningful
qualitative assessments of the learned relationships.

To derive task relationships we compute the pairwise cosine similarity between the task importance
vectors It ∈ RF , yielding a T × T similarity matrix, with values ranging from 0 (orthogonal filter
usage) to 1 (indicating identical usage). We use this as the basis for constructing distance matrices to
identify task clusters and hierarchical relationships that reflect the model’s capacity allocation.

To assess the stability of the task relationships derived from our model, we focus on the consistency
of task hierarchies across multiple training runs. Specifically, we evaluate the similarity matrices
obtained from seven independently trained models with different intializations. We compute the
pairwise Spearman rank correlation between similarity matrices to determine whether the relative
task orderings are robust to such variations. Our results show that the task hierarchies are highly
stable, with an average Spearman correlation of 0.8 across all model pairs.

We further assess the resulting relationships by aggregating at the respresentative task clusters from
the seven runs, via co-occurrence matrices and hierarchical clustering. The identified clusters exhibit
semantic coherence, suggesting a correlation with the spatial proximity of facial attributes. For
instance, tasks related to hair characteristics (e.g., Bangs, Blond Hair) form a distinct cluster. In
contrast, facial hair attributes (e.g. Goatee, Mustache) are grouped separately. More details about the
procedure and resulting task clusters can be found in the Appendix C.

5.3 FILTER GROUPS
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Figure 4: Left: Percentage of specialized filters per
layer in a TSσBN SegNet. Specialization increases
in the latter layers. Right: Performance drop across
tasks (columns) after pruning filters based on their
primary specialization (rows).

A different way to analyze multi-task learning
is from an individual filter perspective. Using
the task-filter matrix, we can gauge each task’s
reliance on a filter to determine if the resource
is specialized or generic. We define a filter as
specialized for a particular task if its normalized
task-filter importance exceeds a threshold τ . We
set τ = 0.5 to signify that the filter predomi-
nantly contributes to a single task rather than
being shared among multiple tasks. Formally,
let σ(γt,i) denote the importance of filter i for
task t. A filter i is deemed specialized for task
t′ if σ(γt′,i)/

∑T
t σ(γt,i) > τ .

We prune the top 200 most important filters per
task to test our definitions of specialization and
importance. If accurate, removing a task’s specialized filters should degrade its performance more
than others. Figure 4 (right) confirms this: diagonal elements, representing self-impact, show
significantly larger drops than off-diagonals, supporting our hypothesis.

Next, we examine where specialized filters occur across the network. Figure 4 (left) shows the
percentage of specialized filters per layer from different runs. Specialization increases with network
depth, indicating that early layers are more shared while deeper layers become task-specific. This
mirrors findings in single-task learning (Yosinski et al., 2015), where lower layers encode general
features, and aligns with branching-based NAS heuristics (Bruggemann et al., 2020; Vandenhende
et al., 2020a; Guo et al., 2020), which assign specialized layers to later stages. Our method for
quantifying specialization and task similarity offers an alternative perspective for NAS strategies.
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6 EXPERIMENTS

We evaluate our method, TSσBN, across three distinct experimental settings: randomly initialized
CNNs, pretrained CNNs, and pretrained transformer-based architectures. These experiments span
multiple MTL datasets: NYUv2 (Silberman et al., 2012), Cityscapes (Cordts et al., 2016), CelebA
(Liu et al., 2015), and PascalContext (Chen et al., 2014). We demonstrate that TSσBN achieves
comparable or superior performance to related methods while maintaining resource efficiency. We
follow experimental settings and metrics from prior works (Liu et al., 2019; Ban & Ji, 2024; Lin &
Zhang, 2023; Yang et al., 2024) and refer to the appendix for additional details.

Training CNNs Random Initialization. In this setting, we evaluate TSσBN on models trained from
scratch, focusing on dense prediction tasks using NYUv2 and Cityscapes, as well as multi-label
classification on CelebA. For NYUv2, which includes indoor RGB-D images annotated for semantic
segmentation (classification), depth estimation (regression), and surface normal prediction (vector
regression), we adopt the SegNet (Badrinarayanan et al., 2017) architecture following Liu et al. (2019).
For Cityscapes, which covers outdoor urban scenes with fine and coarse semantic segmentation
and disparity estimation (regression), we use DeepLabV3 (Chen, 2017) as in Liu et al. (2022a).
Additionally, we evaluate TSσBN on CelebA, a large-scale face attributes dataset comprising 40
binary classification tasks, utilizing a CNN backbone as in Liu et al. (2024); Ban & Ji (2024). The
homogeneous task losses in CelebA simplify balancing compared to dense prediction, though scaling
to 40 tasks remains challenging.

Pretrained CNNs. To broaden the applicability of TSσBN, we integrate it into the LibMTL
framework (Lin & Zhang, 2023) for comparison with a wide range of MTL methods on NYUv2
and Cityscapes, utilizing a pretrained ResNet-50 backbone with DeepLabV3. For Cityscapes, we
follow LibMTL’s setup, treating it as a two-task dataset for coarse semantic segmentation and depth
estimation. To adapt TSσBN to pretrained CNNs, we convert pretrained BatchNorm (BN) layers to
σBN. Specifically, the γ parameters, which are mostly in the (0,1) range, are clipped and transformed
using the logit function to ensure equivalent values after applying the sigmoid function. The β
parameters, often non-zero, are copied to σBN but set as non-trainable to avoid disrupting the
pretrained weights. This adaptation enables TSσBN to leverage pretrained representations effectively.

Pretrained Transformers. We evaluate TSσBN on transformer-based architectures using the
MLoRE setup (Yang et al., 2024) on PascalContext (Chen et al., 2014), which comprises five tasks:
semantic segmentation, human parsing, saliency detection, surface normals, and object boundary
detection, with a ViT-S backbone (Dosovitskiy et al., 2021). To adapt transformers, we introduce
σLN and σBN layers and convert pretrained LayerNorm to their task-specific counterparts, ensuring
a smooth transition from pretrained weights. Unlike prior approaches, our design relies on a simple
shared multi-scale fusion module, which achieves strong multi-task performance while significantly
reducing parameter count. Further implementation details are provided in the Appendix.

Multi-task evaluation. Following Maninis et al. (2019) to evaluate a multi-task model, we compute
the average per-task performance gain or drop relative to a baseline B specified in the top row of the

Method NYUv2 Cityscapes CelebA

#P Seg↑ Depth↓ Norm↓ ∆% #P Seg↑ P.Seg↑ Disp↓ ∆% #P F1↑ ∆%

STL 1.00 41.45 0.580 23.80 0.00 1.00 56.61 53.95 0.841 0.00 1.00 68.21 0.00

HPS 0.33 42.17 0.502 26.63 +1.07 0.60 55.03 51.92 0.796 -0.39 0.03 67.06 -1.69
CS 1.00 41.77 0.492 26.15 +1.98 1.00 56.73 53.89 0.781 +2.43 1.01 65.57 -3.86
MTAN 0.59 43.12 0.508 25.44 +3.14 0.78 55.83 52.61 0.799 +0.39 0.39 59.49 -12.78
TSBN 0.33 43.47 0.494 25.32 +4.42 0.61 56.10 52.82 0.806 +0.40 0.03 67.17 -1.52
TSσBN 0.33 43.75 0.484 24.09 +6.93 0.60 56.45 53.26 0.814 +0.57 0.03 69.45 +1.81

Table 1: Comparison of encoder-based soft-sharing architectures on NYUv2 (3-task SegNet),
Cityscapes (3-task DeepLabV3), and CelebA (40-task CNN) trained from random initialization.
TSσBN achieves the best overall performance on NYUv2 and CelebA by a significant margin, and
competitive results on Cityscapes, while maintaining the lowest parameter count.
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Method NYUv2 CityScapes

#P #F Seg↑ Depth↓ Normal↓ ∆% #P #F Seg↑ Depth↓ ∆%

HPS 1.00 1.00 53.93 0.3825 23.57 0.00 1.00 1.00 69.81 0.0125 0.00

CS 1.65 1.69 53.44 0.3818 23.15 +0.35 1.42 1.44 69.97 0.0123 +0.55
MMOE 1.35 1.34 53.14 0.3876 23.02 -0.15 1.42 1.44 69.81 0.0126 -0.43
MTAN 1.28 1.56 54.64 0.3771 23.12 +1.55 1.29 1.48 70.62 0.0125 +0.49
CGC 2.01 2.03 53.27 0.3914 22.14 +0.84 1.85 1.88 69.75 0.0125 -0.12
PLE 2.41 2.71 52.75 0.3943 22.10 +0.32 1.95 2.32 69.30 0.0129 -2.02
LTB 1.65 1.69 52.58 0.3828 23.31 -0.49 1.42 1.44 69.81 0.0125 -0.35
DSelect-k 1.38 1.34 53.75 0.3802 23.18 +0.64 1.44 1.44 69.67 0.0124 +0.26
TSBN 1.00 1.69 53.44 0.3761 23.01 +1.04 1.00 1.44 69.89 0.0124 +0.38
TSσBN 1.00 1.69 53.78 0.3735 22.31 +2.48 1.00 1.44 70.17 0.0123 +0.85

Table 2: Comparison of various multi-task architectures within the LibMTL framework using
DeepLabV3 with a pre-trained ResNet-50 backbone on NYUv2 (3-task) and CityScapes (2-task).
TSσBN achieves the best overall performance while being the most parameter-efficient.

results tables. ∆m% = 1
T

∑T
t=1(−1)δt

Mm,t−MB,t

MB,t
×100, where Mm,t is the performance of a model

m on a task t, and δt is an indicator variable that is 1 if a lower value shows better performance for
the metric of task t. All results are presented as an average over three independent runs. Additionally,
we report parameters (P) and FLOPs (F) relative to the baseline.

6.1 RESULTS

Method Seg. Pars. Sal. Norm. Bdry. #F #P
mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑ (G) (M)

M3ViT 72.80 62.10 66.30 14.50 71.70 420 42
Mod-Squad 74.10 62.70 66.90 13.70 72.00 420 52
TaskExpert 75.04 62.68 84.68 14.22 68.80 204 55
MLoRE 75.64 62.65 84.70 14.43 69.81 72 44
TSBN 75.95 63.33 84.655 14.16 68.05 214 29
TSσBN 77.12 64.73 85.24 14.04 70.00 214 29

Table 3: PascalContext results for parameter-
efficient transformer-based models using a pre-
trained ViT-S backbone.

Across all experimental settings, TSσBN deliv-
ers consistent gains in performance while main-
taining superior parameter efficiency.

On randomly initialized CNNs in Table 1,
TSσBN achieves the best results on NYUv2
(+6.93%) and CelebA (+1.81%), with competi-
tive performance on Cityscapes, all at the lowest
parameter cost. Notably, soft parameter shar-
ing methods underperform the STL baseline on
CelebA, highlighting their poor scalability to
many tasks, whereas TSσBN remains robust.
On pretrained CNNs within LibMTL in Table 2,
TSσBN achieves the strongest overall performance on both NYUv2 (+2.48%) and Cityscapes
(+0.85%), outperforming all MTL baselines, including MoE approaches, while remaining lightweight.
On pre-trained transformers with ViT-S in Table 3, TSσBN surpasses state-of-the-art methods, such
as M3ViT, Mod-Squad, and MLoRE, while using fewer parameters.

We note that even the simpler TSBN variant (without sigmoid and differential learning rates) delivers
competitive performance out of the box, suggesting that complex architectures may be unnecessarily
over-engineered. Overall, TSσBN achieves the best balance of accuracy, efficiency, and simplicity,
consistently outperforming specialized MTL architectures across CNNs and transformers, while
scaling to many-task regimes.

7 ABLATIONS

7.1 DISCRIMINATIVE LEARNING RATES

We analyze the impact of different learning rate multipliers applied to the σBN layers, focusing
on their effect on the distribution of scaling parameters γt and overall model performance. Figure
5 illustrates how varying the αBN multiplier influences the distribution of σ(γt) values across all
filters. A more detailed task-wise breakdown is provided in the Appendix. Higher learning rates
induce more significant parameter variance, increasing their expressivity. Since σ(γt) is initialized
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at 0.5, lower learning rates result in minimal divergence, with ασBN = 1 being excluded as it
shows almost no differentiation between tasks. At ασBN = 100, we see a substantial spread in
σ(γt) values across the full [0, 1] range, allowing tasks to choose and specialize on subsets of filters.
However, an extreme learning rate of ασBN = 103 leads to a highly polarized distribution, where
filter importances collapse to a binary mask, effectively enforcing a hard-partitioning regime. These
findings highlight how BN learning rates control the degree of task-specific capacity allocation,
influencing both representation disentanglement and network adaptability.

We further analyze the impact of different learning rate multipliers on the MTL performance in Table
6. For TSBN, moderate multipliers yield small gains, but performance collapses at high rates. In
contrast, σBN consistently benefits from larger multipliers across values, indicating that sigmoid
activation is essential both for unlocking greater improvements and for robustness.

7.2 ROBUSTNESS TO LOSS SCALES

0.0 0.5 1.0

σ(γt,i)

0

5

10

D
en

si
ty

lr Effect on Importances

ασBN = 101

ασBN = 102

ασBN = 103

Hard Sharing MTAN TSσBN

Model

−3

0

3

6

∆
M
T
L
%

Robustness to Loss Scaling

Figure 5: Effect of BN-specific learning rate mul-
tipliers on the σ(γt) filter importances distribution
(left) and relative performance of models under loss
scale perturbations (right).

ασBN 100 101 102 103

TSBN +4.09% +4.80% +4.42% -2.96%
TSσBN +4.02% +5.67% +6.93% +4.33%

Figure 6: Impact of different BN specific learning
rate multipliers on the performance of TSBN and
TSσBN relative to STL on NYUv2.

A well-known challenge in multi-task learn-
ing is the discrepancy in loss scales and, con-
sequently, gradient magnitudes across tasks,
which can lead to task dominance and subop-
timal performance. Many existing approaches
rely on manual tuning or specialized optimiza-
tion strategies for dynamic weighting. Our
method is highly robust to perturbations of
loss scales without any additional changes.

To evaluate the robustness of our method to
loss weight perturbations, we conduct a se-
ries of experiments on NYUv2 by varying the
weight of each task. Specifically, we scale
each task loss by factors of {0.5, 1.5, 2.0}
while maintaining the default weight of 1.0
for the remaining tasks. The distribution of
relative performances under these perturba-
tions is visualized in Figure 5. TSσBN shows
the lowest variance under loss scale perturba-
tions, indicating robustness to task dominance
and improved optimization stability.

8 CONCLUSION

This work introduced TSσBN, a simplified soft parameter sharing architecture for multi-task learning
that relies solely on task-specific normalization layers. In contrast to prior approaches that depend
on elaborate task-specific modules or complex routing mechanisms, TSσBN achieves competitive
or superior performance across diverse datasets and architectures while maintaining remarkable
parameter efficiency. Beyond empirical gains, TSσBN provides a principled framework for analyzing
multi-task learning. By leveraging the feature importances encoded in σBN, we obtain interpretable
insights into capacity allocation, filter specialization, and task relationships, offering a structured
view of multi-task behavior that is largely absent in existing work.

A direction for future work is extending our evaluation to a broader range of parameter-efficient
transformer designs and alternative backbone architectures in order to further clarify the role of
task-specific normalization relative to adapter or routing-based methods.

Overall, this work demonstrates that simple, normalization-based designs can rival or surpass more
intricate architectures, while also yielding transparency into the dynamics of multi-task learning. We
hope these findings encourage a rethinking of complexity in MTL design and foster future research
into interpretable, resource-efficient approaches.

9
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This work does not involve human subjects, private data, or sensitive content. All datasets used
(NYUv2, Cityscapes, CelebA, PascalContext) are publicly available and widely adopted benchmarks.

REPRODUCIBILITY STATEMENT

We provide comprehensive experimental details in the main text in Section 6 and Appendix F,
including datasets, architectures, training protocols, and evaluation metrics.
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A INTERFERENCE

To further investigate task interference, we expand on the analysis presented in Section 4 and provide
a more comprehensive view of gradient conflicts across all task pairs for NYUv2. Specifically, in
figure 7 we plot the distribution of cosine similarities between gradients for every task pair across the
shared parameters of the SegNet backbone.

In addition to the methods discussed in the main paper, we include Task-Specific Batch Normalization
(TSBN) as a baseline. Interestingly, TSBN alone is sufficient to induce a mode around orthogonality,
demonstrating that normalization can already reduce some degree of task interference. However,
incorporating σBN significantly amplifies this effect, further increasing the number of near-orthogonal
gradients and reducing interference. This highlights the role of σBN in not only mitigating conflicts
but also improving gradient disentanglement across tasks.

It is important to note that the presented gradient distributions are measured after one epoch of
training over the training set. As training progresses, we observe that the differences between
methods become less pronounced. Regardless of the initial distribution, all approaches gradually
converge toward a bell-shaped distribution centered around orthogonality. This suggests that while
early-stage interference may impact optimization dynamics, multi-task models eventually adjust to
reduce conflicts over time.

A notable exception is observed in MTAN, which produces more aligned gradients specifically for
the semantic segmentation and surface normal estimation task pair. Despite this alignment, we do not
observe a corresponding performance gain. This suggests that while reducing conflicts is beneficial,
not all aligned gradients lead to improved task synergy, underscoring the notion that mitigating
interference alone does not guarantee optimal performance.
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Figure 7: Distribution of gradient cosine similarities between all task pairs on the NYUv2 dataset
using a SegNet backbone.

B DISENTANGLED TASK REPRESENTATIONS

We extend Figure 2 from Section 4 by visualizing encoder representations for all 40 tasks in the
CelebA setting. As before, we use t-SNE to project the high-dimensional representations into a more
interpretable space. Each data point is assigned representations for every task due to the nature of
the soft parameter sharing paradigm, resulting in multiple embeddings per sample. In Figure 8, we
observe that most tasks form well-separated clusters, though a few outliers exhibit some degree of
overlap.
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Figure 8: t-SNE visualization for all task representations for 1000 inputs from the CelebA dataset.

C ROBUST TASK RELATIONSHIPS

We utilize the CelebA dataset to identify relationships and hierarchies among the 40 binary classifi-
cation tasks of facial attributes. We compute pairwise cosine similarities between task importance
vectors, producing a task similarity matrix S =

[
Ii·Ij

∥Ii∥ ∥Ij∥

]
i,j∈T

, that serves as the foundation for

identifying task clusters and hierarchies. Crucially, for these relationships to be useful, they must be
robust - unstable hierarchies would offer little insight into model behavior or optimization dynamics.
We find the relationships from TSσBN to be highly stable, with an average Spearman rank correlation
of 0.8 between similarity matrices from seven independent training runs.

For a qualitative assessment of task relationships, we compute representative clusters of tasks from
the seven runs. To achieve this, we construct a co-occurrence matrix that captures the frequency
with which each pair of tasks appears in the same cluster. This co-occurrence matrix effectively
aggregates clustering information from all runs, highlighting task pairs that consistently exhibit strong
relationships regardless of initialization. We then apply hierarchical clustering directly to this matrix
to identify a representative cluster of tasks that frequently co-occur.

The identified clusters exhibit apparent semantic coherence, as shown in Table 4. Since these clusters
are derived from filter-usage based relationships, tasks grouped tend to rely on similar specialized
filters within the network. This suggests that the model internally organizes tasks based on shared
feature representations. Notably, the clustering patterns appear to correlate with the spatial proximity
of facial attributes. For instance, tasks related to hair characteristics (e.g., Bangs, Blond Hair) form
a distinct cluster. In contrast, facial hair attributes (e.g. Goatee, Mustache) are grouped separately,
indicating that the network leverages localized feature detectors. This spatial coherence reinforces
the idea that task relationships emerge from shared activations of filters sensitive to specific facial
regions, reflecting the model’s ability to capture both semantic and structural commonalities across
tasks.

D DISCRIMINATIVE LEARNING RATES

We extend the ablation study from Section 7.1, investigating the impact of discriminative learning
rates for σBN layers. Specifically, we apply a higher learning rate to BN parameters, allowing them to
adapt more rapidly to the shared convolutional layers before those layers undergo significant updates.
This adjustment is controlled by a multiplier applied to the model’s base learning rate.

In this more detailed analysis, we examine the importance distributions of filters per task across
different learning rate multipliers. Figure 9 presents the resulting distributions for four multiplier
values: 100, 101, 102, 103. As the multiplier increases, the variance of filter importance distributions
grows, leading to progressively softer filter allocations. At a multiplier of 1, BN parameters remain
close to their initialization, resulting in near-uniform filter sharing across tasks, similar to hard
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# Attributes

1 High Cheekbones, Mouth Slightly Open, Smiling
2 Bangs, Black Hair, Blond Hair, Brown Hair, Gray Hair, Straight Hair, Wavy Hair, Wearing Hat
3 Attractive, Bags Under Eyes, Big Nose, Young
4 Bald, Chubby, Double Chin, Receding Hairline, Wearing Necktie
5 Blurry, Heavy Makeup, Male, Pale Skin, Wearing Lipstick
6 5 o’Clock Shadow, Goatee, Mustache, No Beard, Sideburns
7 Arched Eyebrows, Bushy Eyebrows, Narrow Eyes
8 Eyeglasses, Rosy Cheeks
9 Big Lips, Oval Face, Pointy Nose
10 Wearing Earrings, Wearing Necklace

Table 4: Clusters of attributes extracted from a TSσBN model trained on the 40-task CelebA dataset.
Task relationships correlate with the spatial proximity of facial features, suggesting that the model
organizes tasks based on localized filter activations, capturing both semantic and structural similarities.

parameter sharing. On the opposite extreme, a multiplier of 103 effectively induces a binary filter
mask, resembling a hard partitioning approach. Notably, σBN plays a crucial role in stabilizing this
process, as its sigmoid activation mitigates potential gradient explosion. We use ασBN = 102 in all
our experiments.

0.00 0.25 0.50 0.75 1.00

σ(γt)

0

5

10

15

20

D
en

si
ty

ασBN = 100

Seg

Depth

Normals

0.00 0.25 0.50 0.75 1.00

σ(γt)

0

1

2

3

4

ασBN = 101

0.00 0.25 0.50 0.75 1.00

σ(γt)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ασBN = 102

0.00 0.25 0.50 0.75 1.00

σ(γt)

0

1

2

3

4

5

6

ασBN = 103

Distribution of task-specific σBN scalers

Figure 9: Detailed visualization of the effect of different learning rates on the distribution of task-
specific σBN scaling parameters.

E EFFECTS OF TASK DIFFICULTY ON CAPACITY ALLOCATION

To further investigate MTL capacity allocation using the TSσBN framework, we conduct a synthetic
experiment designed to control task difficulty and relationships systematically. Specifically, we
modify the NYUv2 dataset by removing the surface normals estimation task and replacing it with
a noisy variant of the depth estimation task. We generate a family of datasets where the additional
depth task is corrupted by Gaussian noise of increasing variance. Formally, given the original depth
labels D, we construct synthetic tasks:

D̃ξ = D +N (0, ξ ∗ σ2
D), (6)

where ξ controls the level of corruption as a scaler of the original depth task’s variance. Using TSσBN,
we analyze how model capacity is allocated between shared and task-specific components, as well as
how task relationships change, by computing cosine similarity over task importance vectors.

In figure 10 we plot the decomposed task capacities and pairwise similarities for datasets with ξ
ranging between [0, 3]. As expected, when ξ is low, the original and noisy depth tasks exhibit strong
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alignment, reinforcing high shared capacity. However, as ξ increases, the similarity between the tasks
decreases, and their filter allocations become more distinct, with independent capacity increasing.
This aligns with our hypothesis that related tasks co-adapt to share resources, whereas unrelated
tasks require greater specialization. Overall, this experiment highlights how TSσBN automatically
balances shared and independent capacity in response to increasing task difficulty and lower task
similarity.
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Figure 10: The effect of increasing task difficulty and decreasing similarity on capacity allocation
in TSσBN. For the noise scaling factor, a synthetic depth estimation task is generated with additive
Gaussian noise. (Left) Independent task-specific capacities. (Middle) Shared capacity between tasks.
(Right) Pairwise cosine similarity between task importance vectors.

F EXPERIMENTAL SETTINGS

Hardware. Experiments on NYUv2 and Cityscapes were run on an NVIDIA RTX 3090 GPU. Due
to higher memory requirements, CelebA (40 tasks) and transformer-based models were trained on an
NVIDIA A100 GPU.

F.1 CNNS WITH RANDOM INITIALIZATION

NYUv2. We follow the setup of Liu et al. (2019; 2024) for base architecture, training configuration,
and evaluation metrics. A multi-task SegNet is used, with both encoder and decoder shared across
tasks and lightweight task-specific heads composed of two convolutional layers. All methods are
trained with Adam (lr = 10−4), using a step schedule that halves the learning rate at epoch 100.
Training runs for 200 epochs with a batch size of 4.

Cityscapes. Following Liu et al. (2022a), we use DeepLabV3 with a ResNet-50 backbone and task-
specific ASPP decoders, which account for most of the parameters. Optimization is performed with
SGD (lr = 10−2, weight decay = 10−4, momentum = 0.9) for 200 epochs using a CosineAnnealing
scheduler and batch size of 4. For TSσBN layers, weight decay is disabled.

CelebA. We adopt the configuration from Liu et al. (2024); Ban & Ji (2024), using a shared
CNN backbone with task-specific linear classifiers. Models are trained for 15 epochs with Adam
(lr = 3× 10−4) and batch size 256.

F.2 CNNS WITH PRETRAINED WEIGHTS

Implementation. Converting pretrained BN layers into σBN depends on their weights. A network
trained from scratch may learn a purely linear transformation, but converting an affine layer to linear
is not possible unless β = 0. To avoid conversion shock, we copy the pretrained biases but keep them
frozen during training. In ResNet-50 pretrained on ImageNet, most BN scale parameters (γ) fall
within (0,1), allowing them to be represented by the sigmoid function. We therefore apply the inverse
sigmoid to initialize σBN scales, ensuring consistency with the pretrained distribution.
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NYUv2. We follow the default LibMTL configuration (Lin & Zhang, 2023), reporting results of
related methods as published. Models are trained with Adam (lr = 10−4) for 200 epochs, using
StepLR with γ = 0.5 at epoch 100 and a batch size of 4.

Cityscapes. Same as above, except the batch size is set to 16 due to memory constraints. All results,
including related methods, are averaged over three random seeds for fair comparison.

F.3 TRANSFORMERS WITH PRETRAINED WEIGHTS

Implementation. Following prior work, we extract intermediate representations from the transformer
backbone and process them through a lightweight multi-scale fusion module. The module consists
of four Conv–TSσBN–GELU blocks shared across tasks, implemented as two 1×1 convolutions
for channel adjustment squeezing two 3×3 convolutions with width 512; decoder inputs have width
196. In the ViT patch embedding, we replace the normalization with a σLN layer. All remaining
LNs in the backbone are converted to TSσLN, since their pretrained scales often exceed the sigmoid
co-domain.

PascalContext. Following the MLoRE setup Yang et al. (2024), we train a ViT-S backbone using
Adam with base learning rate 2 × 10−5 and polynomial decay. Learning-rate multipliers of 100
and 10 are applied to TSσBN and TSσLN layers respectively. Dropout and DropPath are disabled.
Models are trained for 60k iterations.
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