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A ORGANIZATION OF THE APPENDIX

In appendix B, we give the details on the intention propagation network and parameterization of the
GNN. We explain intention propgation from the view of the MARL. At last, we extend the intention
propagation to other approximations which converges to other solutions of the variational inference.
Notice such extension on the algorithm can also be easily parameterized by neural networks.

In Appendix C, we give the details of the algorithm deferred from the main paper. Appendix D
summarizes the configuration of the experiment and MARL environment. Appendix E gives more
details on baselines and the hyperparameters of GNN used in our model. Appendix F conducts the
ablation study deferred from the main paper. Appendix G and H give more experimental results
and hyperparameters used in the algorithms. At appendix I, we derive the algorithm and prove the
proposition 1.

B INTENTION PROPAGATION NETWORK

B.1 DETAILS ON THE INTENTION PROPAGATION NETWORK

In this section, we give the details on the intention propagation network deferred from the main
paper. We first illustrate the message passing of the intention propagation derived in section 4.1.
Then we give a details on how to construct graph neural network.

Message passing and explanation from the view of MARL: µ̃i is the embedding of policy of
agent i, which represents the intention of the agent i. At 0 iteration, every agent makes independent
decision. The policy of agent i is mapped into its embedding µ̃0

i . We call it the intention of agent
i at iteration 0. Then agent i sends its plan to its neighbors . In Figure 5, µ̃mi is the d dimensional
(d = 3 in this figure) embedding of qi at m−th iteration of intention propagation. We draw the
update of µ̃(m)

1 as example. Agent 1 receives the embedding (intention) µ̃m−1
2 , µ̃m−1

5 , µ̃m−1
6 from

its neighbors, and then updates the its own embedding with operator T̃ . After M iterations, we
obtain µ̃M1 and output the policy distribution q1 using equation 4. Similar procedure holds for other
agents. At each RL step t, we do this procedure (with M iterations) once to generate joint policy. M
in general is small, e.g., M = 2 or 3. Thus it is efficient.

Parameterization on GNN: We then illustrate the parameterization of graph neural network in
Figure 6. If the action space is discrete, the output qi(ai|s) is a softmax function. When it is
continuous, we can output a Gaussian distribution (mean and variance) with the reparametrization
trick (Kingma & Welling, 2019). Here, we draw 2-hop (layer) GNN to parameterize it in discrete
action intention propagation. In Figure 6 (b), each agent observe its own state si. After a MLP
and softmax layer (we do not sample here, and just use the output probabilities of the actions), we
get a embedding µ̃0

i , which is the initial distribution of the policy. In the following, we use agent 1
as an example. To ease the exposition, we assume Agent 1 just has one neighbor, agent 2. Agent
1 receives the embedding µ̃0

2 of its neighbor. After a GNN layer to combine the information, e.g,
Relu[W1(s1 + s2) + W2(µ̃0

1 + µ̃0
2)], we obtain new embedding µ̃1

1 of agent 1. Notice we also do
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Figure 5: illustrate the message passing in intention propagation network Λθ(a|s).
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Figure 6: Details of the graph neural network

message passing on state, since in practice the global state is not available. In the second layer, we
do similar things. Agent 1 receives the embedding information of µ̃1

2 from its neighbors and get a
new embedding µ̃2

1. Then this embedding passes a MLP+softmax layer and output probability of
action, i.e. q1(a1|s).

B.2 EXTENSION TO OTHER VARIATIONAL INFERENCE METHODS AND NEURAL NETWORKS

In this section, we show how to approximate the joint policy with the Loopy Belief Propagation in
the variational inference (Yedidia et al., 2001). This will lead to a new form of neural networks
beyond vanilla GNN that we illustrate above.

The objective function in Loop Belief Propagation is the Beth Free energy (Yedidia et al., 2001).
Different from the mean-field approximation, it introduces another variational variable qij , which
brings more flexibility on the approximation. The following is objective function in our case.

min
qi,qij∈E

−
∑
i

(|Ni| − 1)

∫
qi(ai|s) log

qi(ai|s)
ψi(s, ai)

dai

+
∑
ij

∫
qij(ai, aj |s) log

qij(ai, aj |s)
ψij(s, ai, aj)ψi(s, ai)ψj(s, aj)

daidaj .

s.t.

∫
qij(ai, aj |s)daj = qi(aj |s),

∫
qij(ai, aj |s)dai = qj(aj |s)

(6)

Solve above problem, we have the fixed point algorithm

mij(aj |s)←
∫ ∏

k∈Ni\j

mki(ai|s)ψi(s, ai)ψij(s, ai, aj)dai,

qi(ai|s)← ψi(s, ai)
∏
j∈Ni

mji(ai|s).

Similar to the mean-field approximation case, we have
mij(aj |s) = f(aj , s, {mki}k∈Ni\j),
qi(ai|s) = g(ai, s, {mki}k∈Ni),

It says the message mij and marginals qi are functionals of messages from neighbors.

Denote the embedding ν̃ij =
∫
ψj(s, aj)mij(aj |s)daj and µ̃i =

∫
ψi(s, ai)qi(ai|s)dai, we have

ν̃ij = T̃ ◦
(
s, {ν̃ki}k∈Ni\j

)
, µ̃i = T̃ ◦

(
s, {ν̃ki}k∈Ni

)
.
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Again, we can parameterize above equation by (graph) neural network ν̃ij = σ
(
W1s +

W2

∑
k∈Ni\j ν̃ki

)
, µ̃i = σ

(
W3s+W4

∑
k∈Ni ν̃ki

)
.

Following similar way, we can derive different intention propagation algorithms by changing dif-
ferent objective function which corresponds to e.g., double-loop belief propagation(Yuille, 2002),
tree-reweighted belief propagation (Wainwright et al., 2003) and many others.

C ALGORITHM

We present the algorithm of Intention Propagation (algorithm 1) deferred from the main paper.

Algorithm 1 Intention Propagation

Inputs: Replay buffer D. Vi, Qi for each agent i. Intention propagation network Λθ(at|s) with
outputs {qi,θ}Ni=1. Learning rate lη, lκ,lθ. Moving average parameter τ for the target network
for each iteration do

for each environment step do
sample at ∼

∏
qi,θ(a

t
i|st) from the intention propagation network. st+1 ∼ p(st+1|st,at),

D ← D
⋃(

sti, a
t
i, r

t
i , s

t+1
i

)N
i=1

end for
for each gradient step do

update ηi, κi, θ, η̄i.
ηi ← ηi − lη∇J(ηi), κi ← κi − lκ∇J(κi)

θ ← θ − lθ∇J(θ), η̄i ← τηi + (1− τ)η̄i
end for

end for

Remark: To calculate the loss function J(ηi), each agent need to sample the global state and
(ai, aNi). Thus we first sample a global state from the replay buffer and then sample all action
a once using the intention propagation network.

D FURTHER DETAILS ABOUT ENVIRONMENTS AND EXPERIMETAL SETTING

Table 1 summarizes the setting of the tasks in our experiment.

Table 1: Tasks. We evaluate MARL algorithms on more than 10 different tasks from three different environ-
ments.

Env Scenarios #agents (N)

CityFlow Realworld:Hang Zhou N=16
Realworld:Manhattan N=96

Synthetic Map N=49, 100, 225, 1225

MPE

Cooperative Nav. N=15, 30, 200
Heterogeneous Nav. N=100

Cooperative Push N=100
Prey and Predator N=100

MAgent Jungle N=20, F=12

D.1 CITYFLOW

CityFlow (Tang et al., 2019) is an open-source MARL environment for large-scale city traffic signal
control 1. After the traffic road map and flow data being fed into the simulators, each vehicle moves
from its origin location to the destination. The traffic data contains bidirectional and dynamic flows
with turning traffic. We evaluate different methods on both real-world and synthetic traffic data.
For real-world data, we select traffic flow data from Gudang sub-district, Hangzhou, China and

1https://github.com/cityflow-project/CityFlow
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Manhattan, USA 2. For synthetic data, we simulate several different road networks: 7 × 7 grid
network (N = 49) and large-scale grid networks with N = 10 × 10 = 100 , 15 × 15 = 225,
35 × 35 = 1225. Each traffic light at the intersection is the agent. In the real-world setting (Hang
Zhou, Manhattan), the graph is a 2-d grid induced by the roadmap. Particularly, the roads are edges
which connect the node (agent) of the graph. For the synthetic data, the map is a n ∗ n 2-d grid
(Something like Figure 7), where edges represents road, node is the traffic light. We present the
experimental results deferred from the main paper in Figure 10.

D.2 MPE

In MPE (Mordatch & Abbeel, 2017) 3, the observation of each agent contains relative location
and velocity of neighboring agents and landmarks. The number of visible neighbors in an agent’s
observation is equal to or less than 10. In some scenarios, the observation may contain relative
location and velocity of neighboring agents and landmarks.

We consider four scenarios in MPE. (1) cooperative navigation: N agents work together and move
to cover L landmarks. If these agents get closer to landmarks, they will obtain a larger reward. In
this scenario, the agent observes its location and velocity, and the relative location of the nearest
5 landmarks and N agents. The observation dimension is 26. (2) prey and predator: N slower
cooperating agents must chase the faster adversaries around a randomly generated environment with
L large landmarks. Note that, the landmarks impede the way of all agents and adversaries. This
property makes the scenario much more challenging. In this scenario, the agent observes its location
and velocity, and the relative location of the nearest 5 landmarks and 5 preys. The observation
dimension is 34. (3) cooperative push: N cooperating agents are rewarded to push a large ball to a
landmark. In this scenario, each agent can observe 10 nearest agents and 5 nearest landmarks. The
observation dimension is 28. (4) heterogeneous navigation: this scenario is similar with cooperative
navigation except dividing N agents into N

2 big and slow agents and N
2 small and fast agents. If

small agents collide with big agents, they will obtain a large negative reward. In this scenario, each
agent can observe 10 nearest agents and 5 nearest landmarks. The observation dimension is 26.

Further details about this environment can be found at https://github.com/IouJenLiu/
PIC.

D.3 MAGENT

MAgent (Zheng et al., 2018) is a grid-world platform and serves another popular environment plat-
form for evaluating MARL algorithms. Jiang et al. (2020) tested their method on two scenarios:
jungle and battle. In jungle, there are N agents and F foods. The agents are rewarded by positive
reward if they eat food, but gets higher reward if they attack other agents. This is an interesting sce-
nario, which is called by moral dilemma. In battle, N agents learn to fight against several enemies,
which is very similar with the prey and predator scenario in MPE. In our experiment, we evaluate
our methods on jungle.

In our experiment, the size for the grid-world environment is 30 × 30. Each agent refers to
one grid and can observe 11 × 11 grids centered at the agent and its own coordinates. The ac-
tions includes moving and attacking along the coordinates. Further details about this environment
can be found at https://github.com/geek-ai/MAgent and https://github.com/
PKU-AI-Edge/DGN.

E FURTHER DETAILS ON SETTINGS

E.1 DESCRIPTION OF OUR BASELINES

We compare our method with multi-agent deep deterministic policy gradient (MADDPG) (Lowe
et al., 2017), a strong actor-critic algorithm based on the framework of centralized training with

2We download the maps from https://github.com/traffic-signal-control/
sample-code.

3To make the environment more computation-efficient, Liu et al. (2019) provided an improved version of
MPE. The code are released in https://github.com/IouJenLiu/PIC.
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decentralized execution; QMIX (Rashid et al., 2018), a q-learning based monotonic value function
factorisation algorithm; permutation invariant critic (PIC) (Liu et al., 2019), a leading algorithm on
MPE yielding identical output irrespective of the agent permutation; graph convolutional reinforce-
ment learning (DGN) (Jiang et al., 2020), a deep q-learning algorithm based on deep convolutional
graph neural network with multi-head attention, which is a leading algorithm on MAgent; indepen-
dent Q-learning (IQL) (Tan, 1993), decomposing a multi-agent problem into a collection of simulta-
neous single-agent problems that share the same environment, which usually serves as a surprisingly
strong benchmark in the mixed and competitive games (Tampuu et al., 2017). In homogeneous set-
tings, the input to the centralized critic in MADDPG is the concatenation of all agent’s observations
and actions along the specified agent order, which doesn’t hold the property of permutation invari-
ance. We follow the similar setting in (Liu et al., 2019) and shuffle the agents’ observations and
actions in training batch 4. In COMA (Foerster et al., 2018), it directly assume the poilcy is factor-
ized. It calculates the counterfactual baseline to address the credit assignment problem in MARL. In
our experiment, since we can observe each reward function, each agent can directly approximate the
Q function without counterfactual baseline. MFQ derives the algorithm from the view of mean-field
game(Yang et al., 2018). Notice the aim of mean-field game is to find the Nash equilibrium rather
than maxmization of the total reward of the group. Further more, it needs the assumption that agents
are identical.

E.2 NEURAL NETWORKS ARCHITECTURE

To learn feature from structural graph build by the space distance for different agents, we design
our graph neural network based on the idea of a strong graph embedding tool structure2vec (Dai
et al., 2016), which is an effective and scalable approach for structured data representation through
embedding latent variable models into feature spaces. Structure2vec extracts features by performing
a sequence of function mappings in a way similar to graphical model inference procedures, such
as mean field and belief propagation. After using M graph neural network layers, each node can
receive the information fromM -hops neighbors by message passing. Recently, attention mechanism
empirically leads to more powerful representation on graph data (Veličković et al., 2017; Jiang et al.,
2020). We employ this idea into our graph neural network. In some settings, such as heterogeneous
navigation scenario from MPE, the observations of different group of agents are heterogeneous. To
handle this issue, we use different nonlinear functions to extract the features from heterogeneous
observations and map the observations into a latent layer, then use the same graph neural networks
to learn the policy for all types of agents. In our experiment, our graph neural network has M = 2
layers and 1 fully-connected layer at the top. Each layer contains 128 hidden units.

F ABLATION STUDIES

F.1 INDEPENDENT POLICY VS INTENTION PROPGATION.

We first give a toy example where the independent policy (without communication) fails. To im-
plement such algorithm, we just replace the intention propagation network by a independent policy
network and remain other parts the same. Think about a 3× 3 2d-grid in Figure 7 where the global
state (can be observed by all agents) is a constant scalar (thus no information). Each agent chooses
an action ai = 0 or 1. The aim is to maximize a reward−(a1−a2)2−(a1−a4)2−(a2−a3)2− ...−
(a8−a9)2, (i.e., summation of the reward function on edges). Obviously the optimal value is 0. The
optimal policy for agents is a1 = a2 =, ..., a9 = 0 or a1 = a2 =, ..., a9 = 1. However independent
policy fails, since each agents does not know how its allies pick the action. Thus the learned policy
is random. We show the result of this toy example in Figure 7, where intention propagation learns
optimal policy.

F.2 GRAPH TYPES, NUMBER OF NEIGHBORS, AND HOP SIZE

We conduct a set of ablation studies related to graph types, the number of neighbors, and hop size.
Figure 8(a) and Figure 8(b) demonstrate the performance of our method on traffic graph and fully-
connected graph on the scenarios (N=49 and N=100) of CityFlow. Figure 8(c) and Figure 8(d)

4This operation doesn’t change the state of the actions.
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Figure 7: (a) a toy task on 2d-grid. (b) The performance of independent policy and intention propa-
gation.
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Figure 8: Performance of the proposed method based on different ablation settings. (a) Traffic
graph and fully connected (fc) graph on CityFlow (N=49). (b) Traffic graph and fully connected (fc)
graph on CityFlow (N=100). (c) Different number of neighbors. (d) Different hop size graph neural
networks.

demonstrate the performance under different number of neighbors and hop size on cooperative nav-
igation (N=30) respectively.

F.3 ASSUMPTION VIOLATION

The aforementioned experimental evaluations are based on the mild assumption: the actions of
agents that are far away would not affect the learner because of their physical distance. It would be
interesting to see the performance where the assumption is violated. As such, we modify the reward
in the experiment of cooperative navigation. In particular, the reward is defined by r = r1 + r2,
where r1 encourages the agents to cover (get close to) landmarks and r2 is the log function of
the distances between agents (farther agents have larger impact). To make a violation, we let r2
dominate the reward. We conduct the experiments with hop = 1, 2, 3. Figure 9 shows that the
rewards obtained by our methods are 4115 ± 21, 4564 ± 22, and 4586 ± 25 respectively. It’s
expected in this scenario, since we should use large hop to collect information from the far-away
agents.
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Figure 9: Further experimental results. Cooperative navigation (N=30) with assumption violation.

G FURTHER EXPERIMENTAL RESULTS

For most of the experiments, we run them long enough with 1 million to 1.5 million steps and stop
(even in some cases our algorithm does not converge to the asymptotic result), since every experment
in MARL may cost several days. We present the results on Cityflow in Figure 10. Figure 11
provides the experimental results on the cooperative navigation instances with N = 15, N = 30
and N = 200 agents. Note that, the instance with N = 200 is a large-scale and challenging multi-
agents reinforcement learning setting (Chen et al., 2018; Liu et al., 2019), which typically needs
several days to run millions of steps. It’s clear that IQL, MADDPG, MADDPG perform well in the
small setting (N=15), however, they failed in large-scale instances (N = 30 and N = 200). In the
instance withN = 30, MADDPGS performs better than MADDPG. The potential reason is that with
the help of shuffling, MADDPGS is more robust to handle the manually specified order of agents.
Although QMIX performs well in the instance of N = 15 and N = 30, it has large variances
in both settings. DGN using graph convolutional network can hold the property of permutation
invariance, it obtains much better performance than QMIX on these two settings. However, it also
fails to solve the large-scale settings with N = 200 agents. Empirically, after 1.5 × 106 steps,
PIC obtains a large reward (−425085 ± 31259) on this large-scale setting. Despite all these, the
proposed intention propagation (IP) approaches −329229 ± 14730 and is much better than PIC.
Furthermore, Figure 11 shows the results of different methods on (d) jungle (N=20, F=12) and (e)
prey and predator (N=100). The experimental results shows our method can beats all baselines on
these two tasks. On the scenario of cooperative push (N=100) as shown in Figure 11(f), it’s clear that
DGN, QMIX, IQL, MADDPG and MADDPGS all fail to converge to good rewards after 1.5× 106

environmental steps. In contrast, PIC and the proposed IP method obtain much better rewards than
these baselines. Limited by the computational resources, we only show the long-term performance
of the best two methods. Figure 11(f) shows that IP is slightly better than PIC in this setting.

G.1 POLICY INTERPRETATION

Explicitly analyzing the policy learned by deep multi-agent reinforcement learning algorithm is a
challenging task, especially for the large-scale problem. We follow the similar ideas from (Zheng
et al., 2019) and analyze the learned policy on CityFlow in the following way: We select the same
period of environmental steps within [210000, 1600000] and group these steps into 69 intervals (each
interval contains about 20000 steps). We compute the ratio of vehicle volume on each movement
and the sampled action volume from the learned policy (each movement can be assigned to one
action according to the internal function in CityFlow). We define the ratio of vehicle volume over
all movements as the vehicle volume distribution and define the ratio of the sampled action volume
from the learned policy over all movements as the sampled action distribution. It’s expected that a
good MARL algorithm will hold the property: these two distributions will very similar over a period
of time. Figure 12 reports their KL divergence by intervals. It’s clear that the proposed intention
propagation method (IP) obtains the lowest KL divergence (much better than the state-of-the-art
baselines). Because KL divergence is not symmetrical metric, we also calculate their Euclidean
distances. Specifically, the distance of our method is 0.0271 while DGN is 0.0938 and PIC is
0.0933.
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(c) CityFlow: Manhattan, USA.
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Figure 10: Performance of different methods on traffic lights control scenarios in CityFlow envi-
ronment: (a) N=16 (4 × 4 grid), Gudang sub-district, Hangzhou, China. (b) N=49 (7 × 7 grid), (c)
N=96 (irregular grid map), Manhattan, USA. (d) N=100 (10 × 10 grid), (e) N=225 (15 × 15 grid),
(f) N=1225 (35× 35 grid). The horizontal axis is time steps (interaction with the environment). The
vertical axis is average episode reward, which refers to negative average travel time. Higher rewards
are better. The proposed intention propagation (IP) obtains much better performance than all the
baselines on large-scale tasks .
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Figure 11: Comparison on cooperative navigation instances with different number of agents:
(a)N=15, (b) N=30 and (c) N=200 respectively. (d) jungle (N=20, F=12), (e) prey and predator
(N=100), and (f) cooperative push (N=100). The horizontal axis is environmental steps (number of
interactions with the enviroment). The vertical axis is average episode reward. The larger average
reward indicates better result. The proposed intention propagation (IP) beats all the baselines on
different scale of instances.
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Figure 12: Policy interpreation on CityFlow task (N=49)
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H HYPERPARAMETERS

The parameter on the environment. For the max episode length, we follow the similar settings like
that in the baselines (Lowe et al., 2017) . Particularly, we set 25 for MPE and set 100 for CityFlow.
For MAgent, we find that setting the max episode length by 25 is better than 100. All the methods
share the same setting.

We list the range of hyperparameter that we tune in all baselines and intention propaga-
tion. γ : {0.95, 0.98, 0.99, 0.999}, learning rate : {1, 5, 10, 100}×1e-4. activation function:
{relu, gelu, tanh}, batch size:{128, 256, 512, 1024}, gradient steps: {1, 2, 4, 8}. Number of hid-
den units in MLP: {32, 64, 128, 256, 512}, number of layers in MLP:{1, 2, 3} in all experiment. In
Qmix, GRU hidden unites are {64, 128}. A fully connected layer is before and after GRU. Hy-
pernetwork and mixing network are both single layer network(64 hidden units with Relu activation
from the Qmix paper). The parameter of intention propagation is reported in Table.2.

Table 2: Hyperparameters

Parameter Value
optimizer Adam
learning rate of all networks 0.01
discount of reward 0.95
replay buffer size 106

max episode length in MPE, MAgent 25
max episode length in CityFlow 100
number of hidden units per layer 128
number of samples per minibatch 1024
nonlinearity ReLU
target smoothing coefficient (τ ) 0.01
target update interval 1
gradient steps 8
regularizer factor(α) 0.2

I DERIVATION

I.1 PROOF OF PROPOSITION 1

We prove the result by induction using the backward view.

To see that, plug r(st,at) =
∑N
i=1 ri(s

t, ati, a
t
Ni) into the distribution of the optimal policy defined

in section 3.

p(τ) = [p(s0)

T∏
t=0

p(st+1|st,at)] exp

T∑
t=0

N∑
i=1

ri(s
t, ati, a

t
Ni)

Recall the goal is to find the best approximation of π(at|st) such that the trajectory dis-
tribution p̂(τ) induced by this policy can match the optimal trajectory probability p(τ).
Thus we minimize the KL divergence between them minπDKL(p̂(τ)||p(τ)), where p̂(τ) =

p(s0)
∏T
t=0 p(s

t+1|st,at)π(at|st). We can do optimization w.r.t. π(at|st) as that in (Levine, 2018)
and obtain a backward algorithm on the policy π∗(at|st) (See equation 13 in I.2.)

π∗(at|st) =
1

Z
exp

(
Ep(st+1:T ,at+1:T |st,at)[

T∑
t′=t

N∑
i=1

ri(s
t′ , at

′

i , a
t′

Ni)−
T∑

t′=t+1

log π(at
′
|st

′
)]
)
. (7)

Using the result equation 7, when t = T , the optimal policy is

π∗(aT |sT ) =
1

Z
exp(

N∑
i=1

ri(s
T , aTi , a

T
Ni)).
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Obviously, it satisfies the form π∗(aT |sT ) = 1
Z exp(

∑N
i=1 ψi(s

T , aTi , a
T
Ni)).

Now suppose from step t+ 1 to T , we have

π∗(at
′
|st

′
) =

1

Z
exp(

N∑
i=1

ψi(s
t′ , at

′

i , a
t′

Ni)) (8)

for t′ = t+ 1, ..., T .

Recall that we have the result

π∗(at|st) =
1

Z
exp

(
Ep(st+1:T ,at+1:T |st,at)[

T∑
t′=t

N∑
i=1

ri(s
t′ , at

′

i , a
t
Ni)−

T∑
t′=t+1

log π∗(at
′
|st

′
)]
)
.

(9)

Now plug equation 8 into equation 9, we have

π∗(at|st) =
1

Z
exp

(
Ep(st+1:T ,at+1:T |st,at)[

T∑
t′=t

N∑
i=1

ri(s
t′ , at

′

i , a
t′

Ni)−
T∑

t′=t+1

N∑
i=1

ψi(s
t′

i , a
t′

i , a
t′

Ni) + C]
)
,

(10)

where C is some constant related to the normalization term. Thus, we redefine a new term

ψ̃i(s
t, at, atNi) = Ep(st+1:T ,at+1:T |st,at)

[ T∑
t=t′

(
ri(s

t′ , at
′

i , a
t′

Ni)−
T∑

t′=t+1

ψi(s
t′ , at

′
, at

′

Ni)
)]
. (11)

Then obviously π∗(at|st) satisfies the form what we need by absorbing the constant C into the
normalization term . Thus we have the result.

I.2 DERIVATION OF THE ALGORITHM

We start the derivation with minimization of the KL divergence KL(p̂(τ)||p(τ)),
where p(τ) = [p(s0)

∏T
t=0 p(s

t+1|st,at)] exp
(∑T

t=0

∑N
i=1 ri(s

t, ati, a
t
Ni)
)
, p̂(τ) =

p(s0)
∏T
t=0 p(s

t+1|st,at)π(at|st).

KL(p̂(τ)||p(τ)) =Eτ∼p̂(τ)

T∑
t=0

( N∑
i=1

ri(s
t, ati, a

i
Ni)− log π(at|st)

)
=
∑
τ

[p(s0)

T∏
t=0

p(st+1|st,at)π(at|st)]
T∑
t=0

( N∑
i=1

ri(s
t, ati, a

t
Ni)− log π(at|st)

)
.

(12)

Now we optimize KL divergence w.r.t π(·|st). Considering the constraint
∑
j π(j|st) = 1, we in-

troduce a Lagrangian multiplier λ(
∑|A|
j=1 π(j|st) − 1) (Rigorously speaking, we need to consider

another constraint that each element of π is larger than 0, but later we will see the optimal value satis-
fies this constraint automatically). Now we take gradient ofKL(p̂(τ)||p(τ))+λ(

∑|A|
j=1 π(j|st)−1)

w.r.t π(·|s), set it to zero, and obtain

log π∗(at|st) = Ep(st+1:T ,at+1:T |st,at)[

T∑
t′=t

N∑
i=1

ri(s
t′ , at

′

i , a
t′

Ni)−
T∑

t′=t+1

log π(at
′
|st

′
)]− 1 + λ.

Therefore
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π∗(at|st) ∝ exp
(
Ep(st+1:T ,at+1:T |st,at)[

T∑
t′=t

N∑
i=1

ri(s
t′ , at

′

i , a
t′

Ni)−
T∑

t′=t+1

log π(at
′
|st

′
)]
)
.

Since we know
∑
j π(j|st) = 1, thus we have

π∗(at|st) =
1

Z
exp

(
Ep(st+1:T ,at+1:T |st,at)[

T∑
t′=t

N∑
i=1

ri(s
t′ , at

′

i , a
t′

Ni)−
T∑

t′=t+1

log π(at
′
|st

′
)]
)
. (13)

For convenience, we define the soft V function and Q function as that in (Levine, 2018), and will
show how to decompose them into Vi and Qi later.

V (st+1) := E
[ T∑
t′=t+1

N∑
i=1

ri(s
t′ , at

′

i , a
t′

Ni)− log π(at
′
|st

′
)|st+1

]
,

Q(st,at) :=

N∑
i=1

ri(s
t, ati, a

t
Ni) + Ep(st+1|st,at)[V (st+1)]

(14)

Thus V (st) = Eπ[Q(st, at) − log π(at|st)]. The optimal policy π∗(at|st) = exp(Q(st,at)∫
expQ(st,at)dat

by
plugging the definition of Q into equation 13.

Remind in section 4.1, we have approximated the optimal joint policy by the mean field approxima-
tion

∏N
i=1 qi(ai|s). We now plug this into the definition of equation 14 and consider the discount

factor. Notice it is easy to incorporate the discount factor by defining a absorbing state where each
transition have (1− γ) probability to go to that state. Thus we have

V (st+1) := E
[ T∑
t′=t+1

(

N∑
i=1

ri(s
t′ , at

′

i , a
t′

Ni)−
N∑
i=1

log qi(a
t′

i |st
′
))|st+1

]
,

Q(st,at) :=

N∑
i=1

ri(s
t, ati, a

t
Ni) + γEp(st+1|st,at)[V (st+1)].

(15)

Thus we can further decompose V and Q into Vi and Qi. We define Vi and Qi in the following way.

Vi(s
t+1) = E[

T∑
t′=t+1

(
ri(s

t′ , at
′

i , a
t′

Ni)− log qi(a
t′

i |st
′
)
)
|st+1],

Qi(s
t, ati, a

t
Ni) = ri(s

t, ati, a
t
Ni) + γEp(st+1|st,at)[Vi(s

t+1)].

Obviously we have V =
∑N
i=1 Vi and Q =

∑N
i=1Qi.

For Vi, according to our definition, we obtain
Vi(s

t) = Eat∼
∏N
i=1 qi

[ri(s
t, ati, a

t
Ni)− log qi(a

t
i|st) + Ep(st+1|st,at)Vi(s

t+1)]. (16)

Now we relate it to Qi, and have

Vi(s
t) = Eat∼

∏N
i=1 qi

[Qi(s
t
i, a

t
i, a

t
Ni)−log qi(a

t
i|st)] = E(ai,aNi)∼(qi,qNi )

Qi(s
t
i, a

t
i, a

t
Ni)−Eai∼qi log qi(a

t
i|st).

Thus it suggests that we should construct the loss function on Vi and Qi in the following way. In the
following, we use parametric family (e.g. neural network) characterized by ηi and κi to approximate
Vi and Qi respectively.
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J(ηi) = Est∼D[
1

2

(
Vηi(s

t)− E(ai,aNi)∼(qi,qNi )
[Qκi(s

t, ati, a
t
Ni)]− log qi(a

t
i|st)

)2
],

J(κi) = E(st,ati,aNt
i

)∼D[
1

2

(
Qiκi(s

t, ait, a
t
Ni)− Q̂(st, ait, a

t
Ni)
)2

]. (17)

where Q̂i(st, ati, a
t
Ni) = ri + γEst+1∼p(st+1|st,at)[Vηi(s

t+1)].

Now we are ready to derive the update rule of the policy, i.e., the intention propagation network.

Remind the intention propagation network actually is a mean-field approximation of the joint-policy.

min
p1,p2,...,pn

KL(

N∏
i=1

pi(ai|s)||π∗(a|s)).

It is the optimization over the function pi rather than certain parameters. We have proved that after
M iteration of intention propagation, we have output the nearly optimal solution qi.

In the following, we will demonstrate how to update the parameter θ of the propagation network
Λθ(a

t|st), if we use neural network to approximate it. Again we minimize the KL divergence

min
θ

EstKL(

N∏
i=1

qi,θ(a
t
i|st)||π∗(at|st))

Plug the π∗(at|st) = exp(Q(st,at))∫
expQ(st,at)dat

into the KL divergence. It is easy to see, it is equivalent to
the following the optimization problem by the definition of the KL divergence.

max
θ

Est
[
Eat∼

∏
qi,θ(ati|st)[

N∑
i=1

Qκi(s
t, ati, a

t
Ni)−

N∑
i=1

log qi,θ(a
t
i|st)]

]
.

Thus we sample state from the replay buffer and have the loss of the policy as

J(θ) = Est∼D,at∼
∏N
i=1 qi,θ(ati|st)

[

N∑
i=1

log qi,θ(a
t
i|st)−

N∑
i=1

Qκi(s
t, ati, a

t
Ni)].
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