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Nikola Ðukić Tim Lebailly Tinne Tuytelaars
KU Leuven

{nikola.djukic, tim.lebailly, tinne.tuytelaars}@kuleuven.be

ABSTRACT

Object-centric representation learning has recently been successfully applied to
real-world datasets. This success can be attributed to pretrained non-object-
centric foundation models, whose features serve as reconstruction targets for slot
attention. However, targets must remain frozen throughout the training, which
sets an upper bound on the performance object-centric models can attain. At-
tempts to update the target encoder by bootstrapping result in large performance
drops, which can be attributed to its lack of object-centric inductive biases, caus-
ing the object-centric model’s encoder to drift away from representations use-
ful as reconstruction targets. To address these limitations, we propose Object-
CEntric Pretraining by Target Encoder BOotstrapping, a self-distillation setup
for training object-centric models from scratch, on real-world data, for the first
time ever. In OCEBO, the target encoder is updated as an exponential moving
average of the object-centric model, thus explicitly being enriched with object-
centric inductive biases introduced by slot attention while removing the upper
bound on performance present in other models. We mitigate the slot collapse
caused by random initialization of the target encoder by introducing a novel cross-
view patch filtering approach that limits the supervision to sufficiently informa-
tive patches. When pretrained on 241k images from COCO, OCEBO achieves
unsupervised object discovery performance comparable to that of object-centric
models with frozen non-object-centric target encoders pretrained on hundreds of
millions of images. The code and pretrained models are publicly available at
https://github.com/djukicn/ocebo.

1 INTRODUCTION

In recent years, large-scale foundation models have become ubiquitous across many domains of deep
learning. This is mainly thanks to the development of self-supervised learning (SSL) techniques that
enable pretraining on massive amounts of unlabeled data. In computer vision, several families of
SSL techniques have emerged, focusing on (i) imposing cross-view invariance at the global (Grill
et al., 2020; Caron et al., 2021), patch (Zhou et al., 2022; Stegmüller et al., 2023) or cluster (Wen
et al., 2022; Lebailly et al., 2024) level, or (ii) reconstruction in the pixel (He et al., 2021) or latent
space (Zhou et al., 2022; Assran et al., 2023). On the other hand, research in cognitive psychol-
ogy (Benjamin Peters, 2021) suggests that human visual perception reasons about visual inputs
by decomposing scenes into sets of objects with corresponding representations. In the past years,
efforts have been made to mimic this behavior (Locatello et al., 2020; Seitzer et al., 2022; Kakoge-
orgiou et al., 2024; Didolkar et al., 2024) and move past global and patch representations towards
object-centric representations. Object-centric models are not only more biologically plausible (Ben-
jamin Peters, 2021), but can provably achieve compositional generalization (Wiedemer et al., 2024)
and have already proven useful on several downstream tasks, such as robotic control (Zadaianchuk
et al., 2021; Haramati et al., 2024), compositional generation (Singh et al., 2022; Wu et al., 2023;
Jiang et al., 2023; Sajjadi et al., 2022), and visual question answering (Xu et al., 2024). While in-
credibly promising, object-centric models have not yet been successfully pretrained on a large-scale
real-world dataset.

A slot attention-based object-centric model consists of an image encoder, slot attention encoder and
slot decoder. Initially, these were trained end-to-end with a reconstruction objective in the pixel-
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space (Locatello et al., 2020), resulting in good scene decomposition on synthetic datasets but slot
collapse 1 on real-world data. Seitzer et al. (2022) introduce a reconstruction objective in the latent
space of a pretrained encoder (e.g., DINO (Caron et al., 2021), DINOv2 (Oquab et al., 2023), etc.),
showing that the presence of informative reconstruction targets is crucial for avoiding slot collapse.
As this encoder provides reconstruction targets, we refer to it as a target encoder. Moreover, Seitzer
et al. (2022) initialize the encoder of their object-centric model with the same pretrained encoder
and keep it frozen alongside the target encoder, effectively training only the slot attention encoder
and decoder.

While the framework with the frozen target encoder achieves unprecedented performance on real-
world datasets (Seitzer et al., 2022), it has a significant limitation. Namely, the target encoder cannot
be updated, meaning that there exists an upper bound on what the object-centric model can learn
from it. In fact, despite the target encoder being pretrained on millions or even hundreds of millions
of images (Caron et al., 2021; Oquab et al., 2023), the object-centric model can efficiently consume
all its knowledge and reach the upper limit. This is demonstrated in an experiment by Didolkar
et al. (2024), where the performance plateaus with ∼16k images from MS COCO (Lin et al., 2015)
and does not further increase, even with an order of magnitude more data. This clashes with the
scalability trends observed in other (self-supervised) representation learning families. A question
arises — how to update the target encoder, thus removing the performance upper limit and enabling
large-scale pretraining of object-centric models?

Kakogeorgiou et al. (2024) show for the first time that unfreezing a few final layers of the object-
centric model’s encoder is possible and further improves the performance. Didolkar et al. (2024)
further extend this finding by fine-tuning the full encoder. A straightforward approach would be
updating the target encoder as an exponential moving average (EMA) of the object-centric model’s
encoder. However, this has been shown to result in huge performance drops (Didolkar et al., 2024).
We hypothesize that the reason for this is the lack of object-centric inductive biases in the target
encoder. Most often trained for cross-view consistency, SSL models organize their representations in
terms of semantics, rather than object instances. For example, semantically similar parts of different
objects will be close in the representation space and farther from less similar parts of the same
object. When the object-centric model tries to reconstruct such features, its inductive bias focuses
on assigning these semantically similar regions to different objects (i.e., instances), thus updating its
encoder to focus slightly less on semantics and more on positions in the image. EMA update of the
target encoder then results in informative knowledge slowly leaking at the cost of more positional
information, which ultimately degrades the performance.

In this work, we argue that a way to overcome the current limitations of object-centric learning and
unlock its full potential is by large-scale pretraining from scratch. We pose object-centric learning
as a self-distillation bootstrapping problem (Caron et al., 2021), in which the object-centric model
is distilled from the target encoder that is in turn updated as an EMA of the object-centric model’s
encoder. We propose the object-centric self-distillation loss, a patch-level loss that acts as a re-
construction objective. We apply it in a cross-view consistency fashion to enrich slot attention with
augmentation invariance. To prevent slot collapse stemming from the lack of informative reconstruc-
tion targets due to random initialization of the target encoder, we propose a cross-view patch filtering
procedure that uses cross-view correspondences to determine which patches to reconstruct at a par-
ticular training stage. The resulting model, named OCEBO allows pretraining object-centric models
on real-world datasets for the first time. The EMA updates not only remove the upper bound from
object-centric models but explicitly introduce object-centric inductive biases into the target encoder.
By training from scratch, we allow the model to learn informative instance-based features rather
than trying to reorganize semantic features from a pretrained non-object-centric encoder. When pre-
trained on ∼118k or ∼241k images from MS COCO (Lin et al., 2015), not only does OCEBO avoid
slot collapse, but also achieves performance comparable to that of object-centric models with a DI-
NOv2 (Oquab et al., 2023) target encoder pretrained on 142M images, proving the object-centric
inductive biases highly beneficial for the target encoder. Moreover, OCEBO demonstrates scalabil-
ity well beyond a few thousand training images, unlike other object-centric models. Altogether, we
believe this work paves a way towards large-scale pretraining of object-centric foundation models.

1Slot collapse refers to a scenario where slots learn to attach to positionally coherent blocks rather than
actual objects.
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2 RELATED WORK

Self-distillation. Cross-view consistency has emerged as a predominant self-supervised learning
(SSL) task in computer vision. In this framework, two views of an input image, obtained through
data augmentations, are used to enforce cross-view representation consistency while avoiding rep-
resentation collapse. While some works avoid collapse via the use of negative samples (Chen et al.,
2020; He et al., 2020), self-distillation approaches rely on positive samples only, in combination
with mechanisms such as branch asymmetry (Grill et al., 2020), stop-gradients (Chen & He, 2021;
Caron et al., 2021), momentum encoders (Grill et al., 2020; Caron et al., 2021), etc. Moreover, self-
distillation methods can enforce consistency at different levels of granularity. In global or image-
level self-supervision (Grill et al., 2020; Caron et al., 2021), consistency is enforced between global
representations that capture the whole input image. In patch-level or local self-supervision (Zhou
et al., 2022; Stegmüller et al., 2023), consistency is enforced between pairs of corresponding patches
in both views. Finally, consistency has been enforced between semantically coherent groups of
patches (Wen et al., 2022; Lebailly et al., 2024), i.e., clusters (also referred to as cluster-level or
object-level self-supervision).

Object-centric representation learning. Image-, patch- and cluster-level self-distillation methods
have achieved impressive performance across computer vision. In parallel, attempts at object-centric
representation learning have been made. An object-centric model decomposes a scene into a set of
objects with corresponding representations, which is in line with theories about underlying mech-
anisms of human visual perception (Benjamin Peters, 2021). Unlike object-level self-distillation
methods that rely on soft clustering (Wen et al., 2022; Lebailly et al., 2024), which can often group
semantically similar parts of different instances, object-centric models explicitly use inductive biases
that enforce instance-level scene decomposition. Slot attention (Locatello et al., 2020) has emerged
as a particularly successful inductive bias. It introduces an attention mechanism that promotes com-
petition among slots for different parts of input. In the original work (Locatello et al., 2020), an
autoencoding model consisting of an image encoder, slot encoder and slot decoder trained end-to-
end has been proposed. It achieved impressive performance on well-structured synthetic datasets
but resulted in slot collapse on real-world datasets. Seitzer et al. (2022) replaced the pixel space
reconstruction objective with reconstruction of features produced by a frozen pretrained non-object-
centric SSL model, enabling the training of object-centric models on real-world data. Subsequent
works focused on different decoding strategies (Kakogeorgiou et al., 2024) or fine-tuning the en-
coder while keeping the target encoder frozen (Didolkar et al., 2024). Diffusion-based objectives Wu
et al. (2023); Jiang et al. (2023) have been proposed as an alternative to reconstruction-based ob-
jective. However, these still rely on pretrained SSL models. To the best of our knowledge, direct
pretraining of object-centric models on real-world datasets has not been achieved yet.

Note that SlotCon (Wen et al., 2022) also introduces the concept of slots. However, these serve as
learnable queries whose assignment to patch representations of both views is used as a supervision
signal. In this context, a larger number of slots corresponding to the number of object types in the
training dataset is initialized, such that each slot learns to represent a particular object type. In scenes
with multiple instances of a same object type, SlotCon would not produce one representation per
instance, but rather a single slot attached to patches of all instances. This is fundamentally different
from OCEBO and other object-centric works, where instance-level decomposition is achieved.

3 METHOD

An overview of OCEBO is provided in Figure 1. We provide the necessary background in Sec-
tion 3.1, continuing with the training objective in Section 3.2, cross-view patch filtering approach in
Section 3.3 and the optional mask sharpening stage in Section 3.4.

3.1 PRELIMINARIES

Image views. Let x ∈ Rh×w×c be an image from the training dataset. We obtain two views
x1,x2 ∈ Rh×w by applying two randomly sampled sets of data augmentations to the original image
x. When sampling augmentations, we ensure that there exists some overlap between x1 and x2. We
define the inverse augmentation function invaug : Rh×w×c 7→ Rh×w×c, such that invaug(x1)
and invaug(x2) cut the overlapping regions from views x1, x2 and interpolate them back to size
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Figure 1: Overview of OCEBO: View x1 is processed by the object-centric model’s encoder (top
branch), producing global and patch representations z̃1 and z1, respectively. Patch representations
are sent through the slot attention encoder and decoder, where the latter outputs a reconstruction of
the input patch representations q1. Target encoder (bottom branch) processes both views x1 and x2

separately and produces their global and patch representations z̃t,1, zt,1, z̃t,2 and zt,2, respectively.
Patch representations zt,1 and zt,2 are used by the cross-view patch filtering approach to infer infor-
mative target patches and produce the mask m. The inverse augmentation operation (invaug) is
applied to the target features of x2 and reconstructions of x1 to make them correspond to the over-
lapping region (purple part of the image) before combining them with the mask m and applying the
object-centric loss Loc. Global loss Lglobal is applied to global representations z̃1 and z̃t,2.

h × w × c (see Wen et al. (2022) for more details). We denote outputs of the invaug operation
with a hat, e.g., invaug(x1) = x̂1.

Object-centric model. The encoder f of our object-centric model is a Vision Transformer
(ViT) (Dosovitskiy et al., 2021). For a view x1, f outputs a global image representation (i.e.,
the [CLS] token) z̃1 ∈ Rd and patch representations z1 ∈ RN×d, where d is the embedding
dimension, p is the patch size, and N = h/p×w/p is the number of patches. Patch representations
z1 are then processed by a slot attention encoder, which maps them into s ds-dimensional slots.
These are finally decoded by a slot decoder, resulting in a reconstruction q1 ∈ RN×d of the original
input patch representations. Similarly, we define z̃2, z2 and q2 for the view x2. We also the define
the inverse augmentation operation for representations. For instance invaug(q1) cuts the features
of q1 according to the corresponding overlapping region of x1 and x2 and interpolates them back
to the original size of q1. Applying this operation to representations ensures they represent only the
overlapping region and are aligned.

Target encoder. Target encoder ft has the identical architecture as the encoder f of the object-
centric model. Similarly to f , ft outputs global and patch representations z̃t,1, z̃t,2, zt,1 and zt,2.
Initially, the parameters of ft are the same as the parameters of f . After each update of the object-
centric model, the parameters of ft are modified as an exponential moving average (EMA) of the
parameters of f .

3.2 OBJECT-CENTRIC TRAINING OBJECTIVE

Our training framework is formulated as a self-distillation bootstrapping problem (Caron et al.,
2021), where the object-centric model can be viewed as the student and the target encoder as the
teacher. To this end, we introduce projection heads h and ht, where ht is updated as an EMA of h.
We define the object-centric self-distillation loss as
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Locp =
1

2

(
N∑
i=1

H(pt,1,p1) +

N∑
i=1

H(pt,2,p2)

)
, (1)

where H(a, b) =
∑

j −aj log bj and pt,1, pt,2, p1, p2 are sharpened (and centered) L-dimensional
distributions obtained from outputs of the target encoder and the object-centric model subsequently
mapped by projection heads, i.e.,

p{1,2} = softmax
L

(
h(q{1,2})/τ

)
pt,{1,2} = softmax

L

((
ht(zt,{1,2})− ct

)
/τt
) (2)

with temperature parameters τ and τt controlling the scaling and ct controlling the centering.

Note that in most self-distillation scenarios, student and teacher have identical architectures. To
avoid a trivial solution, cross-entropy is applied between features of two different views rather than
within the same view as in equation 1. In our case, this is possible because the target encoder does
not have the slot attention encoder and decoder. Nonetheless, by imposing Locp across views, we
enforce augmentation invariance, which improves generalization of the object-centric model. We
use the invaug operation to ensure that we apply the loss only in the intersection of views x1 and
x2. Equations 1 and 2 then become

Loc =
1

2

(
N∑
i=1

H(pt,1,p2) +

N∑
i=1

H(pt,2,p1)

)
, (3)

and

p{1,2} = softmax
L

(
invaug

(
h(q{1,2})

)
/τ
)

pt,{1,2} = softmax
L

((
invaug

(
ht(zt,{1,2})

)
− ct

)
/τt
)
.

(4)

Similarly to other patch-level self-distillation works (Zhou et al., 2022; Stegmüller et al., 2023;
Lebailly et al., 2024), we apply an additional cross-view global loss introduced by Caron et al.
(2021) to ensure the training stability and improve the quality of representations. We define

Lglobal =
1

2

(
N∑
i=1

H(p̃t,1, p̃2) +

N∑
i=1

H(p̃t,2, p̃1)

)
, (5)

where

p̃{1,2} = softmax
L

(
h(z̃{1,2})/τ

)
p̃t,{1,2} = softmax

L

((
ht(z̃t,{1,2})− c̃t

)
/τt
)
.

(6)

The final training objective is L = λocLoc + λglobalLglobal.

3.3 CROSS-VIEW PATCH FILTERING

Previous works (Seitzer et al., 2022; Didolkar et al., 2024) have shown that avoiding slot collapse
requires reconstruction targets of good quality. However, the features from our randomly initialized
target encoder do not satisfy this. We propose the cross-view patch filtering condition as a proxy
for the quality of target encoder features and apply the object-centric loss only to the patches that
satisfy it. Intuitively, if we take a representation of a particular patch in one view and compute its
distance to all patches of the other view, its nearest neighbor should be the exact same patch in the
other view. If the target encoder’s representations do not capture this, we do not use them in Loc. We
allow some slack in the target encoder and consider k nearest neighbors instead of just one. More
formally, we define a binary mask m ∈ {0, 1}N , whose i-th entry is defined as
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mi =

{
1 if i ∈ nns

k
(ẑt,1, ẑt,2)i ∧ i ∈ nns

k
(ẑt,2, ẑt,1)i

0 otherwise,
(7)

where nnsk(ẑt,1, ẑt,2)i denotes indices of k nearest neighbors of the i-th patch of ẑt,1 in ẑt,2. Note
that ẑt,1 = invaug(zt,1) and ẑt,2 = invaug(zt,2).

Incorporating the mask m into equation 3 yields

Loc =
1

2

(
N∑
i=1

miH(pt,1,p2) +

N∑
i=1

miH(pt,2,p1)

)
. (8)

In the initial epochs of training, the entries in m are mostly 0 and they keep increasing throughout
the training. This allows the model to learn informative features and prevents it from collapsing (see
Section 4.2).

3.4 MASK SHARPENING STAGE

Due to a constantly changing target encoder, we sometimes observe a lack of clear boundaries in
the masks produced by OCEBO. We mitigate this by introducing an optional shorter mask sharp-
ening stage, in which we keep training the object-centric model with a frozen target and an ℓ2
reconstruction loss instead of the self-distillation loss. This can be viewed as a procedure similar
to fine-tuning of FT-DINOSAUR (Didolkar et al., 2024), but with a specialized target encoder en-
riched with object-centric inductive biases instead of the non-object-centric DINOv2 target encoder.
After the sharpening step, masks exhibit clearer boundaries, resulting in improved unsupervised
object-discovery performance (see Section 4.2 for details).

4 EXPERIMENTS

We start by outlining the implementation details (training datasets, evaluation protocols, model ar-
chitecture and the training setup) of OCEBO in Section 4.1. In Section 4.2, we demonstrate that
OCEBO can be pretrained from scratch on real-world data without slot collapse. We justify the
design choices and demonstrate data scalability, further discussing the requirements for suitable
pretraining datasets. Finally, we put the performance of OCEBO in context by comparing it to
state-of-the-art object-centric approaches that rely on non-object-centric target encoders pretrained
on orders of magnitude more data in Section 4.3. In addition, in Appendix A we demonstrate that
OCEBO also produces high-quality patch representations, which is an important step towards ver-
satile backbones capable of performing well in both object- and patch-level downstream tasks.

4.1 IMPLEMENTATION DETAILS

Training data. OCEBO is trained on MS COCO (Lin et al., 2015), the most common real-world
dataset in the object-centric literature. We use the train2017 COCO split with approximately
118k images. Additionally, we construct a larger dataset of ∼241k images named COCO+ by com-
bining the train2017 and unlabeled2017 splits. We follow the standard data augmentation
procedure with random crops resized to 224× 224, horizontal flips, solarization, blurring and color
jitter (Caron et al., 2021).

Evaluation protocols. Current trends in object-centric learning define in-distribution unsuper-
vised object discovery as the go-to evaluation task for object-centric models (Seitzer et al., 2022;
Kakogeorgiou et al., 2024). This means that a model is trained on a training split of a dataset and
evaluated on the test split of the very same dataset. We believe this to be suboptimal as it does not
agree with other tasks in computer vision. Moreover, OCEBO is trained from scratch and pretrain-
ing it on a small synthetic dataset is not a possibility. We believe the recently proposed zero-shot
unsupervised object discovery (Didolkar et al., 2024) to be a more natural and fair way of evaluating.
In this context, the models are trained on COCO and evaluated on 7 natural and synthetic datasets
– MOVi-C and MOVI-E (Greff et al., 2022), ScanNet (Dai et al., 2017), YCB (Calli et al., 2015),
ClevrTex (Karazija et al., 2021), Pascal VOC (Everingham et al., 2010) and EntitySeg (Qi et al.,
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2023). For brevity, we report results on two natural and two synthetic datasets – MOVi-C, MOVi-E,
Pascal VOC and EntitySeg. We find the conclusions on the remaining three synthetic datasets iden-
tical. We use validation splits of each dataset and 11, 24, 7 and 7 slots for MOVi-C, MOVi-E, Pascal
VOC and EntitySeg, respectively. We report the foreground-Adjusted Rand Index (FG-ARI) and
mean Best Overlap (mBO) as evaluation metrics. ARI treats ground truth and predicted masks as
clustering assignments and measures their similarity. FG-ARI does the same, albeit on foreground
pixels only. The mBO metric assigns to each ground truth mask a predicted mask with the highest
overlap and reports the mean Intersection over Union (IoU) between the assignments.

Architecture. Both f and ft follow the ViT-S/16 (Dosovitskiy et al., 2021) architecture. The slot
attention encoder operates on s = 7 slots during training and consists of 3 layers with ds = 256.
Each layer consists of slot attention (Locatello et al., 2020) with a single attention head, a Gated
Recurrent Unit and a 2-layer MLP with hidden dimension of 1024. Slot decoder is a 3-layer MLP
with the hidden dimension of 2048. The projection heads are identical to those of DINO (Caron
et al., 2021), with the exception of setting L = 8192 instead of the original 65536. Compared to the
DINO head, ours projects every patch rather than just the global representations and we find that the
gain in performance does not justify the computational cost.

Optimization. We train the model for 300 epochs with an additional mask sharpening stage of
100 epochs. As in DINO, target encoder updates are performed with momentum following a cosine
schedule between 0.996 and 1. Scaling temperatures are τ = 0.1 and τt = 0.07, with the latter
being linearly increased from the initial 0.04 during a 30-epoch warmup stage. Learning rate is
linearly ramped up to the base value of 0.0003 during the first 10 epochs and decayed following a
cosine schedule. If not mentioned, a hyperparameter has the same value as in DINO. Finally, we set
λoc = λglobal = 1.

4.2 ANALYSIS

Table 1: FG-ARI and mBO for one synthetic (MOVi-E) and one real-world (EntitySeg) dataset
attained by different variants of OCEBO. The first row shows the base OCEBO model trained on
COCO, while the subsequent rows represent modifications. Column "Collapse" refers to whether
slot collapse has occurred (color green for No denotes that this is a desired scenario). We report
results on two datasets for brevity but find the conclusions to be identical across other datasets in the
zero-shot benchmark (Didolkar et al., 2024). We report the quantitative measure of slot collapse d
described in Section 4.2.

Model d Collapse MOVi-E EntitySeg

FG-ARI mBO FG-ARI mBO

OCEBO 0.13 NO 54.8 25.8 41.5 15.3
(a) W/o patch filtering 0.02 YES 27.7 10.6 31.7 10.0
(b) λoc = 0 0.02 YES 8.0 3.4 30.1 7.6
(c) Before sharpening 0.21 NO 44.0 20.8 39.4 12.8
(d) COCO+ 0.22 NO 66.8 22.1 44.2 16.0

Measuring slot collapse. Slot collapse is the main mode of failure of object-centric models. When
slot collapse occurs, slots do not attach to meaningful subparts of the scene, i.e., objects, but rather
to positionally coherent regions of the image (e.g., block-like structures or bands going from top
to bottom or left to right). Hence, avoiding slot collapse is of the utmost importance when train-
ing object-centric models. The simplest way to identify slot collapse is to qualitatively observe
predictions made by the model. In addition, we introduce a quantitative measure of slot collapse.
Consider a patch present in both views of the image and assume it is located at index i in view
1 and index j in view 2, i.e., q1,i and q2,j . Consider also a patch in view 2 at index i, i.e., q2,i.
Intuitively, when no slot collapse occurs, the similarity of q1,i and q2,j must be higher than that
of q1,i and q2,i. When a positional collapse occurs, the opposite holds. We introduce a measure
d = sim(q1,i, q2,j)−sim(q1,i, q2,i) averaged over the validation set as a measure of slot collapse.

Cross-view patch filtering. First and foremost, we analyze OCEBO’s slot collapse avoidance ca-
pabilities. The lack of informative reconstruction targets has been shown to be the main reason
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for slot collapse in object-centric models Seitzer et al. (2022). Due to random initialization of our
target encoder, reconstruction targets are noisy and not always informative in the initial stages of
training. Cross-view patch filtering therefore serves as a collapse prevention mechanism by filtering
the patches that should not be considered for self-distillation. As indicated in Table 1 (a), omitting
this mechanism immediately results in slot collapse. The importance of patch-filtering is further
illustrated by Figure 2. In the first epoch of training, only ∼10% of patches satisfy the patch filter-
ing condition, meaning that the vast majority of reconstruction target is not informative and should
not be used. As the training progresses, the percentage of supervised patches increases drastically
and finally starts plateauing at ∼70% around epoch 200. We perform additional ablations of the
cross-view patch filtering approach in Appendix B.
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Figure 2: The percentage of supervised patches, i.e., those that satisfy the cross-view patch filtering
condition throughout the model training. Blue line corresponds to the model trained on COCO,
while the orange line corresponds to that trained on COCO+.

Object-centric inductive biases. Second, we demonstrate the importance of injecting object-
centric inductive biases into the target encoder by using the object-centric training objective and
EMA updates of the target encoder. Table 1 (b) shows the results achieved without the object-
centric training objective, i.e., by setting λoc = 0 and training slot attention encoder and decoder
only during the mask sharpening stage. This reduces OCEBO to pretraining of a DINO model
on COCO followed by FT-DINOSAUR fine-tuning with the frozen COCO-pretrained DINO target
encoder. Interestingly, this also leads to collapse, although a different mode of collapse in which
all pixels are assigned to one slot. Hence, DINO pretraining on COCO is not sufficient to learn
informative reconstruction targets.

Moreover, the importance of object-centric inductive biases can be clearly observed by comparing
PCA visualizations (see Figure 3) of features produced by OCEBO and DINOv2. In the first three
columns, OCEBO separates the bear and human instances, while DINOv2 groups them together.
Another interesting observation can be made from the remaining columns – OCEBO learns to en-
code not only instances but also the part-whole hierarchies. In the first three principal components,
the food plate is treated as a whole, while principal components 4–6 encode each food type as a
separate instance. Similarly, different groups of people are further divided in principal components
4–6.

Mask sharpening. Interestingly, segmentation masks produced by the slot decoder of OCEBO
exhibit a lack of clear boundaries between objects. We attribute this to the constant change of
reconstruction targets. Introducing a shorter mask sharpening stage in which the targets are kept
frozen and the self-distillation objective is replaced by a typical ℓ2 loss improves the quality of
segmentation masks, as indicated In Table 1(c).

Scalability. Object-centric approaches that rely on pretrained encoders have been shown to ex-
hibit poor scalability with added data Didolkar et al. (2024). In fact, when trained on COCO, their
performance saturates with a subset of 16384 COCO images. To achieve large-scale pretraining of
object-centric models, they must actually scale with data. We demonstrate the scalability of OCEBO
by training it on COCO+, a dataset roughly twice the size of COCO. Table 1(d) indicates that the
performance increases consistently across datasets in terms of FG-ARI. On MOVi-E, we observe a
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Figure 3: PCA visualizations of the representations produced by the target encoder of OCEBO and
by DINOv2. RGB values correspond to principal components 1–3 or 4–6.

slight decrease in mBO but at the cost of high increase in FG-ARI. As we note in more detail in
Section 4.3, a trade-off between FG-ARI and mBO should always be taken into account. However,
we argue that a large increase in FG-ARI is highly beneficial as simple techniques, such as a short
high-resolution training stage (Didolkar et al., 2024) can boost the performance in terms of mBO.
We provide a more detailed scaling plot in Appendix C.

However, scale of the data is not the only important consideration. COCO is a curated dataset
containing complex scenes with several objects per scene. This is exactly the type of data required by
object-centric models. For instance, ImageNet (Russakovsky et al., 2015) is an order of magnitude
larger than COCO (∼1.3M images) but is not a suitable pretraining dataset for object-centric models
as it mostly contains simple scenes with a single object taking up a large and central part of the scene.
In fact, an attempt to train OCEBO on ImageNet results in a drastically lower performance (FG-ARI
46.0, mBO 16.0 on MOVi-E and 39.5 FG-ARI, 11.8 mBO on EntitySeg). Constructing a large-scale
dataset suitable for pretraining of object-centric models remains an open question.

4.3 COMPARISON TO STATE-OF-THE-ART OBJECT-CENTRIC MODELS

So far, we have demonstrated that OCEBO enables pretraining of object-centric models from scratch
on real-world data while avoiding slot collapse. To put its performance in context, we compare it
with state-of-the-art object-centric models. The results are reported in Table 2.

Table 2: Performance comparison of OCEBO and state-of-the-art object-centric models. Numbers
for models other than OCEBO are taken from Didolkar et al. (2024).

Pretrained encoder MOVi-C MOVi-E Pascal VOC EntitySeg

FG-ARI mBO FG-ARI mBO FG-ARI mBO FG-ARI mBO

SlotDiffusion (Wu et al., 2023) DINO 66.9 43.6 67.6 26.4 21.1 42.0 43.7 25.1
SPOT (Kakogeorgiou et al., 2024) DINO 63.0 40.8 47.8 21.5 21.2 50.6 41.7 27.4

DINOSAUR (Seitzer et al., 2022) DINOv2 67.0 34.5 71.1 24.2 24.0 37.2 43.5 19.4
FT-DINOSAUR (Didolkar et al., 2024) DINOv2 71.3 44.2 71.1 29.9 24.0 37.6 48.1 28.4

OCEBO None 63.1 27.3 66.8 22.1 22.4 34.4 44.2 16.0

We note several things here. First, the models are not directly comparable. OCEBO is pretrained
from scratch on COCO+, while the rest of the models rely on image encoders pretrained on 1.3M
(DINO) or 142M (DINOv2) images. Second, in this work we do not focus on tuning the per-
formance and achieving the highest possible numbers. For instance, the autoregressive decoding
strategy of SPOT Kakogeorgiou et al. (2024) is known to significantly improve the mBO metric,
while FT-DINOSAUR (Didolkar et al., 2024) uses a top-k MLP decoder and a short high-resolution
training stage that improve both FG-ARI and mBO. Rather than incorporating these additional com-
ponents, we aim to demonstrate that pretraining is possible and scales well with data. Moreover, the
results indicate that we can even achieve performance comparable to that of state-of-the-art mod-
els, although OCEBO has seen orders of magnitude less images during training. This emphasizes
the importance of object-centric pretraining rather than adapting an encoder already pretrained in
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a non-object-centric way. However, we also predict that incorporating components from SPOT or
FT-DINOSAUR (or subsequent works) will be of the utmost importance for reaching the highest
possible performance. Finally, there is always a trade-off between FG-ARI and mBO inherently
present in every model. For instance, models such as DINOSAUR Seitzer et al. (2022) attain higher
FG-ARI at the cost of mBO due to the use of a MLP-based decoder, which we also use in OCEBO
(we observe the same trend here). On the other hand, autoregressive decoders such as that of SPOT
(Kakogeorgiou et al., 2024) increase mBO at the cost of FG-ARI. Therefore, comparing perfor-
mance gains is further complicated by this as no metric is clearly better than others. This can be
clearly observed by comparing methods in Table 2.

5 CONCLUSION

We propose OCEBO, the first ever pretraining scheme for object-centric models. The inspiration
for this work stems from the limitations of state-of-the-art object-centric models caused by the use
of frozen pretrained target encoders that cannot be meaningfully updated during training and thus
impose an upper bound on attainable performance and result in poor data scalability. We demonstrate
that through EMA updates of the target encoder we remove the upper limit and that training from
scratch allows the target encoder to capture object-centric inductive biases, thus utilizing the data to
its full extent. OCEBO scales well with dataset size and achieves comparable performance despite
seeing only a fraction of training data seen by pretrained non-object-centric models used as target
encoders in other works.

A notable limitation of this work is the dataset size used for pretraining. Namely, for object-centric
pretraining is an open question as datasets with simple scenes such as ImageNet prevent object-
centric models from capturing the most important information – objects. We hope that this work
and the novel insights it brings (most importantly, the possibility to scalably pretrain object-centric
models) inspires the community to explore object-centric pretraining on larger datasets and ulti-
mately pursue the goal of large-scale object-centric foundation models.

Reproducibility Statement. Code and models will be made available upon acceptance of the
paper in a public repository. This will include a README file with instructions for setting up the
environment and reproducing the experiments All datasets used are publicly available.
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A ESTIMATING THE QUALITY OF PATCH-LEVEL REPRESENTATIONS

Object-centric models that keep the pretrained encoder frozen throughout the training inherently
keep the encoder as is and retain its patch-level representation capabilities. On the other hand, works
like SPOT or FT-DINOSAUR fine-tune the encoder and thus change its weights and the quality of
patch-level representations. Moreover, as OCEBO is pretrained from scratch, it would ideally learn
not only good object-level representations but also good patch-level representation, thus becoming
a versatile model useful for a variety of downstream tasks. To verify this, we evaluate object-
centric models in a dense downstream task of in-context semantic segmentation (i.e., retrieval-based
scene understanding), as described in Balažević et al. (2023); Lebailly et al. (2024). We evaluate
on Pascal VOC Everingham et al. (2010), subsampling its training set with factors of 128, 64, 8
and 1. We fit a nearest neighbors classifier with the number of neighbors set to 50 and evaluate
the performance on the full validation set. We compare OCEBO to a state-of-the-art patch-level
self-supervised approach CrOC (Stegmüller et al., 2023). For SPOT and FT-DINOSAUR, we report
the performance of their original backbones and the fine-tuned versions. The results are reported in
Table 3. OCEBO achieves performance comparable to that achieved by state-of-the-art patch-level
model. Interestingly, fine-tuning the encoder for object-centric learning degrades the quality of patch
representations, although not drastically. This is expected as a consequence of non-object-centric
model serving as a target encoder, thus forcing the object-centric model to adjust its features towards
slightly more spatially-oriented representations.

Table 3: Retrieval-based scene understanding performance. We report mIOU on the Pascal VOC
dataset, where the training set is subsampled with factors of 128, 64, 8 and 1.

Model Backbone architecture Pretraining dataset 1/128 1/64 1/8 1/1

OCEBO ViT-S/16 COCO 28.5 32.3 39.6 46.2
CrOC ViT-S/16 COCO 27.1 31.4 40.3 47.1

SPOT ViT-B/16 ImageNet 25.9 31.9 41.9 50.2
DINO ViT-B/16 ImageNet 29.2 34.7 47.2 54.9

FT-DINOSAUR ViT-S/14 LVD142M 33.9 43.1 58.1 65.7
DINOv2 ViT-S/14 LVD142M 46.9 53.7 64.7 69.05

B ADDITIONAL ABLATIONS OF CROSS-VIEW PATCH FILTERING

In Section 4.2 we demonstrate that without the cross-view patch filtering strategy, OCEBO suffers
from slot collapse. However, one could wonder whether the cross-view strategy is necessary or if a
simpler heuristic would achieve the same effect. We design two simpler heuristics that rely on 1) su-
pervising all patches but giving the object-centric objective low weight and increasing it throughout
the training or 2) randomly selecting patches to supervise with the drop ratio decreasing throughout
the training. The results are shown in Table 4. Although better than the case where no object-centric
objective is used (see Table 1 (b)), both versions fall short to the cross-view patch filtering strategy
of OCEBO. Interestingly, the slot collapse measure is significantly lower compared to OCEBO and
qualitative inspection shows predictions not completely collapsed but closer to collapse in compar-
ison with OCEBO. This further corroborates the need for selecting informative patches rather than
just letting the global loss drive initial stages of training.
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Table 4: FG-ARI and mBO for one synthetic (MOVi-E) and one real-world (EntitySeg) dataset at-
tained by different variants of OCEBO’s cross-view patch filtering approach. The first row shows
the base OCEBO model trained on COCO, while the subsequent rows represent modifications. Col-
umn "Collapse" refers to whether slot collapse has occurred (color green for No denotes that this
is a desired scenario). We report results on two datasets for brevity but find the conclusions to be
identical across other datasets in the zero-shot benchmark (Didolkar et al., 2024). We report the
quantitative measure of slot collapse d described in Section 4.2.

Model d Collapse MOVi-E EntitySeg

FG-ARI mBO FG-ARI mBO

OCEBO 0.093 NO 54.8 25.8 41.5 15.3
(a) All patches, increasing weight -0.017 ? 49.2 22.4 36.9 13.5
(b) Random patches, decreasing drop ratio -0.026 ? 44.0 20.0 36.7 12.7

C SCALING PLOTS

From Section 4.2 we determine that OCEBO scales well in the range of COCO and COCO+ dataset
sizes. In Figure 4 we aim to better depict the scaling laws by providing a few more data points. The
plots indicate that the model still scales well and does not saturate near the size of COCO+ dataset,
hinting that further scaling is possible. Note that due to the design of OCEBO (MLP decoder of slot
attention), it is among the object-centric methods that favor FG-ARI rather than mBO, as discussed
in Section 4.3.
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Figure 4: Top: Scaling plots for FG-ARI (left) and mBO (right) with dataset sizes of 215, 216, 217
and 218 sampled from COCO or COCO+. Bottom: FG-ARI vs. mBO plot where point sizes indicate
the dataset size (the smallest point corresponds to 215, while the largest corresponds to 218.
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