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ABSTRACT

In this paper, we explore connections between interpretable machine learning and
learning theory through the lens of local approximation explanations. First, we
tackle the traditional problem of performance generalization and bound the test-
time accuracy of a model using a notion of how locally explainable it is. Second,
we explore the novel problem of explanation generalization which is an important
concern for a growing class of finite sample-based local approximation explana-
tions. Finally, we validate our theoretical results empirically and show that they
reflect what can be seen in practice.

1 INTRODUCTION

There has been a growing interest in interpretable machine learning, which seeks to help people un-
derstand their models. While interpretable machine learning encompasses a wide range of problems,
it is a fairly uncontroversial hypothesis that there exists a trade-off between a model’s complexity and
general notions of interpretability. This hypothesis suggests a seemingly natural connection to the
field of learning theory, which has thoroughly explored relationships between a function class’s
complexity and generalization. However, formal connections between interpretability and learning
theory remain relatively unstudied.

Though there are several notions of conveying interpretability, one common and flexible approach is
to use local approximations. Formally, local approximation explanations (which we will refer to as
“local explanations”) provide insight into a model’s behavior as follows: for any black-box model
f ∈ F and input x, the explanation system produces a simple function, gx(x′) ∈ Glocal, which
approximates f in a specified neighborhood, x′ ∼ Nx. Crucially, the freedom to specify both Glocal
andNx grants local explanations great versatility. In this paper, we provide two connections between
learning theory and how well f can be approximated locally (i.e. the fidelity of local explanations).

Our first result studies the standard problem of performance generalization by relating test-time
performance to a notion of local interpretability. As it turns out, our focus on local explanations
leads us to unique tools and insights from a learning theory point of view. Our second result identifies
and addresses an unstudied – yet important – question regarding explanation generalization. This
question pertains to a growing class of explanation systems, such as MAPLE (Plumb et al., 2018)
and RL-LIM (Yoon et al., 2019), which we call finite sample-based local explanations1. These
methods learn their local approximations using a common finite sample drawn from D (in contrast
to local approximation methods such as LIME (Ribeiro et al., 2016)) and, as a result, run the risk
of overfitting to this finite sample. In light of this, we answer the following question: for these
explanation-learning systems, how well do they generalize to data not seen during training?

We address these questions with two bounds, which we outline now. Regarding performance gener-
alization, we derive our first main result, Theorem 1, which bounds the expected test mean squared
error (MSE) of any f in terms of its MSE over the m samples in the training set, S = {(xi, yi)}mi=1:

E(x,y)∼D[(f(x)− y)2]︸ ︷︷ ︸
Test MSE

≤ Õ
( 1

m

m∑
i=1

(f(xi)− yi)2︸ ︷︷ ︸
Train MSE

+E x∼D,
x′∼Nx

[
(gx′(x)− f(x))2

]
︸ ︷︷ ︸

Interpretability Term (MNF)

+ ρSR̂S(Glocal)︸ ︷︷ ︸
Complexity Term

)

1This terminology is not to be confused with example-based explanations where the explanation itself is in
the form of data instances rather than a function.
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Regarding explanation generalization for finite sample-based explanation-learning systems, we ap-
ply a similar proof technique to obtain Theorem 2, which bounds the quality of the system’s expla-
nations on unseen data in terms of their quality on the data on which the system was trained:

E x∼D,
x′∼Nx

[
(gx′(x)− f(x))2

]
︸ ︷︷ ︸

Test MNF

≤ 1

m

m∑
i=1

Ex′∼Nxi

[
(f(xi)− gx′(xi))2

]
︸ ︷︷ ︸

Train MNF

+ Õ
(
ρSR̂S(Glocal)

)
︸ ︷︷ ︸

Complexity Term

Before summarizing our contributions, we discuss the key new terms and their relationship.

• Interpretability terms: The terms involving MNF correspond to Mirrored Neighborhood Fi-
delity, a metric we use to measure local explanation quality. As we discuss in Section 3, this is
a reasonable modification of the commonly used Neighborhood Fidelity (NF) metric (Ribeiro
et al., 2016; Plumb et al., 2018). Intuitively, we generally expect MNF to be larger when the
neighborhood sizes are larger since the gx′ are required to extrapolate farther.

• Complexity term: This term measures the complexity of the local explanation system g in terms
of (a) the complexity of the local explanation class Glocal and (b) ρS , a quantity that we define
and refer to as neighborhood disjointedness factor. As we discuss in Section 4, ρS is a value in
[1,
√
m] (where m = |S|) that is proportional to the level of disjointedness of the neighborhoods

for points in the sample S. Intuitively, we expect ρS to be larger when the neighborhoods sizes
are smaller since smaller neighborhoods will overlap less.

Notably, both our bounds capture the following key trade-off: as neighborhood widths increase,
MNF increases but ρS decreases. As such, our bounds are non-trivial only if Nx can be chosen such
that MNF remains small but ρS grows slower than Õ(

√
m) (since R̂S(Glocal) decays as Õ(1/

√
m)).

We summarize our main contributions as follows:

(1) We make a novel connection between performance generalization and local explainability, ar-
riving at Theorem 1. Given the relationship between MNF and ρS , this bound roughly captures
that an easier-to-interpret f enjoys better generalization guarantees, a potentially valuable result
when reasoning about F is difficult (e.g. for neural networks). Further, our proof technique
may be of independent theoretical interest as it provides a new way to bound the Rademacher
complexity of a randomized function (see Section 4).

(2) We motivate and explore an important generalization question about expected explanation qual-
ity. Specifically, we arrive at Theorem 2, a bound for test MNF in terms of training MNF. This
bound suggests that practitioners can better guarantee good local explanation quality (measured
by MNF) using methods which encourage the neighborhood widths to be wider (see Section 5).

(3) We verify empirically on UCI Regression datasets that our results non-trivially reflect the two
types of generalization in practice. First, we demonstrate that ρ can indeed exhibit slower than
Õ(
√
m) growth without significantly increasing the MNF terms. Also, for Theorem 2, we show

that the generalization gap indeed improves with larger neighborhoods (see Section 6).

(4) Primarily to aid in our theoretical results, we propose MNF as a novel yet reasonable measure
of local explainability. Additionally, we argue that this metric presents a promising avenue for
future study, as it may naturally complement NF and offer a unique advantage when evaluating
local explanations on “realistic” on-distribution data (see Section 3).

2 RELATED WORK

Interpretability meets learning theory: Semenova et al. (2019) study the performance general-
ization of models learned from complex classes when they can be globally well-approximated by
simpler (e.g. interpretable) classes. In such cases, their theory argues that if the complex class has
many models that perform about as optimally on training data, generalization from the complex class
can be more closely bounded in terms of the simpler class’s complexity. In our corresponding re-
sults, we similarly aim to avoid involving the larger class’s complexity. However, we directly study
generalization via a function’s local explainability, rather than instantiate abstract ”complex” and
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“simple” classes for global approximations. The two are fundamentally different technical prob-
lems; standard learning theory results cannot be directly applied as they are for single-function
global approximations.

Statistical localized regression: (Fan, 1993; Fan & Gijbels, 1996) are canonical results which
bound the squared error of a nonparametric function defined using locally fit models. These local
models are both simple (e.g. linear) and similarly trained by weighting real examples with a kernel
(i.e. neighborhood). However, in these works, each local model is only used to make a prediction
at its source point and the theory requires shrinking the kernel width towards 0 as the sample size
grows. We instead fit local models as explanations for a trained model (i.e. which is considered the
“true regression function”) and more importantly, care about the performance of each local model
over whole (non-zero) neighborhoods. Unlike localized regression, this allows us to use uniform
convergence to bound test error with empirical and generalization terms. While the previous results
do not have empirical terms, the learning rates are exponential in the number of samples.

Learning Theory: One line of related work also studies how to explain generalization of over-
parameterized classes. As standard uniform convergence on these classes often leads to vacuous
bounds, a general approach that has followed from (Nagarajan & Kolter, 2019; Zhang et al., 2017;
Neyshabur et al., 2014) has been to study implications of different biases placed on the learned
models. We study what would happen if an overparameterized model had an unexplored type of
bias, one that is inspired by local explainability. Additionally, our work’s technical approach also
parallels another line of existing results which likewise try to apply uniform convergence on a sep-
arate surrogate class. This includes PAC-Bayesian bounds, a large family of techniques that come
from looking at a stochastic version of in parameter space (McAllester, 1998; 2003; Langford &
Caruana, 2002; Langford & Shawe-Taylor, 2003). In a different vein, some results in deep learn-
ing look at compressed/sparsified/explicitly regularized surrogates of neural networks (Arora et al.,
2018; Dziugaite & Roy, 2017). In our case, the surrogate class is a collection of local explanations.

3 MIRRORED NEIGHBORHOOD FIDELITY

In order to connect local explanations to generalization, recall that we study a measure of local
interpretability which we call “mirrored neighborhood fidelity” (MNF). As we explain below, this
quantity comes from a slight modification to an existing measure of interpretability, namely, that of
neighborhood fidelity (NF).

To define our terms, we use the following notations. Let X be an input space and let D be a
distribution over X ×Y where Y ⊆ R. Let F be a class of functions f : X → Y . For our theoretical
results, we specifically assume that Y is bounded as Y = [−B,B] for someB > 0 (though this does
not matter until following sections). In order to provide local explanations, we need to fix a local
neighborhood around each x ∈ X . To this end, for any x, let Nx correspond to some distribution
denoting a local neighborhood at x e.g., typically this is chosen to be a distribution centered at x.
For any distribution N , we use pN (x) to denote its density at x. Now, let G be a class of explainers
g : X × X → Y such that for each x ∈ X , the local explanation g(x, ·) : X → Y belongs to a class
of (simple) functions (e.g. linear), Glocal. In short, we denote g(x, ·) as gx(·) and we’ll use g(x, ·) to
locally approximate f in the neighborhood defined by Nx.

The accuracy of this local approximation is usually quantified by a term called “neighbhorhood
fidelity” which is defined as follows (Ribeiro et al., 2016; 2018; Plumb et al., 2018; 2020)

NF(f, g) := Ex∼D
[
Ex′∼Nx

[
(f(x′)− gx(x′))2

]]
.

To verbally interpet this, let us call x as the “source” point which gives rise to a local explanation
gx(·) and x′ the “target” point that we try to fit using g. To compute NF(f, g), we need to do the
following: for each source point x, we first compute the average error in the fit of gx(·) over target
points x′ in the local neighborhood of the source point x (i.e., Nx); then, we globally average this
error across draws of the source point x ∼ D.

Now, to define MNF, we take the same expression as NF but swap x and x′ within the innermost
expectation (without modifying the expectations). In other words, we now sample a target point x
from D, and sample a source point x′ from a distribution over points near x. Since this distribution
is over source points rather than target points, just for the sake of distinguishing, we’ll call this a
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mirrored neighborhood distribution and denote it as Nmir
x . Formally we define this measure of local

interpretability below, following which we explain how to understand it:
Definition 3.1. (Mirrored Neighborhood Fidelity) We define MNF : F × G → R as

MNF(f, g) := Ex∼D
[
Ex′∼Nmir

x

[
(f(x)− gx′(x))2

]]
.

and with an abuse of notation, we let MNF(f, g, x) := Ex′∼Nmir
x

[
(f(x)− gx′(x))2

]
.

Understanding MNF. It is helpful to parse the expression for MNF in two different ways. First, we
can think of it as measuring the error in approximating every target point x ∈ X through a random-
ized locally-approximating function gx′(·) where x′ is randomly drawn from the local neighborhood
Nmir
x . A second way to parse this is in a manner similar to how we parsed NF. To do this, first we

note that the expectations in MNF can be swapped around and rewritten equivalently as follows:

MNF(f, g) = Ex′∼D†
[
Ex∼N†

x′

[
(f(x)− gx′(x))2

]]
,

where D† and N†x′ are suitably defined distributions (defined in Appendix A) that can be thought of
as modified counterparts of D and Nmir

x′ respectively. With this rewritten expression, one can read
MNF like NF: for each source point (here that is x′), we compute the average error in the fit of the
corresponding local function (gx′(·)) over target points (x) in the local neighborhood of the source
point (N†x′ ); this error is then globally averaged over different values of the source point (x′ ∼ D†).
While both NF and MNF are closely related measures of local interpretability for f , studying MNF
allows us to make connections between local interpretability and different notions of generalization
(Sections 4 and 5). At a high-level, our results don’t apply to NF because in NF, the overall distri-
bution of the points that are “fit” to calculate NF (i.e., the target points) is not the same asD (instead
being D convolved with Nx). However, we want this target distribution to be the same as D (which
is the case in MNF) for us to be able to neatly bound the test error term via the local interpretability
term. Otherwise, we would have to end up introducing many cumbersome terms.

Furthermore, MNF may also be of interest to the interpretability community, as it potentially offers
a unique advantage over NF when the intended usage of local explanations is centered around un-
derstanding how the model works on the specific learning task it was trained on. Specifically, we
present as an exploratory argument that selecting the target point distribution to be D rather than D
perturbed by Nx (as for NF) may better emphasize the ability for explanations to accurately convey
how well g will predict at realistic points. This is relevant for ML (and deep learning particularly)
because (a) high-dimensional datasets often exhibit significant feature dependencies and adherence
to lower dimensional manifolds; (b) f can often be highly unpredictable and unstable when extrap-
olating beyond the training data. Thus, when one measures NF with standard neighborhood choices
that ignore feature dependencies (i.e. most commonly Nx = N (x, σI)), the resulting target distri-
bution may concentrate significantly on regions that are non-relevant to the actual task at hand. As
can be shown in a toy example, this can lead to overemphasis on fitting noisy off-manifold behavior,
deteriorating the fit of explanations relative to task-relevant input regions (we defer a more detailed
presentation of this point, as well as other trade-offs between NF and MNF to Appendix A).

4 GENERALIZATION OF MODEL PERFORMANCE VIA MNF

The generalization error of the function f is typically bounded by some notion of the representational
capacity/complexity of F . While standard results bound complexity in terms of parameter count,
there is theoretical value in deriving bounds involving other novel terms. By doing so, we can
understand how regularizing for those terms can affect the representation capacity, and in turn, the
generalization error of f . Especially when f ’s complexity may be intractable to bound on its own,
introducing these terms provides a potentially useful new way to understand f ’s generalization.

Here specifically, we are interested in establishing a general connection between the representation
complexity and the local explainability of any f . This naturally requires coming up with a notion
that appropriately quantifies the complexity of G, which we discuss in the first part of this section. As
we shall see, G’s complexity can be expressed in terms of Glocal, which is generally less complex and
more amenable to standard analysis than F in practical settings where interpretability is desired. In
the second part, we then relate this quantity to the generalization of f to derive our first main result.
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Key technical challenge: bounding the complexity of G. The overall idea behind how one could
tie the notions of generalization and local interpretability is fairly intuitive. For example, consider
a simplified setting where we approximate f by dividing X into K disjoint pieces/neighborhoods,
and then approximating each neighborhood via a simple (say, linear) model. Then, one could bound
the generalization error of f as the sum of two quantities: first, the error in approximating f via
the piecewise linear model, and second, a term involving the complexity of the piecewise linear
model. It is straightforward to show that this complexity grows polynomially with the piece-count,
K, and also the complexity of the simple local approximator (see Appendix C.0.1). Similarly, one
could hope to bound the generalization error of f in terms of MNF(f, g) and the complexity of G.
However, the key challenge here is that the class G is a much more complex class than the above
class of piecewise linear models. For example, a straightforward piece-count-based complexity
bound would be infinitely large since there are effectively infinitely many unique pieces in g.

Our core technical contribution here is to bound the (Rademacher) complexity of G in this more
complex local-interpretability setting. At a high level, the resulting bound (which will be stated
shortly) grows with “the level of overlap” between the neighborhoods {Nmir

x |x ∈ X}, quantified as:
Definition 4.1. Given a dataset S ∈ (X × Y)m, we define the disjointedness factor ρS as

ρS :=

∫
x′∈X

√√√√ 1

m

m∑
i=1

(pNmir
xi
(x′))2dx′

Understanding the disjointedness factor. ρS can be interpreted as bounding the “effective num-
ber” of pieces induced by the set of neighborhood distributions {Nmir

x |x ∈ X}. This turns out to be
a quantity that lies in [1,

√
m] (shown formally in Appendix Fact B.1). To intuit about this quantity,

it is helpful to consider its behavior in extreme scenarios. First, consider the case where Nmir
x is

the same distribution (say N ) regardless of x i.e., neighborhoods are completely overlapping. Then,
ρS =

∫
x′∈X (pN (x′))dx′ = 1. In the other extreme, consider if neighborhoods centered on the

training data are all disjoint with supports X1, . . . ,X|S|. Here the integral splits into m summands
as: ρS =

∑m
i=1

∫
x′∈Xi

1√
m
pNmir

xi
(x′)dx′ =

√
m. Thus, intuitively ρS grows from 1 to

√
m as the

level of overlap between the neighborhoods Nmir
x1
, . . . , Nmir

x|S|
reduces. For intuition at non-extreme

values, we show in Appendix B.2 that in a simple setting, ρ =
√
m1−k (where 0 ≤ k ≤ 1) if every

neighborhood is just large enough to encompass a 1/m1−k fraction of mass of the distribution D.

Rademacher complexity of G. We now use ρS to bound the Rademacher complexity of G. Re-
call that the Rademacher complexity of a function class H consisting of h : X → R is defined as
E~σ
[
1
m suph∈H σih(xi)

]
, where the σi’s are drawn i.i.d. from a uniform distribution over {−1, 1}.

Intuitively this captures the complexity of H by measuring how well it can fit random labels. Stan-
dard results allow us to use this to bound the generalization error for functions inH.

Now, in order to define the Rademacher complexity of G (which consists of a different kind functions
whose domain isX×X ), it is useful to think of g as a randomized function. Specifically, at any target
point x, the output of g is a random variable gx′(x) where the randomness comes from x′ ∼ Nmir

x .
Then, in Lemma 4.1, we take this randomization into account to define and bound the complexity
of G (which we use prove our main results). To keep our statement general, we consider a generic
loss function L : R × R → R (e.g., the squared error loss is L(y, y′) = (y − y′)2). Whenever L
satisfies a standard Lipschitz assumption, we can bound the complexity of G composed with the loss
function L, in terms of ρS , the complexity of Glocal and the Lipschitzness of L:
Lemma 4.1. (see Appendix Lemma D.1 for full, precise statement) Let L(·, y′) be a c-Lipschitz
function w.r.t. y′ in that for all y1, y2 ∈ [−B,B], |L(y1, y′) − L(y2, y′)| ≤ c|y1 − y2|. Then, the
empirical Rademacher complexity of G under the loss function L is defined and bounded as:

R̂S(L ◦ G) := E~σ

[
sup
g∈G

1

m

m∑
i

σiEx′∼Nmir
xi
[L(gx′(xi), yi)]

]
≤ O

(
cρSR̂S(Glocal) · lnm

)
where ~σ is uniformly distributed over {−1, 1}m.

We note that the proof technique employed here may be of independent theoretical interest as it
provides a novel way to bound the complexity of a randomized function. Although techniques like
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PAC-Bayes provide ways to do this, they do not apply here since the stochasticity in the function is
of a different form.

Main result. With the above key lemma in hand, we are now ready to prove our main result,
which bounds the generalization error of f in terms of the complexity of G, thereby establishing a
connection between model generalization and local interpretability.

Theorem 1. (see Appendix Theorem 3 for full, precise statement) With probability over 1 − δ over
the draws of S = {(x1, y1), . . . , (xm, ym)} ∼ Dm, for all f ∈ F and for all g ∈ G, we have
(ignoring ln 1/δ factors):

E(x,y)∼D[(f(x)− y)2] ≤
4

m

m∑
i=1

(f(xi)− yi)2 + 2Ex∼D[Ex′∼Nmir
x

[
(f(x)− gx′(x))2

]
]︸ ︷︷ ︸

MNF(f,g)

+
4

m

m∑
i=1

Ex′∼Nmir
x

[
(f(xi)− gx′(xi))2

]︸ ︷︷ ︸
MNF(f,g,xi)

+O(BρSR̂S(Glocal) lnm),

and R̂S(Glocal) is the empirical Rademacher complexity of Glocal defined as R̂S(Glocal) :=
E~σ
[
suph∈Glocal

1
m

∑m
i=1 σih(xi)

]
.

This result decomposes the test error of f into four quantities. The first quantity corresponds to
the training error of f on the training set S. The second and the third correspond to the mirrored
neighborhood fidelity of f with respect to g (computed on test and training data respectively). The
fourth and final quantity corresponds to a term that bounds the complexity of G in terms of the
“disjointedness factor” and the complexity of the simpler function class Glocal.

Takeaway. A key aspect of this bound is the trade-off that it captures with varying neighborhood
widths. Consider shrinking the neighborhood widths to smaller and smaller values, in turn creat-
ing less and less overlap between the neighborhoods of the training data. Then, on the one hand,
we’d observe that the complexity term (the fourth term on the R.H.S) increases. Specifically, since
R̂S(Glocal) typically scales as O(1/

√
m), as we go from the one extreme of full overlap to the other

extreme of complete disjointedness, the complexity term would increase from O(1/
√
m) to O(1)

(eventually rendering the bound trivial). On the other hand, as the widths decrease, the fidelity terms
(the second and the third term) would likely decrease – this is because the simple functions in Glocal
would find it easier and easier to approximate the shrinking neighborhoods.

This tradeoff is intuitive. A function f that is hardly amenable to being fit by local explanations
would require extremely tiny neighborhoods for Glocal to locally approximate it (i.e. make the MNF
terms small). For example, in an extreme case, when the neighborhoodsNmir

x are set be point masses
at x, it is trivially easy to find gx(·) ∈ Glocal with no approximation error. Thus, the complexity term
would be too large in this case, implying that a hard-to-interpret f results in bad generalization. On
the other hand, when f is easy to interpret, then we’d expect it to be well-approximated by Glocal
even with wider neighborhoods. This allows one to afford smaller values for both the complexity
and MNF terms. In other words, an easy-to-interpret f enjoys better generalization guarantees.

Caveats. Our bound has two limitations worth noting. First, for high-dimensional datasets (like
image datasets), practical choices of Nx can lead to almost no overlap between neighborhoods,
thus rendering the bound trivial in practice. This potentially poor dimension-dependence is a caveat
similarly shared by bounds for non-parametric local regression, whereby increasing d results in an
exponential increase in the required sample size (Fan, 1993; Fan & Gijbels, 1996). Nevertheless, for
low-dimensional datasets, we show in the experiments that for practical choices of the neighborhood
distributions, there is sufficient neighborhood overlap to achieve values of ρS that are o(

√
m).

A second caveat is that the second quantity, MNF(f, g), requires unlabeled test data to be computed,
which may be limiting if one is interested in numerically computing this bound in practice. It is
however possible to get a bound without this dependence, although only on the test error of g rather
than f (see Appendix Theorem 4). Nevertheless, we believe that the above bound has theoretical
value in how it establishes a connection between the interpretability of f and its generalization.
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5 GENERALIZATION OF LOCAL EXPLAINABILITY

We now turn our attention to a more subtle kind of generalization that is both unstudied yet impor-
tant. Typically, the way gx′ is learned at any source point x′ is by fitting a finite set of points sampled
near x′, with the hope that this fit generalizes to unseen, neighboring target points. Naturally, we
would want to ask: how well do the explanations gx′ themselves generalize in this sense?

This question is straightforward to answer in settings like LIME. In particular, assume that we learn
gx′ by sampling a set Sx′ of nearby points from a Gaussian centered at x′, and that we care about
the fit of gx′ generalizing to the same Gaussian. Here, we can argue via a standard Rademacher
complexity based bound that the error of gx′ on the Gaussian is bounded by its training error on
Sx′ and the complexity term RSx′ (Glocal). We can apply the same argument individually for the
explanation in each x′, because we have a fresh dataset Sx′ for each x′. If one has the resources to
sample more points to create a larger Sx′ , these bounds will naturally also tighten.

However, consider finite sample-based local explanation settings like MAPLE (Plumb et al., 2018)
and RL-LIM (Yoon et al., 2019) where the training procedure is vastly different from this: in these
procedures, the goal is to learn local explanations gx′ in a way that is sensitive to the local structure of
the (unknown) underlying data distributionD. So, instead of fitting the gx′ to samples drawn from an
arbitrarily defined Gaussian distribution, here one first draws a finite sample S from the underlying
distribution D (and then labels it using f ). Then, across all x′ ∈ X , one reuses a reweighted version
of the same dataset S (typically, points x in S that are near x′ are weighted more) and then learns
a gx′ that fits this reweighted dataset. Contrast this with the former setting, where for each x′, one
has access to a fresh dataset (namely, Sx′ ) to learn gx′ . This distinction then makes it interesting to
wonder when the reuse of a common dataset S could cause the explanations to generalize poorly.

Motivated by this question, we present Theorem 2. By using Lemma 4.1, we provide a bound on the
“test MNF” (which corresponds to the fit of gx′ on the unseen data averaged across D) in terms of
the “train MNF” (which corresponds to the fit of gx′ on S, averaged across x′) and the complexity
term from Lemma 4.1. We must however caution the reader that this theorem does not answer the
exact question posed in the above paragraph; it only addresses it indirectly as we discuss shortly.
Theorem 2. (see Appendix Theorem 2-full for full, precise statement) For a fixed function f , with
high probability 1− δ over the draws of S ∼ Dm, for all g ∈ G, we have (ignoring ln 1/δ factors):

E x∼D,
x′∼Nx

[
(f(x)− gx′(x))2

]
︸ ︷︷ ︸

test MNF i.e., MNF(f,g)

≤ 1

m

m∑
i=1

Ex′∼Nmir
x

[
(f(xi)− gx′(xi))2

]
︸ ︷︷ ︸

train MNF

+O(ρSRS(Glocal) lnm).

Understanding the overall bound. We first elaborate on how this bound provides an (indirect)
answer to our question about how well explanations generalize. Consider a procedure like MAPLE
that learns g using the finite dataset S. For each x′ ∈ X , we would expect this procedure to have
learned a gx′ that fits well on at least those target points x in S that are near x′. In doing so, it’s
reasonable to expect the training procedure to have implicitly controlled the “train MNF” term The
reasoning for this is that the train MNF computes the error in the fit of gx′ on S for different values
of x′, and sums these up in a way that errors corresponding to nearby values of (x, x′) are weighted
more (where the weight is given by pNmir

x
(x′)). Now, our bound suggests that when this train MNF

is minimized, this carries over to test MNF too (provided the complexity term is not large). That is,
we can say that the fit of gx′ generalizes well to unseen, nearby target points x that lie outside of S.

The indirectness of our result. Existing finite sample-based explainers do not explicitly minimize
the train MNF term (e.g., MAPLE minimizes an error based upon NF). However, as argued above,
they have implicit control over train MNF. Hence, our bound essentially treats MNF as a surro-
gate for reasoning about the generalization of the explanations learned by an arbitrary procedure.
As such, our bound does not comment on how well the exact kind of fidelity metric used during
training generalizes to test data. Nevertheless, we hope that this result offers a concrete first step
towards quantifying the generalization of explanations. Furthermore, we also note that one could
also imagine a novel explanation-learning procedure that does explicitly minimize the train MNF
term to learn g; in such a case our bound would provide a direct answer to how well its explanations
generalize. Indeed, we derive such a theoretically-principled algorithm in Appendix A.
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Takeaway. While the above bound captures a similar trade-off with neighborhood width as the
Theorem 1, it is worth pausing to appreciate the distinct manner in which this tradeoff arises here.
In particular, when the width is too small, we know that the complexity term approachesO(

√
m) and

generalization is poor. Intuitively, this is because in this case, the procedure for learning gx′ would
have been trained to fit very few datapoints from S that would have fallen in the small neigbhorhood
of x′. On the other hand, when the neighborhoods are large, this issue would not persist which is
captured by the fact that ρS approaches O(1). However, with large neighborhoods, it may also be
hard to find functions in Glocal that fit so many points in S. Overall, one practical takeaway from
this bound is that it is important to not excessively shrink the neighborhood widths if one wants
explanations that generalize well for predicting how f behaves at unseen points (see Section 6).

Caveats. We remark that this particular bound applies only when the dataset S is used to learn
only g i.e., f and the neighborhoods must be learned beforehand with separate data2. This sort of
a framework is typical when deriving theoretical results for models like random forests, where it
greatly aids analysis to assume that the trees’ splits and their decisions are learned from independent
datasets (i.e. two halves of an original dataset) (Arlot & Genuer, 2014). Now, if one is interested in
a bound where S is also used to simultaneously learn f , the only change to the bound is an added
factor corresponding to the complexity of F . Another caveat is that our bound only tells us how well
the explanations gx′ generalize on average over different values of x′. This does not tell us anything
about the quality of the generalization of gx′ for an arbitrary value of x′. That being said, just
as average accuracy remains a central metric for performance (despite ignoring discrepancies across
inputs), average MNF can still be a useful quantity for evaluating an explainer’s overall performance.

6 EMPIRICAL RESULTS

We present two sets of empirical results to illustrate the the usefulness of our bounds. First, we
demonstrate that ρS grows much smaller than O(

√
m) which, as stated before, establishes that our

bounds yield meaningful convergence rates. Second, we show that Theorem 2 accurately reflects
the relationship between explanation generalization (Theorem 2) and the width of Nmir

x used to both
generate and evaluate explanations.

Setup. For both experiments, we use several regression datasets from the UCI collection (Dua &
Graff, 2017) and standardize each feature to have mean 0 and variance 1. We train neural networks
as our “black-box” models with the same setup as in (Plumb et al., 2020), using both their non-
regularized and ExpO training procedures. The latter explicitly regularizes for NF during training,
which we find also decreases MNF on all datasets. For generating explanations, we define Glocal
to be linear models and optimize each gx using the empirical MNF minimizer (see Appendix A).
Finally, we approximate ρS using a provably accurate sampling-based approach (see Appendix E).

Figure 1: Approximate exponent of ρS’s polynomial growth rate (top) and train/test MNF (below)
plotted for various neighborhood widths across several UCI datasets (see Appendix E for more).

2It is due to this reason that we can’t plug Theorem 2 into the right hand side of Theorem 1 (in which f
depends on S) to replace its test MNF term with a train MNF term.
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Growth-rate of ρS . In Figure 1 (top), we track the sample dependence of ρS for various neigh-
borhoods of width σ (setting Nmir

x = N (x, σI)). We specifically approximate the growth rate as
polynomial, estimating the exponent by taking the overall slope of a log-log plot of ρS over m. To
cover a natural range for each dataset, σ is varied to be between the smallest and half the largest
inter-example l2 distances. In these plots, while small σ result in a large exponent for ρS and large
σ cause g to intuitively saturate towards a global linear model, we observe that there do exist values
of σ, where both these terms are in control i.e., we observe that we can achieve a growth rate of
approximately O(m0.2) without causing g to saturate and MNF metrics to rise sharply.

Generalization and neighborhood size. As per the setting of Theorem 2, we generate all explana-
tions using data not used to learn the black-box model. Specifically, we split the original test data
into two halves, using only the first half for explanation training and the second for explanation
testing. We plot MNF as measured over these two subsets of examples in Figure 1 (bottom). From
the results, it is evident that a generalization gap between train and test MNF exists. Further, recall
that Theorem 2 predicts that this gap decreases as wider neighborhoods are used, a phenomena re-
flected in most of these plots. As a result, while training MNF monotonically increases with larger
neighborhoods, test MNF always decreases at certain ranges of σ.

7 CONCLUSION AND FUTURE WORK

In this work, we have studied two novel connections between learning theory and local explanations.
We believe these results may be of use in guiding the following directions of future work: (1)
developing new local explanation algorithms inspired by our theory and the metric of MNF; (2)
resolving caveats or otherwise strengthening the theory presented in this paper; and (3) exploring
applications of our techniques beyond interpretability, such as the general problem of deep learning
generalization or others that require reasoning about the complexity of randomized functions.
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A MORE ON MIRRORED NEIGHBORHOOD FIDELITY

Here we elaborate on how the expression for MNF can be parsed in the same way as NF after
juggling some terms around. Recall that MNF is defined as:

MNF(f, g) := Ex∼D
[
Ex′∼Nmir

x

[
(f(x)− gx′(x))2

]]
.

and with an abuse of notation, we let MNF(f, g, x) = Ex′∼Nmir
x

[
(f(x)− gx′(x))2

]
.

Here the outer expectation is over the target points x that the explanations try to fit, and the inner
expectation is over the source points x′ which give rise to the explanations gx′ .

If we can swap these expectations around, we can afford a similar parsing as NF. To get there, first
consider the joint distribution over x and x′ that is induced by generating x ∼ D and then picking
x′ ∼ Nmir

x . Under this joint distribution, we need an expression for the marginal distribution of x′.
This distribution, which we denote by D†, is given by:

pD†(x
′) =

∫
X
pD(x)pNmir

x
(x′)dx.

To get a sense of what D† looks like, imagine that Nmir
x is a Gaussian centered at x. Then D†

corresponds to convolving D with a Gaussian i.e., a smoother version of D.

Next, under the same joint distribution, we need an expression for the distribution of x conditioned
on x′. This distribution, denoted as N†x′ , is given by:

pN†
x′
(x) =

pD(x)pNmir
x
(x′)∫

X pD(x)pNmir
x
(x′)dx

.

Intuitively, N†x′ is distribution that is centered around x′ and is also weighted by the distribution D
i.e., points that are both close to x′ and realistic under D have greater weight under N†x′ . This is
because the term pNmir

x
(x′) in the numerator prioritizes points that are near x′ (imagine Nmir

x being a
Gaussian centered at x), and the term pD(x) prioritizes realistic points.

With these definitions in hand, we can swap the expectations around and get:

MNF(f, g) = Ex′∼D†
[
Ex∼N†

x′

[
(f(x)− gx′(x))2

]]
,

This then has the same structure as NF in that the outer expectation is over the source points and the
inner distribution over target points, and hence can be interpreted similarly.

A.1 ALGORITHM FOR MINIMIZING EMPIRICAL MIRRORED NEIGHBORHOOD FIDELITY

We now consider how one might actually fit explanations to minimize MNF. Recall from the above
discussion that from the point of view of each source point x′, MNF measures how well gx′ fits f on

the distribution with density pN†
x′
(x) =

pD(x)p
Nmir

x
(x′)∫

X pD(x)p
Nmir

x
(x′)dx

. Note that one does not have access to

samples from this distribution due to the dependence onD. However as we argue, one can minimize
the empirical version of MNF given access to a finite sample S drawn i.i.d. from D by solving the
following weighted regression problem:

gx′ = argmin
gx′∈Glocal

1

|S|

|S|∑
i=1

(gx′(xi)− f(xi))2pNmir
xi
(x′)

To see what the empirical version of MNF is, we can replace the outer expectation (over x ∼ D)
with the samples S = {xi}|S|i=1, giving us
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Empirical MNF =
1

|S|

|S|∑
i=1

Ex′∼Nmir
xi

[
(gx′(xi)− f(xi))2

]
=

1

|S|

|S|∑
i=1

∫
X
(gx′(xi)− f(xi))2pNmir

xi
(x′)dx′

=
1

|S|

∫
X

|S|∑
i=1

(gx′(xi)− f(xi))2pNmir
xi
(x′)dx′

To minimize the overall empirical MNF, one needs to choose gx′ for each x′ such that it minimizes
the above integrand, which is akin to performing one weighted least squares regression. Thus, one
notable difference between minimizing empirical MNF and NF is that we need to use real examples
to fit gx′ for MNF but not for NF since the target distribution of interest there can be user-defined
(i.e. it may be chosen such that it can be easily sampled from).

A.2 TRADE-OFFS BETWEEN MNF AND NF

We now discuss in further detail the comparison between MNF and NF, listing both the relative
advantages and disadvantages of each. It should be noted that this discussion is of a somewhat more
exploratory nature; we do not aim to make definitive value judgments (i.e. one metric is always
more useful than the other), but rather to provide a better qualitative understanding of how these
two metrics might be expected to behave. We hope that this discussion prompts a more careful
consideration of fidelity metrics in future works involving local explanations.

A.2.1 ADVANTAGES OF MNF

In many practical situations (esp. for i.i.d. cases), it is reasonable to assume that practitioners will
care significantly about generating explanations for predictions at realistic on-distribution points
and hoping that those (local) models correctly approximate what the model will do at nearby points
which are also realistic. Our core argument for the usefulness of MNF compared to NF is that it
can be used to come closer to characterizing performance relative to the second part of this goal (i.e.
predicting what the model will do at realistic points).

To reiterate Section 3, this is an especially important concern for modern ML settings, which often
involve significant feature dependencies (i.e. lower dimensional data manifolds) and models that
behave unstably when extrapolating beyond the given task and training data. As we illustrate below
in a toy example, when one uses NF with standard neighborhood choices (i.e. Nx = N (0, σI)),
one may overemphasize the ability of explanations to fit this noisy behavior on regions that are
off-manifold.

Toy example. We compare the abilities of MNF and NF to serve as the basis for generating local
explanations. In what follows, we refer to gNF and gMNF as the explanations that minimize NF and
MNF respectively. We specifically consider a simple setup where the full input space has dimension
d = 2 but the data exists on a manifold of dimension k = 1. Under task-distribution D, let x1 ∼
N (0, 1) while x2 = 0. Further consider the learned model f(x) = x1 − βx1x22, where one may
assume β � 0. As an important note, on the task distribution D, f(x) ≡ x1.

Minimizing NF: To learn gNF
x , we may simply sample many x′ ∼ Nx and find a linear gNF

x (·) that
fits these points well. Now, we can expect this process to generalize in a way that Ex′∼Nx [(gx(x

′)−
f(x′))2] is minimized. In fact, one could consider the ideal scenario where we sample infinitely
many unlabeled examples, and thus find the best possible linear approximation given this neigh-
borhood distribution. However, observe that minimizing the above quantity provides absolutely no
guarantee whatsoever as far as the error committed on D i.e., Ex′∼D[(gx(x′) − f(x′))2]. This is
because D has zero measure. This means that by creating f that is arbitrarily volatile along the
irrelevant x2 direction, we can force gx to be severely incorrect on D. Indeed, this is the case in
the setting above. Let gx(x′) = w1x

′
1 + w2x

′
2 and Nx = N(0, I). Then, it can be shown that

NF(f, g, x) is minimized by w1 = 1 − β. Since β can be arbitrarily large, this explanation can be
unboundedly arbitrarily poor at recovering a function equivalent to f(x) ≡ x1 on D.
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Minimizing MNF: Note that none of the above is a problem when we learn gMNF, because we fit
gMNF
x only on target points that are from the real data manifold. This will ensure that gMNF is in line

with a potentially important desiderata for local explanations i.e., that they can faithfully capture
a function that is accurate along the task-relevant data directions (of course, only upto a linear
approximation). To illustrate more completely, recall that gMNF is learned as follows: assuming
access to S = {x1, . . . , xm} ∼ Dm, we have

gMNF
x′ = argmin

gx′∈Glocal

1

m

m∑
i=1

(gx′(xi)− f(xi))2pNmir
xi
(x′)

Now since S lies on the manifold of D, we have that x2 = 0 on all those points. Therefore, for each
x, we find the solution which minimizes

gMNF
x′ = argmin

w1∈R

1

m

m∑
i=1

(xi,1 − w1xi,1)
2pNmir

xi
(x′)

It is easy to see that with just two distinct datapoints from S, we would get w1 = 1, which leads to
perfect predictions for how the function behaves on D.

As a remark, an even more natural version of the above setting would be one where f is non-linear
even on the data manifold. But even here we can still argue that gMNF would be close to the best
possible linear function within the manifold up to a 1/

√
m error (e.g., a generlization bound like our

Theorem 2 guarantees this on average over x). On the other hand, regardless of how many unlabeled
datapoints we fit gNF with, we would learn gNF that can behave arbitrarily poorly on the manifold.

A.2.2 LIMITATIONS OF MNF

Below, we discuss some limitations of MNF as well as potential future directions for possibly ad-
dressing them. At a high-level, we believe while each represents a legitimate concern, they may
arguably be (depending on context) “reasonable prices to pay” for the advantages of MNF com-
pared to NF described previously.

MNF explanations may lose local meaning: Using MNF to evaluate/generate explanations at low-
probability source points x′ may have little to do with how f actually behaves around x′. Because
the target point distribution is x|x′ ∝ pD(x)pNx(x

′), very little probability mass might be placed in
the vicinity around x′ when pD(x) is small. This would be the case when x′ is off-manifold or in
low-density regions on the support of the real data distribution. The former might be dismissable if
one cares about i.i.d. settings but the latter could be very important in applications where rare cases
correspond to high-stakes decisions (e.g. disease diagnostics). In these scenarios, the explanation
might still be too biased towards how the model is behaving at higher density regions. However,
some potential future directions to remedy this are:

• It might help to allow Nmir
x to have smaller width around lower probability points from

D (allowing you to concentrate Nmir
x around x despite the form of D). It’s remains a

challenge to see how one would actually set these widths but it could be of help if a limit
can be assumed on how quickly the value pD(x) can change around x.

• There also could be some use in considering a more general definition of MNF that lets
you choose an arbitrary outer distribution x ∼ Q other than simply the task distribution
D. That is, if one really cares about mutually consistent explanations in some arbitrary
region (which could be on or off-manifold), then this would potentially allow one to able
to customize a metric for that purpose.

Less intuitive target point neighborhoods: Very closely related to the previous limitation, in
interpreting MNF-based explanations, an end-user would have to understand that gx′ are not exactly
approximations for the locality around x′ but rather for the true target distribution that captures in
some sense “on-manifold points near x′ (modulated by the concentration of Nmir

x ).” This makes it
harder for a user to know the exact window in which their explanation is directly valid for (compared
to a user-specified target neighborhood for NF). In practice, this shortcoming could be mitigated as
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long is it is carefully communicated to users that this limitation exists, i.e. they should focus on
using MNF explanations only at and for predicting what happens at realistic points.

Unnaturalness of source points: While MNF does emphasize realistic target points, it also focuses
on explanations generated at potentially off-manifold source points. Further, one could argue that
the advantages of MNF are partly because Nx is chosen naively for NF. For instance if one defined
Nx = N†x in the definition for MNF, then gNF and gMNF would produce the same explanations
because the inner target point expectations would be the same (comparing NF and the reversed ex-
pectation form of MNF). However, the average metric for NF seem more natural in an additional
sense since it also only reflects caring about realistic source points when looking at the outer expec-
tation over x ∼ D.

NF = Ex∼DEx′∼N†x
[
[(gx(x

′)− f(x′)]2
]

MNF = Ex′∼D†Ex∼N†
x′

[
[(gx′(x)− f(x)]2

]
Given this, might MNF be less interesting on its own? Using standard “naive” settings of Nx, one
could argue that NF is also “unnatural” in that it takes into account how explanations at on-manifold
source points perform at off-manifold target points. And though the above NF setting may be more
ideal as a metric, it also becomes less clear how to evaluate it as the inner distribution cannot be
sampled from easily. On the other hand, we can use the original form of writing out MNF (without
the expecations flipped) to directly approximate MNF with relevant samples from D.

Does not reflect what model causally depends on: In the second toy-example, it was shown that
if f(x) = x1 − βx1x22 but the data manifold is (x1, x2) = (x1, 0), one could get arbitrarily poor
fidelity and feature relevancy (for x1) on this manifold using standard neighborhoods. But MNF
runs into a new problem when the feature set actually includes a highly correlated third feature: for
example, consider (x1, x2, x3) where the manifold is defined by points (x1, x2, x3) = (x1, 0, x1).
Thus according to MNF, g(x) = x1, g(x) = x3, and indeed g(x) = −x1 + 2x3 are all equally
good explanations (because MNF only cares about whether g(x) = f(x) on manifold). However,
f clearly only “depends” on x1 for its decisions (in a causal sense). On the other hand, because
NF samples target points both on and off manifold, it would correctly see that x3 has no effect.
The larger argument here is that in any conversation involving manifolds, one inherently is speaking
about some sort of feature dependencies, which may similarly suffer from the same issues of not
being causal w.r.t. f and having non-identifiable explanations. On the other hand, we note that
in the new toy-example, NF is not an ideal fix either because the cost is potentially an arbitrary
coefficient for x1 and extremely poor fidelity on D. More generally, finding “what the model uses
for its decision” is simply not what MNF explanations are trying to do. What one could describe
MNF as actually looking at is “can I build a simpler local model relevant to the actual task at hand?”
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B MORE ON THE DISJOINTEDNESS FACTOR

B.1 BOUNDS

Recall that the disjointedness factor is defined as ρS :=
∫
x′∈X

√∑m
j=1(pNmir

xi

(x′))2

m dx′. Here, we
show that the disjointedness factor is bounded between 1 and

√
m.

Fact B.1. The disjointedness factor ρS satisfies 1 ≤ ρS ≤ m.

Proof. For the lower bound, we note that since the arithmetic mean lower bounds the quadratic
mean, we have:

∫
x′∈X

√∑m
j=1(pNmir

xi
(x′))2

m
dx′ ≥

∫
x′∈X

∑m
j=1 pNmir

xi
(x′)

m
dx′

≥
m∑
j=1

1

m

∫
x′∈X

pNmir
xi
(x′)dx′

≥
m∑
j=1

1

m
= 1

For the upper bound, we make use of the fact that the `2 norm of a vector is smaller than its `1 norm
to get:

∫
x′∈X

√∑m
j=1(pNmir

xi
(x′))2

m
dx′ ≤

∫
x′∈X

∑m
j=1 pNmir

xi
(x′)

√
m

dx′

≤
m∑
j=1

1√
m

∫
x′∈X

pNmir
xi
(x′)dx′

≤
m∑
j=1

1√
m

=
√
m

B.2 VALUES OF ρS IN-BETWEEN 1 AND
√
m

We know that the disjointedness factor ρS takes the values 1 and
√
m in the two extreme cases where

the neighborhoods are completely overlapping or disjoint respectively. We also know from Fact B.1
that the only other values it takes lie in between 1 and

√
m. When does it take these values?

To get a sense of how these in-between values can be realized, we present a toy example here.
Specifically, we can show that under some simplistic assumptions, ρS =

√
m1−k (where 0 ≤ k ≤ 1)

if every neighborhood is just large enough to encompass a 1
m1−k fraction of mass of the distribution

D.

Our main assumption is that Nmir
xi

is a uniform distribution over whatever support it covers. Further,
to simplify the discussion, assume that X is a discrete set containing M datapoints in total (think of
M as very, very large).

Then, if every neighborhood contains 1
m1−k fraction of mass of the distribution D, it means it con-

tains M
m1−k points in it. Therefore, since Nmir

xi
is a uniform distribution, we have that the probability

mass of Nmir
xi

on any point x′ in its support is 1
Mmk−1 . Plugging this in the definition of ρS , we get:
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ρS =

∫
x′∈X

√√√√ 1

m

m∑
i=1

(pNmir
xi
(x′))2dx′ =

M∑
j=1

√√√√ 1

m

m∑
i=1

(
Pr

x′∼Nmir
xi

[x′ = xj ]

)2

=

M∑
j=1

√√√√ 1

m

m∑
i=1

I[xj ∈ supp
(
Nmir
xi

)
]

(
1

Mmk−1

)2

=

M∑
j=1

1

Mmk−0.5

√√√√ m∑
i=1

I[xj ∈ supp
(
Nmir
xi

)
]

To further simplify this, we need to compute the innermost summation, which essentially corre-
sponds to the number of mirrored neighborhoods that each point belongs to. For simplicity, let’s
assume that every point belongs to n neighborhoods. To estimate n, observe that for each of the m
neighborhoods to contain M

m1−k points, and for each of the M points to be in n neighborhoods, we
must have:

Mn = m
M

m1−k .

Thus, n = mk. Plugging this back in, we get ρS = m
1−k
2 .

C PIECE-WISE GLOBAL APPROXIMATION

C.0.1 GENERALIZATION BOUND ASSUMING PIECEWISENESS

We now discuss the Rademacher complexity of a simpler class of local-approximation functions:
a class of piecewise-simple functions g ∈ G with K pieces. In particular, one can show that the
complexity of these functions grows with K as

√
K.

To see why, first let us call the K regions that g is defined over as R1, . . . , RK . Correspondingly,
the original training set S = {xi}mi can be divided into the subsets S1 = {x1,i}m1

i=1, . . . , Sk =
{xK,i}mK

i=1 and the pieces of g are g1, . . . , gK ∈ Glocal are simple functions. Then, one can split the
Rademacher complexity over the whole dataset in terms of these subsets, to get:

R̂S(G) = Eσ

[
sup
g∈G

1

m

m∑
i=1

σig(xi)

]

= Eσ

[
sup
g∈G

K∑
k=1

mk

m

m∑
i=1

1

mk
σigj(xi)I{xi ∈ Sj}

]

= Eσ

[
sup
g∈G

K∑
k=1

mk

m

mk∑
i=1

1

mk
σk,igj(xk,i)

]

≤
K∑
k=1

mk

m
Eσ

[
sup
gj∈G̃

1

mk
σk,igj(xk)

]

≤
K∑
k=1

mk

m
R̂Sk

(Glocal)

Now, assuming each R̂Sk
(Glocal) is O

(
1√
mk

)
, and assuming each subset as the same number of

points mk = m/K, the sum in the last expression can be bounded as O
(√

K
m

)
.

16



Under review as a conference paper at ICLR 2021

D PROOFS

Below, we present the full statement and proof of Lemma 4.1 which bounds the Rademacher com-
plexity of G. The main difference between this statement and the version in the main paper is that
we replace the Rademacher complexity of Glocal with a slightly more carefully defined version of it
defined below:

R̂∗S(Glocal) := max
i≤m

max
T⊆S,|T |=i

R̂T (Glocal)

√
i

m
(1)

This quantity is essentially a bound on the empirical Rademacher complexity of Glocal on all possible
subsets of S, with an appropriate scaling factor.

We note that although this quantity is technically larger than the original quantity namely R̂S(Glocal),
for all practical purposes, it is reasonable to think of R̂∗S(Glocal) as being identical to R̂S(Glocal)
modulo some constant factor. For example, if we have that for all h ∈ Glocal, h(x) = w · x where

‖w‖2 ≤ α, then one would typically bound R̂S(Glocal) by O
(
α
√∑m

i=1 ‖xi‖22/m√
m

)
. The bound on

R̂∗S(Glocal) however would resolve to O
(
α
√

maxi≤m ‖xi‖22√
m

)
. Now, as long as we assume that ‖xi‖

are all bounded by some constant, both these bounds are asymptotically the same, and have the same
1/
√
m dependence on m. Additionally, we also remark that that it is possible to write our results in

terms of tighter definitions of R̂∗S(Glocal), however our statements read much cleaner with the above
definition.

Lemma D.1. (full, precise statement of Lemma 4.1) Let L(·, y′) be a c-Lipschitz function
w.r.t. y′ in that for all y1, y2 ∈ [−B,B], |L(y1, y′) − L(y2, y

′)| ≤ c|y1 − y2|. Let S =
{(x1, y1), . . . , (xm, ym)} ∈ Xm. Then, the empirical Rademacher complexity of G under the loss
function L is defined and bounded as:

R̂S(L ◦ G) := E~σ

[
sup
g∈G

1

m

m∑
i

σiEx′∼Nmir
xi
[L(gx′(xi), yi)]

]
≤ cρS(lnm+ 1) · R̂∗S(Glocal).

where recall that ρS :=
∫
x′∈X

√∑m
j=1(pNmir

xi

(x′))2

m dx′ is the disjointedness factor.

Our high level proof idea is to first construct a distribution D̃ over X in a way that each the inner
expectations over Nmir

xi
(for each i) can be rewritten as an expectation over x′ ∼ D̃. This removes

the dependence on i from this expectation, which then allows us to pull this expectation all the way
out. This further allows us to take each x′ and compute a Rademacher complexity corresponding to
the loss of gx′ , and then finally average that complexity over x′ ∼ D̃.

Proof. We begin by noting that the inner expectations in the Rademacher complexity are over m
unique distributions Nmir

xi
. our first step is to rewrite these expectations in a way that they all apply

on the same distribution. Let us call this distribution D̃ and define what it is later. As long as D̃ has
a support that contains the support of the above m distributions, we can write:

R̂S(L ◦ G) = E~σ

[
sup
g∈G

1

m

m∑
i

σiEx′∼D̃

[
L(gx′(xi), yi)

pNmir
xi
(x′)

pD̃(x
′)

]]

this allows us to pull the inner expectation in front of the supremum (which makes this an inequality
now):

≤ E~σ

[
Ex′∼D̃

[
sup
g∈G

1

m

m∑
i

σiL(gx′(xi), yi)
pNmir

xi
(x′)

pD̃(x
′)

]]
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which further allows us rewrite the supremum to be over Glocal instead of G:

≤ E~σ

[
Ex′∼D̃

[
sup
h∈Glocal

1

m

m∑
i

σiL(h(xi), yi)
pNmir

xi
(x′)

pD̃(x
′)

]]
next, let us simply interchange the two outer expectations and rewrite it as:

≤ Ex′∼D̃

[
E~σ

[
sup
h∈Glocal

1

m

m∑
i

σiL(h(xi), yi)
pNmir

xi
(x′)

pD̃(x
′)

]]
.

What we now have is an inner expectation which boils down to an empirical Rademacher complexity
for a fixed x′, and an outer expectation that averages this over x′ ∼ D̃. For the rest of the discussion,

we will fix x′ and focus on bounding the inner term. For convenience, let us define wi :=
p
Nmir

xi

(x′)

pD̃(x′) .
Without loss of generality, assume that w1 ≤ w2 ≤ . . . ≤ wm. Also define w0 := 0. We then begin
by expanding wi into a telescopic summation:

E~σ

[
sup
h∈Glocal

1

m

m∑
i=1

σiL(h(xi), yi)wi

]
= E~σ

 sup
h∈Glocal

1

m

m∑
i=1

σiL(h(xi), yi)

i∑
j=1

(wj − wj−1)


then, we interchange the two summations while adjusting their limits appropriately:

= E~σ

 sup
h∈Glocal

1

m

m∑
j=1

m∑
i=j

σiL(h(xi), yi)(wj − wj−1)


and we pull out the outer summation in front of the supremum and expectation, making it an upper
bound:

≤
m∑
j=1

E~σ

 sup
h∈Glocal

1

m

m∑
i=j

σiL(h(xi), yi)(wj − wj−1)

 .
Intuitively, the above steps have executed the following idea. The Rademacher complexity on
the LHS can be thought of as involving a dataset with weights w1, w2, . . . , wm given to the
losses on each of the m datapoints. We then imagine decomposing this “weighted” dataset into
multiple weighted datasets while ensuring that the weights summed across these datasets equal
w1, w2, . . . , wm on the respective datapoints. Then, we could compute the Rademacher complexity
for each of these datasets, and then sum them up to get an upper bound on the complexity corre-
sponding to the original dataset.

The way we decomposed the datasets is as follows: first we extract a w1 weight out of all the m
data points (which is possible since it’s the smallest weight), giving rise to a dataset of m points all
with equal weights w1. What remains is a dataset with weights 0, w2−w1, w3−w1, . . . , wm−w1.
From this, we’ll extract a w2 − w1 weight out of all but the first data point to create a dataset of
m−1 datapoints all equally weighted as w2−w1. By proceeding similarly, we can generatem such
datasets of cardinality m, m − 1, . . ., 1 respectively, such that all datasets have equally weighted
points, and the weights follow the sequence w1 − w0, w2 − w1, . . . and so on. As stated before,
we will eventually sum up Rademacher complexity terms computed with respect to each of these
datasets.

Now, we continue simplifying the above term by pulling out (wj−wj−1) since it is only a constant:

E~σ

[
sup
h∈Glocal

1

m

m∑
i=1

σiL(h(xi), yi)wi

]
≤

m∑
j=1

(wj − wj−1)E~σ

 sup
h∈Glocal

1

m

m∑
i=j

σiL(h(xi), yi)
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next, we apply the standard contraction lemma (Lemma D.2) to make use of the fact h(xi) is com-
posed with a c-Lipschitz function to get:

≤ c
m∑
j=1

(wj − wj−1)E~σ

 sup
h∈Glocal

1

m

m∑
i=j

σih(xi)


using Sj:m to denote the datapoints indexed from j to m, we can rewrite this in short as:

≤ c
m∑
j=1

(wj − wj−1)
m+ 1− j

m
R̂Sj:m(Glocal)

and finally, we make use of the definition ofR∗S(Glocal) in Equation 1 to get:

≤ c
m∑
j=1

(wj − wj−1)
√
m+ 1− j√

m
R̂∗S(Glocal).

What remains now is to simplify the summation over w’s. To do this, we rearrange the telescopic
summation as follows:

m∑
j=1

(wj − wj−1)
√
m+ 1− j =

m∑
j=1

wj(
√
m+ 1− j −

√
m− j)

=

m∑
j=1

wj ·
1√

m+ 1− j +
√
m− j

≤
m∑
j=1

wj
1√

m+ 1− j

≤

√√√√ m∑
j=1

w2
j ·

√√√√ m∑
j=1

1

j

≤

√√√√ m∑
j=1

w2
j · (lnm+ 1)

Note that in the penultimate step we’ve used the Cauchy-Schwartz inequality and in the last step,
we have made use of the standard logarithmic upper bound on the m-th harmonic number. Plugging
this back on the Rademacher complexity bound, we get:

R̂S(L ◦ G) ≤ Ex′∼D̃

c
√√√√ m∑

j=1

w2
j · (lnm+ 1) · R̂

∗
S(Glocal)√
m


plugging in the values of wj , we get:

≤ Ex′∼D̃

c
√∑m

j=1(pNmir
xi
(x′))2

(pD̃(x
′))2

· (lnm+ 1) · R̂
∗
S(Glocal)√
m

 .
≤ cEx′∼D̃


√√√√∑m

j=1

(p
Nmir

xi

(x′))2

m

(pD̃(x
′))2

 (lnm+ 1) · R̂∗S(Glocal).
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Now we finally set D̃ such that pD̃(x
′) =

√∑m
j=1

(p
Nmir

xi

(x′))2

m

ρS
where ρS is a normalization constant

such that ρS =
∫
x′∈X

√∑m
j=1

(p
Nmir

xi

(x′))2

m dx′. Then, the above term would simplify as:

R̂S(L ◦ G) ≤ cEx′∼D̃ [ρS ] (lnm+ 1) · R̂∗S(Glocal)

≤ cρS(lnm+ 1) · R̂∗S(Glocal).

Next, we state and prove the full version of Theorem 1 which provided a generalization guarantee
for the test error of f in terms of its local interpretability.
Theorem 3. (full, precise version of Theorem 1) With probability over 1 − δ over the draws of
S = {(x1, y1), . . . , (xm, ym)} ∼ Dm, for all f ∈ F and for all g ∈ G, we have (ignoring ln 1/δ
factors):

E(x,y)∼D[(f(x)− y)2] ≤
4

m

m∑
i=1

(f(xi)− yi)2 + 2Ex∼D[Ex′∼Nmir
x

[
(f(x)− gx′(x))2

]
]︸ ︷︷ ︸

MNF(f,g)

+
4

m

m∑
i=1

Ex′∼Nmir
x

[
(f(xi)− gx′(xi))2

]︸ ︷︷ ︸
MNF(f,g,xi)

+16BρSR̂∗S(Glocal)(lnm+ 1)

+ 2

√
ln 1/δ

m
,

where ρS denotes the disjointedness factor defined as ρS :=
∫
x′∈X

√
1
m

∑m
i=1(pNmir

xi
(x′))2dx′ and

R̂∗S(Glocal) is defined in Equation 1.

Proof. First, we split the test error into two terms by introducing the g function as follows:

E(x,y)∼D[(f(x)− y)2] = E(x,y)∼D[Ex′∼Nmir
x
[(f(x)− y)2]]

≤ 2
(
Ex∼D[Ex′∼Nmir

x
[(f(x)− gx′(x))2]] + Ex∼D[Ex′∼Nmir

x
[(gx′(x)− y)2]]

)
(2)

In the first step, we have introduced a dummy expectation over x′, and in the next step, we have used
the following inequality: for any a, b, c ∈ R, (a− b)2 ≤ (|a− c|+ |c− b|)2 ≤ 2(|a− c|2 + |c− b|2)
(the first inequality in this line is the triangle inequality and the second inequality is the root mean
square inequality).

The first term on the RHS above is MNF(f, g). To simplify the second term, we first apply a
generalization bound based on Rademacher complexity. Specifically, we have that w.h.p 1− δ over
the draws of S, for all g ∈ G,

Ex∼D[Ex′∼Nmir
x
[(gx′(x)− y)2]] ≤

1

m

m∑
i=1

Ex′∼Nmir
xi
[(gx′(xi)− yi)2] + 2R̂S(G) +

√
ln 1/δ

m
(3)

Now, R̂S(G) can be bounded using Lemma 4.1 under Lipschitzness of the squared error loss. Specif-
ically, we have that for h, h′ ∈ Glocal, and for all y ∈ [−B,B], |(h(x) − y)2 − (h′(x) − y)2| ≤
4B|h(x) − h′(x)|, since all of h(x), h′(x) and y lie in [−B,B]. Therefore, from Lemma 4.1 we
have that:

R̂S(G) ≤ 4B(lnm+ 1)ρSR̂∗S(Glocal). (4)
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The only term that remains to be bounded is the first term on the RHS. This can bounded again using
the inequality that for any a, b, c ∈ R, (a− b)2 ≤ (|a− c|+ |c− b|)2 ≤ 2(|a− c|2 + |c− b|2):

1

m

m∑
i=1

Ex′∼Nmir
xi
[(gx′(xi)− yi)2)] ≤

2

m

m∑
i=1

Ex′∼Nmir
xi
[(gx′(xi)− f(xi))2] +

2

m

m∑
i=1

(f(xi)− yi)2

(5)

By combining the above three chains of inequalities, we get the final bound.

Below, we present an alternative version of Theorem 1 where the generalization bound does not
involve the test MNF and hence does not require any unlabeled data from D; however the bound is
not on the test error of f but the test error of g.

Theorem 4. (an alternative version of Theorem 1) With probability over 1 − δ over the draws of
S = {(x1, y1), . . . , (xm, ym)} ∼ Dm, for all f ∈ F and for all g ∈ G, we have:

E(x,y)∼D[Ex′∼Nmir
x
[(gx′(x)− y)2]] ≤

2

m

m∑
i=1

(f(xi)− yi)2 +
2

m

m∑
i=1

Ex′∼Nmir
x

[
(f(xi)− gx′(xi))2

]︸ ︷︷ ︸
MNF(f,g,xi)

+ 8BρSR̂S(Glocal)(lnm+ 1) +

√
ln 1/δ

m
.

Proof. The proof follows directly from the proof of Theorem 4 starting from Equation 3.

We now state and prove the full version of Theorem 2 which provided a generalization guarantee for
the quality of explanations.

Theorem 5. (full, precise statement of Theorem 2) For a fixed function f , with high probability 1−δ
over the draws of S ∼ Dm, for all g ∈ G, we have:

Ex∼D
[
Ex′∼Nmir

x

[
(f(x)− gx′(x))2

]]
︸ ︷︷ ︸

test MNF i.e., MNF(f,g)

≤ 1

m

m∑
i=1

Ex′∼Nmir
x

[
(f(xi)− gx′(xi))2

]
︸ ︷︷ ︸

train MNF

+ 8BρSRS(Glocal) lnm+

√
ln 1/δ

m
.

where R̂∗S(Glocal) is defined in Equation 1.

Proof. For this result, we need to think of f as a fixed labeling function since it is independent of
the dataset S that is used to train g. Then, one can apply a standard Rademacher complexity bound
and invoke Lemma 4.1 to get the final result (as invoked in Equation 4).

Below, we state the standard contraction lemma for Rademacher complexity. The lemma states that
composing a function class with a c-Lipschitz function can scale up its Rademacher complexity by
a multiplicative factor of atmost c.

Lemma D.2. (Contraction lemma) For each i = 1, 2, . . . ,m, let φi : R → R be a c-Lipschitz
function in that for all t, t′ ∈ B ⊆ R, |φi(t)− φi(t′)| ≤ |t− t′|. Then, for any class H of functions
h : R→ B, we have:

E~σ

[
m∑
i=1

σiφi(h(xi))

]
≤ cE~σ

[
m∑
i=1

σi(h(xi)

]
.
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E EXPERIMENT DETAILS

E.1 PROCEDURE FOR CALCULATING ρS

As a reminder, we define ρS to be an integral over X , which is not trivial to evaluate in practice,
especially in higher dimensions.

ρS =

∫
x′∈X

√√√√ 1

m

m∑
i=1

(pNmir
xi
(x′))2dx′

Common numerical integration techniques usually incur significant computational costs due to the
dimension of x. Though a variety of methods exist, one can intuit this blow-up by considering the
naive approach of simply constructing a Riemann sum across a rectangular meshgrid of points in
X . If one wants to create a grid of c points per dimension, then cd points (and thus evaluations of
the integrand) must be processed.

Instead, we can apply Monte-Carlo Integration to evaluate ρS . As we will see, a key feature of this
approach is that error will not scale with data dimension and can be bounded probabilistically via a
Hoeffding bound. Currently, the integral does not look like an expectation so we must introduce a
dummy distribution q(x′) as follows

ρS =

∫
x′∈X

√
1
m

∑m
i=1(pNmir

xi
(x′))2

q(x′)
q(x′)dx′ = Ex′∼q


√

1
m

∑m
i=1(pNmir

xi
(x′))2

q(x′)


Now, we can estimate ρS with n independent samples from q.

ρ̂S,n =
1

n

n∑
j=1

√
1
m

∑m
i=1(pNmir

xi
(x′j))

2

q(x′j)

This is an unbiased estimate of ρS , but that in itself is not sufficient. This is only a feasible approach
if we can choose q such that (1) we can actually sample from it, (2) we can calculate q(x′) for

arbitrary x′ and (3) we can control the variance of

√
1
m

∑m
i=1(pNmir

xi

(x′))2

q(x′) .

It can be shown by choosing q to be a uniform mixture of the m training set neighborhoods, we can
satisfy all 3 properties. (1) and (2) are dependent on those same properties being satisfied by Nmir

x .
If Nmir

x can be sampled from, the mixture over m such distributions can obviously be sampled from.
The same goes for calculating the density, which in this case is:

q(x′) =

m∑
i=1

1

m
· pNmir

xi
(x′) =

1

m

m∑
i=1

pNmir
xi
(x′)

We observe that (3) can also be shown because we can upper and lower bound the quantity in
question. To show this, we first re-write it as

√
1
m

∑m
i=1(pNmir

xi
(x′))2

q(x′)
=

√
1
m

∑m
i=1(pNmir

xi
(x′))2

1
m

∑m
i=1 ·pNmir

xi
(x′)

=
√
m

√∑m
i=1(pNmir

xi
(x′))2∑m

i=1 ·pNmir
xi
(x′)

=
√
m
||pS(x′)||2
||pS(x′)||1
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where pS(x′) is a m-dimensional vector of densities each evaluated at x′ (i.e. one for each of the m
training points). Since ||x||2 ≤ ||x||1 ≤

√
m||x||2, the upper and lower bounds for this quantity are√

m and 1 respectively. Thus we can bound the variance of this quantity by 1
4 (
√
m− 1)2 ≤ m

4 and
Var(ρ̂S,n) ≤ m

4n . This does not scale with dimension but only the number of training points!

To be even more concrete, for a given m and n, we can now apply a Hoeffding bound to control the
error.

P(|ρ̂S,n − ρS | > t) ≤ 2e
−2nt2

m

In our experiments we choose n to be 10m, meaning that the probability that ρS is off by more than
0.5 is capped at about 1% (recall that ρS scales from [1,

√
m].

E.2 FULL SET OF RESULTS

Figure 2: Approximate exponent of ρS’s polynomial growth rate (top) and train/test MNF (below)
plotted for various neighborhood widths across several UCI datasets.
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