

DexGarmentLab

Dexterous Garment Manipulation Environment with Generalizable Policy

Jiarui Wang¹ Jiaqi Liang¹ Ziyu Zhu¹ Haoran Geng² Jitendra Malik² Pieter Abbeel² Hao Dong^{1†}

¹Peking University ²University of California, Berkeley

Project Page

S^c ENVIRONMENT

Dexterous hands can handle garments with diverse deformables effortlessly, but relavant simulation environment is absent.

MOTIVATION

DATA

Data required for garment manipulation is much larger, but teleoperation-based data collection is both time and labor costly.

POLICY

The shapes and styles of garments are diverse, which makes current policy generalize poorly across category-level garments.

Grasp with AttachmentBlock

Better Simulation Performance

More nature interactions between dexterous hands and garment

15 Task Scenes

2500+ Garments

Grasp with AttachmentBlock

from GarmentLab)

folded garments can stably

maintain their

folded states

Grasp with Our Precise Simulation

- Given demo points in demo garment, we can get target points in target garment because of same structure of category-level garment.
- With single expert demonstration, robot can automatically finish task on new garment.

Our generalizable policy (HALO) includes two components:

- 1. Garment Affordance Model (GAM), which generate generalizable affordance points for robots to locate and move to target area.
- 2. Structure-Aware Diffusion Policy (SADP), which can assist in adjust-ing the trajectories according to the garments' own shapes and structure, thereby better accomplishing the tasks

Without GAM: robots may fail to catch the right manipulation points. Without SADP: robots may fail to adjust the trajectories based on garment shapes and structures.

Initial State

Real-World Result

The test samples have different shapes, length, deformations while position of garments \(\frac{2}{5} \) and interaction objects are variable. HALO can handle all the situations smoothly.

Test Sample

Execution

Initial State

Execution

Execution

Initial State

