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A RELATED WORKS

This section includes the related works about network designs in cooperative MARL, state space
models for sequence modeling and self-predictive RL methods.

A.1 NETWORK DESIGN IN MARL

Early MARL algorithms adopted MLP-based policy and value networks which are commonly used
in single-agent RL algorithms (Lowe et al., 2017; Sunehag et al., 2017). However, when dealing with
partially observable tasks, the necessity of utilizing historical information becomes non-negligible
(Gupta et al., 2017). The most popular recurrent network structure is GRU. COMA utilizes GRU
in the actor network and MLP consisting multiple layers with ReLU as the critic network (Foerster
et al., 2018). All agents in QMIX comprise a GRU as the core part, as well as its various variants
(Rashid et al., 2020; Yang et al., 2020; Wang et al., 2020; Jeon et al., 2022; Wang et al., 2023).
SOTA policy-based MARL algorithms also widely adopt GRUs as policy and critic networks (Yu
et al., 2022; Hu et al., 2021).

A.2 STATE SPACE MODELS FOR SEQUENCE MODELING

Structured state space models (S4 models) are already proven to be sufficient in sequence signal
compression, audio generation, image and audio modeling (Gu et al., 2020; 2021; 2022b; Orvieto
et al., 2023; Smith et al., 2023; Nguyen et al., 2022), etc. Various works have improved S4 models
through modifying the way of parameterization and initialization (Gu et al., 2022a; Gupta et al.,
2022). S4 models have also shown promising performance in partially-observable RL (Lu et al.,
2023), in-context RL (Chen et al., 2023), imitation learning (Jia et al., 2024) and world modeling
(Deng et al., 2023). Mamba is a new type of S4 model with selection and a scan (Gu & Dao, 2023)
which demonstrates superior performance compared to Transformers with similar scales. Recently,
Mamba has garnered widespread attention due to its strong long-sequence reasoning and modeling
capabilities, coupled with its linearly scalable computational resource consumption.

A.3 SELF-PREDICTIVE RL

Self-predictive representation learning methods have shown noticable data efficiency in sequence
modeling tasks like vision and language processing, especially in low data regimes (Xie et al., 2020;
Henaff, 2020; Chen et al., 2020). Inspired from VAE, self-predictive representation learning is
recently widely used in world modeling (Lukasz Kaiser et al., 2020; Hafner et al., 2021; Zhang
et al., 2023; Micheli et al., 2023; Robine et al., 2023; Hansen et al., 2024a;b) to extract relevant
features for transition prediction. Through reconstructing the raw input and predicting the future
latents or inputs, world models can learn complicated environment dynamics for training competitive
agents with small amount of data. Self-predictive representation learning can also improve data
efficiency in deep Q-learning (Schwarzer et al., 2020; 2021; 2023). Given the success self-predictive
RL methods have achieved, we believe it is promising implementing self-predictive representation
learning objectives in policy learning.

B MAIN COMPARISONS AGAINST BASELINES

We present full learning curves about the comparison among self-predictive Mamba, vanilla Mamba
and GRU in Section 5.2 here. We also list the detailed hyperparameters of the comparison.
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B.1 FULL RESULTS
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Figure 1: Comparison between the self-predictive Mamba, RNN, and the vanilla Mamba policies.

B.2 HYPERPARAMETERS OF SELF-PREDICTIVE MAMBA, MAMBA AND GRU

We use the implementation https://github.com/marlbenchmark/on-policy for GRU policy in MAPPO
(Yu et al., 2022). We use the Mamba implementation https://github.com/state-spaces/mamba for
building Mamba policy. We share the same hyperparameter setting among all the 6 tasks. Addi-
tionally, as self-predictive Mamba is an extension of Mamba, we maintain identical values for the
shared parameters between Mamba and self-predictive Mamba.

Table 1: Hyperparameters of self-predictive Mamba and GRU policy.

Parameter name

self-predictive Mamba

GRU

Input sequence length &
Output dimension d
Expansion coefficient €
Latent state dimension
Weight coefficient «
Clip parameter
Early stop coefficient p
GAE Discount coefficient y
GAE )\
Optimizer
Actor learning rate
Critic learning rate
Adam €
Gradient clipping
PPO epoch number
Batch size
Seed

1
64
2
128
0.1
0.2
0.05
0.99
0.95
Adam
Se-4
Se-4
le-5
10
5
3200
1,2,3,4

64

0.2

0.99
0.95
Adam
Se-4
Se-4
le-5
10

3200
1,2,3,4
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Table 2: Running time of 6 tasks.

Task name  Running time (h)

3s_vs_ S5z 25.3
Sm_vs_6m 22.7
8m_vs_ 9m 22.6

6h_vs_8z 31.46

3s5z_vs_3s6z 24.6

MMM?2 32

B.3 HYPERPARAMETERS OF RODE

We use the implementation https://github.com/TonghanWang/RODE for executing RODE (Wang
et al., 2021). We share the same hyperparameters among all the 6 tasks.

Table 3: Hyperparameters of RODE.

Parameter name RODE
Action latent dim 20
Batch size 32
Buffer size 5000
Learning rate Se-4
e-greedy 1.0—0.05
€ anneal time 70000
Reward discount coefficient y 0.99
Hypernet embedding dimension 64
Hypernet layer number 2
Mixing embedding dimension 32
Role cluster number 3
Role action spaces update start 5000
Role ¢ finish 0.05
Role updating interval 5
Target network update interval 200
State latent dimension 32
Optimizer RMSProp
RMSProp 0.99
RMSProp € le-5
Gradient clipping 10
Latent state dimension 64
Seed 1,2,3,4

B.4 HYPERPARAMETERS OF QMIX

We use the implementation https://github.com/marlbenchmark/off-policy for executing QMIX
(Rashid et al., 2020). We share the same hyperparameters among all the 6 tasks.
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Table 4: Hyperparameters of QMIX.

Parameter name QMIX
Batch size 32
Buffer size 5000
Learning rate Se-4
e-greedy 1.0—0.05
€ anneal time 50000
Reward discount coefficient vy 0.99
Hypernet embedding dimension 64
Hypernet layer number 2
Mixing embedding dimension 32
Target network update interval 200
Target network update interval (episode) 200
Number of episodes to add to buffer with purely random actions 5
Training interval 100
Training interval (episode) 1
Optimizer RMSProp
RMSProp o 0.99
RMSProp € le-5
Gradient clipping 10
Latent state dimension 64
Seed 1,2,3,4

C ENCODER DESIGNING

We present the detailed self-predicting loss curves of the comparison among MLP-VAE, categorical-
VAE and SimNorm-VAE in Section 5.3.1 here.
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Figure 2: The self-predicting losses for MLP-VAE, categorical-VAE and SimNorm-VAE.
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