
Supplementary

A Missing proofs from Section 2

We begin with a simple lemma showing that the values of the levels are monotone:

Lemma A.1. For all i and `, f(Li`) ≤ f(Li+1
`+1) and f(Li`) ≤ f(Li`+1).

Proof. First, we note that the second part of the lemma holds by lines 15–16. Let zil and zih be the
value of zl and zh in Algorithm 2 on line 9 on window i. Consider a window i+1. There are two cases,
depending on whether an element e? was added to the solutions or not. Suppose no element e? was
added to the solution. Then all the levels remain the same. Line 15 guarantees that f(Li`) ≤ f(Li`+1).
Since no elements were added, f(Li`+1) = f(Li+1

`+1) so f(Li`) ≤ f(Li+1
`+1) for every level `. Now

suppose an element e? was added in window i+ 1. For levels ` > zi+1
h and ` < zi+1

l , Li+1
`+1 = Li`+1,

so f(Li+1
`+1) = f(Li`+1) ≥ f(Li`). For levels ` ∈ [zi+1

l , zi+1
h ], Li+1

`+1 = Li`∪{e?} at the end of line 13,
and its value only improves through lines 15–16. Thus f(Li+1

`+1) ≥ f(Li` ∪ {e?}) ≥ f(Li`).

The rest of the proofs below correspond directly to unproven lemmas in Section 2.

Lemma 2.1. Suppose E is streamed according to a permutation chosen at random and we partition
E by Algorithm 1 into m windows. This is equivalent to assigning each e ∈ E to one of m different
buckets uniformly and independently at random.

Proof. The way we define the window sizes is equivalent to placing each element independently
into a random bucket, and letting ni be the number of elements in bucket i. Hence the distribution
of window sizes is correct. Conditioned on the window sizes, the assignment of elements into
windows is determined by a random permutation; any partition is equally likely. Therefore the
distribution of elements into windows is equivalent to placing each each element into a random
window independently.

Definition A.1. Let P : E → [αk] be the mapping of E to their window indices; i.e. if e is in the
j-th window, then P (e) = j. A partition P is Hi-compatible if the algorithm produces history Hi
when streaming the first i windows partitioned by P .

Lemma 2.2. Fix a history Hi−1. For any element e ∈ E \ Hi−1, and any i ≤ i′ ≤ m = αk, we
have Pr (e ∈ w′i | Hi−1) ≥ 1/(αk).

Proof. Let e be any element of E \ Hi−1 and choose any j, j′ ∈ [m]. For each Hi−1-compatible
partition P with P (e) = j′, we begin by showing that we can create another Hi−1-compatible
partition P̃ by setting P̃ (e) = j and all other values of P̃ equal to P . In other words, any Hi−1-
compatible partition where e is in window j can be mapped to another where e is in window j′.

Observe that because e /∈ Hi−1, e must not have been chosen in windows j or j′ by the algorithm so
far. There are two possible reasons for this: first, windows j or j′ could be greater than (further in
the future) or equal to window i, in which case window j, j′ trivially does not affectHi−1. Second,
consider the case when windows j or j′ is less than i. If this is the case, then element e already
arrived in the stream but was not selected by the algorithm in any solution. Hence e was either never
the maximum element found in line 10, or if it was, its marginal value was not sufficient to replace the
current solution. In either case, removing or adding e to windows j and j′ will not change the history
Hi−1: if a different element e′ was chosen for the update in window j′, this will still be the case; and
if no update occurred, this will also still be the case. Finally, observe that the pool of elements H for
re-insertion will also not be affected, since element e was not part of it.

Thus, we may change P (e) from j′ to j and maintain aHi−1-compatible partition. Since P̃ is equal
to P everywhere except on e, this maps each such partition P to a unique partition P̃ (and vice versa),
establishing a bijectiion betweenHi−1-compatible partitions with e ∈ wj and e ∈ wj′ . Consequently,
the number of partitions with P (e) = j compatible withHi−1 is equal to the number of partitions
with P (e) = j′.

13



Let Je be the set of indices j where there exists Hi−1-compatible partitions with e ∈ wj . The
argument above applies to any windows j ∈ Je. In particular, Je contains all windows greater than or
equal to i, since these windows clearly do not affectHi−1. For any element e /∈ Hi−1, and j, j′ ∈ Je,
we have

Pr (e ∈ wj | Hi−1) =
#partitions P with P (e) = j and P isHi−1-compatible

#partitions P where P isHi−1-compatible

=
#partitions P with P (e) = j′ and P isHi−1-compatible

#partitions P where P isHi−1-compatible
= Pr (e ∈ wj′ | Hi−1) .

The first and last lines follow from Lemma 2.1, since any partition happens with uniform probability.

Any element e /∈ Hi−1 must appear in some window, and it is equally likely to be in any of the
windows where it could be present without affecting the historyHi−1. So we have

1 =

αk∑
s=1

Pr (e ∈ ws | Hi−1) = |Je| · Pr (e ∈ wi | Hi−1)

The lemma follows from noting that |Je| ≤ αk.

Proof. By the definition of an active set, Pr (1o∈Ai | Hi−1) = 1/(αk) for any Hi−1 and o ∈
O \ Hi−1. For o ∈ Hi−1 ∩ O, these elements are reintroduced by the algorithm with probability
1/(αk). Hence, Pr (1o∈Ai) = 1/(αk) for any o ∈ O, without conditioning onHi−1. Since the input
permutation is uniformly random, 1oa∈Ai and 1ob∈Ai are independent for a 6= b in any window i.
Letting 1i = ∪o∈O1oa∈Ai , we have

Pr (1i) = 1−
(

1− 1

αk

)k
= 1/α− 1/(2α2) +O(1/α3)

for large enough α and k. Thus,

E

αβ∑
i=1

1i = αβ ·E11 = (1− 1/(2α) +O(1/α2))β.

Next, note that 1i and 1j are negatively dependent: conditioning on a window being active decreases
the number of optimal elements available to the other windows (and conditioning on a window not
being active increases the number available to other windows). Thus we have:

Var
(∑

1i

)
≤ αβ(E11 −E11

2)

= (1− 3/(2α) +O(1/α2))β.

Now can apply the lower-tail bound Hoeffding’s inequality ([Doe20], Theorem 1.10.12) to get

Pr

(
αβ∑
i=1

1i ≤ −c
√
β log

1

δ
+ E

αβ∑
i=1

1i

)
≤ exp

(
−
c2 log 1

δ

3

)
≤ δ/2

for a large enough constant c.

Similarly, we may apply the upper-tail bound of Hoeffding’s inequality [Doe20] (Corollary 1.10.13),
to obtain:

Pr

(
αβ∑
i=1

1i ≤ c
√
β log

1

δ
+ E

αβ∑
i=1

1i

)
≤ δ/2.

for a large enough constant c.

Since E
∑αβ
i=1 1i = β −Θ(β/α), the number of active windows in the first αβ windows is at least

β −O
(√

β log 1
δ

)
−Θ(β/α) and at most β +O

(√
β log 1

δ

)
−Θ(β/α) with probability at least

1− δ.

14



Lemma 2.3. Suppose we have streamed up to the αβ-th window of the input for some β > 0. Then
expected number of active windows seen so far satisfies

Z̄αβ := expected number of active windows = β −Θ(β/α).

Furthermore, the actual number of windows concentrates around Z̄αβ to within ±O
(√

β log 1
δ

)
with probability 1− δ.
Lemma 2.4. Let L̄i = {zil , zil + 1, . . . , zih} where zil and zih are the values of zl and zh defined in
Algorithm 2 on window i. Conditioned on a historyHi and window i+ 1 being active,∑

`∈L̄i+1

E[f(Li+1
`+1)− f(Li`) | Hi,Ai+1] ≥ 1

k

∑
`∈L̄i+1

(f(O)−E[f(Li`) | Hi]). (3)

Proof. As in the previous lemma, we first note that by the construction of the active set Ai+1, any
e ∈ E appears in Ai+1 with probability exactly 1/(αk), so p := Pr (oj ∈ Ai+1|Hi) = 1/(αk) for
any oj ∈ O. Also, the appearances of different elements are mutually independent. In particular, we
have Pr (Ai+1 | Hi) = Pr (∃o ∈ O ∩Ai+1 | Hi) = 1− (1− p)k.

Order the oj’s so that
∑
`∈L̄i+1

f(oj |Li`) ≥
∑
`∈L̄i+1

f(oj′ |Li`) for j ≤ j′. Given that o ∈ Ai+1 for
some random o ∈ O, we have∑
`∈L̄i+1

E[f(Li+1
`+1)− f(Li`) | Hi,Ai+1] ≥ max

e∈Ai+1

∑
`∈L̄i+1

E
[
f(e|Li`) | Hi,Ai+1

]
≥

k∑
j=1

p(1− p)j−1

1− (1− p)k
∑

`∈L̄i+1

E
[
f(oj |Li`) | Hi,Ai+1

]

≥
∑

`∈L̄i+1

E

1

k

k∑
j=1

f(oj |Li`) | Hi,Ai+1


≥

∑
`∈L̄i+1

E

[
1

k
(f(O ∪ Li`)− f(Li`)) | Hi,Ai+1

]
(Submodularity)

≥
∑

`∈L̄i+1

E

[
1

k
(f(O)− f(Li`)) | Hi,Ai+1

]
(Monotonicity)

≥
∑

`∈L̄i+1

E

[
1

k
(f(O)− f(Li`)) | Hi

]
. (4)

The first line follows from the fact that Ai+1 ⊆ Ci+1, since Ci+1 contains Ri+1 and the entirety of
wi+1. The numerator of p(1−p)

j−1

1−(1−p)k follows from the fact that if oj is the maximum, then no elements
in O valued higher than it can appear in Ai+1. The denominator is the probability that window wi+1

is active. (All events are conditioned onHi.) The third line is subtle and follows from Chebyshev’s
sum inequality. Let αj = p(1−p)j−1

1−(1−p)k and βj =
∑
`∈L̄i+1

E[f(oj |Li`) | Hi,Ai+1]. Since αj and βj
are both decreasing sequences, Chebyshev’s sum inequality gives:

k∑
j=1

αjβj ≥
1

k

k∑
j=1

αj

k∑
j=1

βj =
1

k

k∑
j=1

∑
`∈L̄i+1

E[f(oj |Li`) | Hi,Ai+1].

Finally, note that Hi is independent of Ai+1, as Pr (Ai+1 | Hi) is constructed to be the same
regardless ofHi. Hence the conditioning on Ai+1 can be removed due to the independence and the
fact that Li` only depends onHi and not Ai+1.

Theorem 2.5. The expected value of the best solution found by the algorithm is at least(
1− 1

e
−O

(
1

α
+ α

√
log k

k

))
OPT.

Setting α = Θ(1/ε), we have a (1− 1/e− ε− o(1))-approximation using O(k/ε) memory.

15



Proof. Let Zi =
∑i
j=1 1Aj be a random variable which indicates the number of active windows

up to window i. Recall from Lemma 2.3 that Z̄i := E[Zi] = i/α − Θ(i/α2), and furthermore Zi
concentrates around its expectation: For σ := 20

√
k log k, we have that w.h.p. (1− poly(1/k)),

∀i Zi ∈ [Z̄i ± σ]. (5)

By the definition of O, f(Li`) ≤ f(O) for any ` and i since |Li`| ≤ k. Since (5) fails only with
probability poly(1/k), we can condition on it while only having negligible effect of±poly(1/k)f(O)
on E[f(Li`)] for any i, `. We will henceforth simply assume that it always holds; the (in)equalities
for the rest of the proof of this lemma hold up to this ±poly(1/k)f(O) term.

Our goal is to use Lemma 2.4 to argue about the progress of E[f(Li`)] for ` = Zi. However, we don’t
know how to prove an analogue of Equation (1) that also conditions on ` = Zi. We circumvent this
issue by tracking the average of E[f(Li`)] over ` in an interval Li around Zi.

Let L̄i := [Z̄i ± ασ] and Li := [Zi ± (ασ + σ)]. To keep both nonnegative, we denote i′ :=
i− α(ασ + σ)−Θ(1) and consider the contribution from i s.t. i′ ≥ 0. By Equation (5), the interval
Li has a large overlap with an interval L̄i around Z̄i. Since L̄i does not depend on Zi (or the history
in general), we can safely apply Lemma 2.4 for all ` ∈ L̄i.
We will argue that on average over ` ∈ Li and the randomness of the stream, E[f(Li`)] increases like

1

|Li|
∑
`∈Li

E[f(Li`)] ≥

(
1−

(
1− 1

k
(1− e−1/α)

)i′
−O

(
i

α2k

))
f(O). (6)

In particular, for τ := α(k − ασ − 2σ), we have that
1

|Lτ |
∑
`∈Lτ

E[f(Lτ` )] ≥
(

1− 1/e−O
(

1

α
+
ασ

k

))
f(O).

Assuming Equation (5), the maximum level in Lτ is at most Zτ + ασ + σ ≤ k w.h.p. The values of
the levels are monotonically increasing due to line algorithm 2 and therefore level k satisfies

E [f(Lτk)] ≥
(

1− 1/e−O
(

1

α
+
ασ

k

))
f(O).

We now prove Equation (6). For i s.t. i′ ≥ 0, we have:
1

|Li+1|
∑

`∈Li+1

E[f(Li+1
` ) | Hi,Ai+1] =

1

|Li|
∑
`∈Li

E[f(Li+1
`+1) | Hi,Ai+1] (Def. of Li)

=
1

|Li|
∑

`∈Li\L̄i+1

E[f(Li+1
`+1) | Hi,Ai+1] +

1

|Li|
∑

`′∈L̄i+1

E[f(Li+1
`′+1) | Hi,Ai+1] (Equation (5))

≥ 1

|Li|
∑

`∈Li\L̄i+1

E[f(Li`) | Hi,Ai+1] +
1

|Li|
∑

`′∈L̄i+1

E[f(Li+1
`′+1) | Hi,Ai+1] (Lemma A.1)

≥ 1

|Li|
∑
`∈Li

E[f(Li`) | Hi,Ai+1] +
1

|Li|
∑

`′∈L̄i+1

1

k
E[f(O)− f(Li`′) | Hi] (Lemma 2.4)

=
1

|Li|
∑
`∈Li

E[f(Li`) | Hi] +
1

|Li|
∑

`′∈L̄i+1

1

k
E[f(O)− f(Li`′) | Hi] (Ai+1 indep. Li` ∀`)

≥ 1

|Li|
∑
`∈Li

(
1

k
f(O) +

k − 1

k
E[f(Li`) | Hi]

)
−O

(
σ

k|Li|

)
f(O) (|Li| − |L̄i+1| = 2σ)

=
1

k
f(O) +

k − 1

k

(
1

|Li|
∑
`∈Li

E[f(Li`) | Hi]

)
−O

(
σ

k|Li|

)
f(O).

The most subtle line of the argument is the one invoking the independence of Li` and Ai+1. This
independence is true when conditioned onHi: Ai+1 andHi are independent5 and Li` is determined
byHi.

5Recall that active sets are defined so that Pr (Ai+1|Hi) = 1−
(
1− 1

αk

)k for anyHi.

16



In order to avoid cluttering the notation below, every expectation below is conditioned on Hi. To
address the conditioning on Ai+1, consider

1

|Li+1|
∑

`∈Li+1

E[f(Li+1
` )] =

1− Pr[Ai+1]

|Li+1|
∑

`∈Li+1

E[f(Li+1
` ) | ¬Ai+1] +

Pr[Ai+1]

|Li+1|
∑

`∈Li+1

E[f(Li+1
` ) | Ai+1]

≥
(

1− Pr[Ai+1]

k

)
1

|Li|
∑
`∈Li

E[f(Li`)] +
1

k
Pr[Ai+1]f(O)−O

(
σ

k|Li|

)
Pr[Ai+1]f(O)

≥
(

1− 1

αk

)
1

|Li|
∑
`∈Li

E[f(Li`)] +
1

αk
f(O)−O

(
σ

αk|Li|

)
f(O).

where the last line comes from the inequality 1 − e−1/α ≤ Pr[Ai+1] = 1 − (1 − 1
αk )k ≤ 1

α

and
∑
`∈Li+1

E[f(Li+1
` ) | ¬Ai+1] ≥

∑
`∈Li+1

E[f(Li`) | ¬Ai+1] due to line 11 and the fact
that L̄i+1 ⊆ Li with high probability. Finally, given that |Li| = 2(α + 1)σ, the last error term
is O

(
1
α2k

)
f(O). Now we may remove the implicit conditioning on Hi (as we’ve conditioned

everything on it so far). Equation (6) then follows by induction on i.

Remark A.1. For any setting of ε, the approximation factor is at best 1 − 1
e −

(
log k
k

)1/4

, so we

might as well choose ε ≥
(

log k
k

)1/4

. Agrawal et al. [ASS19] have a similar issue; the formal

guarantee shown by Agrawal et al. is an approximation factor of 1 − 1/e − ε − log(1/ε)/(ε4k).
This implies that in Agrawal et al., the approximation is never better than 1− 1/e− Õ(1/k1/5).

B Missing proofs from Section 4

Proposition 4.1. Fix subsets G,B of elements (denoting “good” and “bad”) such that |G| = k and
|B| = n− k; let r ∈ [0, k] be some parameter. Let m denote the size of the memory buffer, and let
p denote the probability that a random subset of size m contains at least r − 1 good elements. Let
f : G ∪B → R be a function that satisfies the following symmetries:

• f is symmetric over good (resp. bad) elements, namely there exists f̂ such that

f(S) = f̂(|S ∩G|, |S ∩B|).

• For any set S with ≤ r − 1 good elements, f does not distinguish between good and bad
elements, namely for g ≤ r − 1,

f̂(g, b) = f̂(0, b+ g).

Then any algorithm has expected value at most

ALG ≤ (1− pk)f̂(0, k) + pk ·OPT. (7)

Lemma 4.3 (exponential-universe coverage function (new construction)). There exists a (monotone
submodular) coverage function f over an exponential universe U that satisfies the desiderata of
Proposition 4.1 for r = 3, and such that:

• f̂(0, k) = (1− 1/e+ o(1))|U |.

• OPT = f(G) = |U |.

Proof. The universe of elements to be covered U is the n-dimensional k-side-length hypercube [k]n.
Let Bi denote the set {x ∈ [k]n | xi = 1}, namely, the set of all the vectors of which the i-th
coordinate is 1. Let Gi denote the set {x ∈ [k]n | x1 = i, x2 6= k} ∪ {x ∈ [k]n | x1 = k, x2 = k}.
Our set system consists of k good sets G1, . . . , Gk and n− k bad sets Bk+1, . . . , Bn. We make the
following three observations:

17



• For any b ∈ [n − k] and g ∈ {0, 1, 2}, any distinct i1, . . . , ib ∈ {k + 1, . . . , n} and
j1, j2 ∈ [k], we have that

|(∪bt=1Bit) ∪ (∪gt=1Gjt)| =

(
1−

(
1− 1

k

)b+g)
kn.

• Moreover, it holds that

| ∪kj=1 Gj | =
(

1− 1

k
+

1

k2

)
kn.

• Finally, the output of the coverage function is fully determined by the number of good
sets and the number of bad sets in the input. Hence, there is a succinct encoding of all the
possible values of this coverage function, which uses O(log n) bits.

Theorem 4.4. Any (1− 1/e+ ε)-approximation algorithm in the random order strong oracle model
must use the following memory:

• Ω(n) for a general monotone submodular function.

• Ω(n/k2) for a coverage function over a polynomial universe.

• Ω(n/k3/2) for a coverage function over an exponential universe.

Proof. Each case follows by combining Proposition 4.1 with Lemmata 4.1-4.3 respectively. For each
case, we need to compute a bound on m such that the probability p of observing r− 1 good elements
in a random sample of m is p ≤ ε/k.

Case r = 2εk: For m = εn, the expected number of good elements is km/n = εk. By Chernoff
bound, probability of deviating by ≈ εk is exponentially small.

Case r = 2: Form = εn/k2, the expected number of good elements is km/n = ε/k. By Markov’s
inequality, the probability of having at least r − 1 = 1 good element in memory is p < ε/k.

Case r = 3: Form =
√
εn/k3/2, each good element appears in memory with probability

√
εk−3/2.

The probability that any fixed pair of good elements appear in memory is ≤ εk−3. Taking a union
bound over

(
k
2

)
pairs, we have that p < ε/k.

C A (1/e− ε)-approximation for non-monotone submodular maximization

In this section, we show that the basic algorithm described in Algorithm 2 can be altered to give a
1/e-approximation to the cardinality constrained non-monotone case (Algorithm 4).

Algorithm 4 uses the same kind of multi-level scheme as Algorithm 2 but differs in two ways.

First, Algorithm 4 further sub-samples the elements of the input so that the probability of including
any element is exactly 1/(αk) lines 8–13 (coloured in orange). The sub-sampling allows us to bound
the maximum probability that an element of the input is included in the solution. In particular,
the sub-sampling is done by having the algorithm compute (on the fly) the conditional probability
that an element e could have been selected had it appeared in the past. This gives us the ability to
compute an appropriate sub-sampling probability to ensure that e does not appear in H with too high
a probability. In terms of the proof, the sub-sampling allows us to perform a similar analysis to the
RANDOMGREEDY algorithm of Buchbinder et al. [BFNS14].6

Second, the addition of elements to levels in [zl, zh] may cause a decrease in the function value,
meaning that we no longer maintain the nesting property in Lemma A.1 (for similar reasons, line 22
also differs from the monotone case by simply copying level ` into ` + 1). Fortunately, we only
require the nesting property to hold on levels outside of [zl, zh]. We show that this remains true for
Algorithm 4.

6A difference here is that instead of analysing a random element of the top-k marginals, we analyse the
optimal set directly.

18



Algorithm 4 NONMONOTONESTREAM(f,E, k, α)

1: Partition E into windows wi for i = 1, . . . , αk with Algorithm 1.
2: L0

` ← ∅ for i = 0, . . . , k
3: H ← ∅
4: xie ← Unif(0, 1) for e ∈ E, i ∈ [αk]
5: for i = 1, . . . , αk do
6: Ci ← ∅
7: zil , z

i
h ← max{0, bi/αc − 20α

√
k log k},min{k, di/αe+ 20α

√
k log k}

8: for e ∈ window wi do
9: for j = 1, . . . , i do

10: Reconstruct Lj−1
` for all ` fromHi−1

11: Aje = {r | 1 ≤ r < j,
∑zrh
`=zrl

f(e|Lr−1
` ) < fr or xre > qre} (see line 16 for fr)

12: qje =
αk−j+|Aje|+1

αk

13: if xie ≤ qie then Ci ← Ci ∪ {e}
14: Sample each e ∈ H with probability 1

αk and add to Ci
15: e? ← argmaxe∈Ci

∑zih
`=zil

f(e|Li−1
` )

16: fi ←
∑zih
`=zil

f(e?|Li−1
` )

17: if
∑zh
`=zl

f(Li−1
` ∪ {e?}) >

∑zh
`=zl

f(Li−1
`+1) then

18: H = H ∪ {e?}
19: Li`+1 ← Li−1

` ∪ {e?} for all ` ∈ [zl, zh]
20: for ` = 1, 2 . . . , k do
21: if f(Li`) ≥ f(Li`+1) then
22: Li`+1 ← Li`
23: return arg max` f(Lαk` )

Lemma C.1. Let zil and zih be the value of zl and zh in Algorithm 4 on window i. For all i and
` /∈ [zi+1

l , zi+1
h ], f(Li`) ≤ f(Li+1

`+1).

Proof. Consider a window i+1. Regardless of whether an element e? was added to the solution or not,
levels ` > zi+1

h and ` < zi+1
l are not changed. Thus Li+1

`+1 = Li`+1, so f(Li+1
`+1) = f(Li`+1) ≥ f(Li`)

by line 21. Thus f(Li+1
`+1) ≥ f(Li`) for ` /∈ [zi+1

l , zi+1
h ].

Implementation of Algorithm 4 For clarity of exposition, we compute xie up front in line 4.
However, we can compute them on the fly in practice since each element only uses its value of
xie once (lines 11 and 13). This avoids an O(nαk) memory cost associated with storing each xie.
Finally, we assume that there are no ties when computing the best candidiate element in each window
(line 15). Ties can be handled by any arbitrary but consistent tie-breaking procedure. Any additional
information used to break the ties (for example an ordering on the elements e) must be stored
alongside fi for the computation of Aje (line 11).

Next, we show that the probability an element e is in a candidate set Ci is exactly 1/(αk) for
any e ∈ E. The proof is conceptually very similar to Lemma C.2, in which we showed that
pie := Pr (e ∈ wi | Hi−1) ≥ 1/(αk). However, we make the additional observation that the proof of
Lemma C.2 also offers a way for the algorithm to compute Pr (e ∈ wi | Hi−1) exactly. By computing
this probability and sub-sampling e with probability 1/(αkpie), we ensure that e is included in Ci
(line 13) with probability exactly 1/(αk).
Lemma C.2. Fix a historyHi−1. For any element e ∈ E, we have Pr (e ∈ Ci | Hi−1) = 1/(αk).

Proof. When e ∈ Hi−1, e is added to Ci with probability 1/(αk) exactly. Thus we assume
e ∈ E \ Hi−1.

Let T = Aie∪{i, i+1, . . . , αk} (where Aie is defined on line 11). Fix anyHi−1-compatible partition
P and j ∈ T . As in Lemma C.2, we begin by showing that we can create anotherHi−1-compatible

19



partition P̃ by setting P̃ (e) = j and all other values of P̃ equal to P . Since P̃ is equal to P
everywhere except on e, this maps each such partition P to a unique partition P̃ . Consequently, the
map from P to P̃ is a bijection, and so the number ofHi−1-compatible partitions with P (e) = j is
equal for any j ∈ T .

Observe that because e /∈ Hi−1, e can be removed from window P (e) without changingHi−1. We
now separate the argument into two cases, for j ≥ i and j ∈ Aie. If j ≥ i, the mapping of P to P̃
does not changeHi−1, since window j is not included in the computations determiningHi−1. Thus

P̃ is trivially Hi−1-compatible. If j ∈ Aie, this means that either
∑zjh
`=zjl

f(e|Lj−1
` ) was too small,

or it was probabilistically ignored because xje was too big. Either way, this means that e /∈ Cj and
hence e /∈ Lj` for any `. Consequently, adding e to window j does not changeHi−1. As a result, P̃ is
Hi−1-compatible for any j ∈ T .

For any windows j, j′ ∈ T , we then have

Pr (e ∈ wj |Hi−1, e /∈ Hi−1) =
#partitions P with P (e) = j and P isHi−1-compatible

#partitions P isHi−1-compatible

=
#partitions P with P (e) = j′ and P isHi−1-compatible

#partitions P isHi−1-compatible
= Pr (e ∈ wj′ |Hi−1, e /∈ Hi−1) .

We now have the ingredients to compute Pr (e ∈ Cj |Hi−1) = 1/(αk). Any element e /∈ Hi−1 must
appear in some window, so we have

1 =

αk∑
s=1

Pr (e ∈ ws|Hi−1, e /∈ Hi−1)

=
∑
s∈T

Pr (e ∈ ws|Hi−1, e /∈ Hi−1)

= |T |Pr (e ∈ wi|Hi−1, e /∈ Hi−1)

Since Pr (e ∈ Ci|Hi−1) = Pr (e ∈ wi|Hi−1, e /∈ Hi−1) qie, we have Pr (e ∈ Ci|Hi−1) = 1
|T | ·

|T |/(αk) = 1/(αk).

We are now ready to show the approximation guarantees of Algorithm 4. To do this, we borrow the
following lemma from Buchbinder et al. [BFNS14]:

Lemma C.3 (Lemma 2.2 [BFNS14]). Let f : 2E → R+ be a submodular function. Further, let
R be a random subset of T ⊆ E in which every element occurs with probability at most p (not
necessarily independently). Then, Ef(R) ≥ (1− p)f(∅).

First, we note that the analysis of Lemma 2.4 up to the application of submodularity in Equation (4)
still applies, leading to the following observation:

Observation C.1. Let L̄i = {zl, zl + 1, . . . , zh} where zl and zh are defined in Algorithm 2.
Conditioned on a historyHi and window i+ 1 being active (the event Ai+1),∑

`∈L̄i+1

E[f(Li+1
`+1)− f(Li`) | Hi,Ai+1] ≥ 1

k

∑
`∈L̄i+1

E[f(O ∪ Li`)− f(Li`) | Hi].

Now we relate the value of f(O ∪ Li`) to f(O). As in Buchbinder et al. [BFNS14], this will involve
showing that no element of the ground set is included into any of the levels Li` with too high of a
probability.

Lemma C.4. For every i and every `, the E[f(O ∪ Li`)] ≥ (1− 1/(αk))if(O) for all ` ≤ k.

Proof. To be inserted into a partial solution Li`, an element e must appear as part of the candidate set
Ci in Algorithm 4 or have appeared inHi−1. As shown in Lemma C.2, when conditioned on e not

20



appearing inHi−1, e appears in Ci with probability exactly 1/(αk). Thus Pr (e ∈ Hi | e /∈ Hi−1) ≤
1/(αk). By induction, we have

Pr (e /∈ Hi) = Pr (e /∈ Hi | e /∈ Hi−1) Pr (e /∈ Hi−1)

≥
(

1− 1

αk

)
Pr (e /∈ Hi−1)

≥
(

1− 1

αk

)i

where we assume by induction that Pr (e /∈ Hi−1) ≥
(
1− 1

αk

)i−1
. After i windows, any particular

element of the input is inHi (and Li` for any `) with probability at most 1− (1− 1/(αk))i.

Define the submodular function g(S) = f(S ∪O). By Lemma C.3 and the reasoning above,

E[g(Li`)] ≥ (1− 1/(αk))if(O).

Theorem 3.1. Algorithm 4 obtains a (1/e − ε)-approximation for maximizing a non-monotone
function f with respect to a cardinality constraint.

Proof. Let Zi =
∑i
j=1 1Ai be a random variable measuring the number of active windows up to

window i. We follow an analysis similar to Theorem 2.5. For σ := 20
√
k log k, Lemma 2.3 shows

that w.h.p. (1− poly(1/k)),

∀i Zi ∈ [Z̄i ± σ]. (8)

By the definition of O, f(Li`) ≤ f(O) for any ` and i since |Li`| ≤ k. Again, since (8) fails only with
probability poly(1/k), we can condition on it while only having negligible effect of±poly(1/k)f(O)
on E[f(Li`)] (for any i, `). For the rest of the proof, the inequalities will hold up to a±poly(1/k)f(O)
term (which has no effect on the final asymptotic error guarantee).

Let L̄i := [Z̄i ± ασ] and Li := [Zi ± (ασ + σ)]. To keep both non-negative, we denote i′ :=
i− α(ασ + σ)−Θ(1) and consider the contribution from i s.t. i′ ≥ 0.

In the non-monotone case, our goal will be to argue that:

1

|Li|
∑
`∈Li

E[f(Li`) | Ai+1] ≥ i+ 1

αk

(
1− 1

αk

)i
f(O)−O

(
i+ 1

α2k

)
f(O). (9)

In particular, for τ := α(k − ασ − 2σ), we have that

1

|Li|
∑
`∈Lτ

E[f(Lτ` )] ≥
(

1/e−O
(

1

α
+
ασ

k

))
f(O).

Since the solutions Li` increase in value as ` increases, we also have Lτk ≥(
1/e−O

(
1
α + ασ

k

))
f(O).

We now prove Equation (9). To avoid cluttering the notation, every expectation in the equation
below is conditioned onHi−1. The reasoning below follows along the same lines as the monotone
case. Roughly speaking, Li and L̄i largely overlap, so their averages are close up to 1/poly(k)
factors. However, since L̄i is deterministically defined, this allows us to apply Observation C.1. For i

21



s.t. i′ ≥ 0, we have:
1

|Li+1|
∑

`∈Li+1

E[f(Li+1
` ) | Ai+1] =

1

|Li|
∑
`∈Li

E[f(Li+1
`+1) | Ai+1] (Def. of Li)

=
1

|Li|

 ∑
`∈Li\L̄i+1

E[f(Li+1
`+1) | Ai+1] +

∑
`′∈L̄i+1

E[f(Li+1
`′+1) | Ai+1]

 (Eq. (8))

=
1

|Li|

 ∑
`∈Li\L̄i+1

E[f(Li`) | Ai+1] +
∑

`′∈L̄i+1

E[f(Li+1
`′+1) | Ai+1]

 (Lemma C.1)

≥ 1

|Li|

∑
`∈Li

E[f(Li`) | Ai+1] +
∑

`′∈L̄i+1

1

k
E[(f(O ∪ Li`′)− f(Li`′)) | Ai+1]

 (Observation C.1)

=
1

|Li|

∑
`∈Li

E[f(Li`)] +
∑

`′∈L̄i+1

1

k
E[(f(O ∪ Li`′)− f(Li`′))]

 (Ai+1 indep. of Li` ∀`)

≥ 1

|Li|

∑
`∈Li

E[f(Li`)] +
∑

`′∈L̄i+1

1

k
E[(1− (αk)−1)if(O)− f(Li`′))]

 (Lemma C.4)

≥ 1

|Li|
∑
`∈Li

(
(1− (αk)−1)i

k
f(O) +

k − 1

k
E[f(Li`)]

)
−O

(
σ

k|Li|

)
f(O) (|Li| − |L̄i+1| = 2σ)

=
(1− (αk)−1)i

k
f(O) +

(
1− 1

k

)
1

|Li|
∑
`∈Li

E[f(Li`)]−O
(

σ

k|Li|

)
f(O).

The main difference between the non-monotone and monotone case is the application of Lemma C.4
(to bound the maximum amount an element may hurt the solution).

To address the conditioning on Ai+1, consider
1

|Li+1|
∑

`∈Li+1

E[f(Li+1
` )] =

1− Pr[Ai+1]

|Li+1|
∑

`∈Li+1

E[f(Li+1
` ) | ¬Ai+1] +

Pr[Ai+1]

|Li+1|
∑

`∈Li+1

E[f(Li+1
` ) | Ai+1]

≥
(

1− Pr[Ai+1]

k

)
1

|Li|
∑
`∈Li

E[f(Li`)] +
(1− (αk)−1)i

k
Pr[Ai+1]f(O)−O

(
σ

k|Li|

)
Pr[Ai+1]f(O)

≥
(

1− 1

αk

)
1

|Li|
∑
`∈Li

E[f(Li`)] +
(1− (αk)−1)i

αk
f(O)−O

(
1

α2k

)
f(O).

The second line requires E[f(Li+1
` ) | ¬Ai+1] ≥ E[f(Li`) | ¬Ai+1]. Fortunately, this is true as

Algorithm 4 only increases the average of values in Li: levels L̄i ⊆ Li are only updated if an
increase is detected on line 17. The last line follows from plugging in |Li| = 2(α + 1)σ and
1− e−1/α ≤ Pr[Ai+1] = 1− (1− 1

αk )k ≤ 1
α . Now we may remove the (implicit) conditioning on

Hi−1, as everything has been conditioned on it so far.

Let f̄i = 1
|Li|

∑
`∈Li E[f(Li`)]. Now we show by induction that f̄i ≥ i

αk

(
1− 1

αk

)i−1
f(O) −

O
(

i
α2k

)
f(O). The base case is clearly true, as the first window has probability 1/(αk) of catching

any optimal element. By our analysis from above:

f̄i+1 ≥
(

1− 1

αk

)
f̄i +

(1− (αk)−1)i

αk
f(O)−O

(
1

α2k

)
f(O)

≥
(

1− 1

αk

)(
i

αk

(
1− 1

αk

)i−1

−O
(

i

α2k

))
f(O) +

(
1− 1

αk

)i
αk

f(O)−O
(

1

α2k

)
f(O)

≥ i+ 1

αk

(
1− 1

αk

)i
f(O)−O

(
i+ 1

α2k

)
f(O).

22



In particular, for τ := α(k − ασ − 2σ), we have that

1

|Li|
∑
`∈Lτ

E[f(Lτ` )] ≥
(

1/e−O
(

1

α
+
ασ

k

))
f(O).

Setting α = Θ(1/ε) where ε = ω
(

log k
k

)1/4

gives the desired result.

We remark that Algorithm 4 also achieves a guarantee of 1 − 1/e − ε for the monotone case, as
Lemma 2.4 and Theorem 2.5 both still apply to Algorithm 4 when f is monotone. The main difference
between the two is the sub-sampling procedure (lines 8–13), which increases the running time of the
algorithm.

D Experiments

All code can be found at https://github.com/where-is-paul/submodular-streaming and
all datasets can be found at https://tinyurl.com/neurips-21.

Experiments for non-monotone submodular streaming

For non-monotone submodular functions, we compare against the offline random greedy algorithm
of Buchbinder et al. [BFNS14].

Datasets Our datasets are drawn from diversity maximization tasks described in [LSK+21]. Here,
given an n × n matrix L, the task is to find a subset S of k indices such that log det(LS) is
maximized.7 Since our non-monotone algorithm is significantly more expensive to run than our
monotone algorithm, we created substreams from these datasets by sampling a consecutive run of
1024 stream elements at random and then permuting them. As in the monotone case, for each data set
we run the standard offline algorithm (random greedy) and compare against our streaming algorithm
with k varying from 1 to 10. Table 3 describes the data sources. Figure 2 shows the performance of
the three algorithms on each data set.

dataset source
gowalla gowalla geolocation data
yahoo! yahoo front page visit data
bing anonymized search data from the bing search engine

Table 3: Description of data sources for non-monotone experiments.

Figure 2: Performance of standard greedy, random greedy, and our algorithm on each data set
(averaged across 10 runs, shaded regions represent variance across different random orderings).

7LS is the k × k submatrix formed by taking entries from L with rows and columns in S.

23

https://github.com/where-is-paul/submodular-streaming
https://tinyurl.com/neurips-21

