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Abstract
To interact with humans and act in the world,
agents need to understand the range of language
that people use and relate it to the visual
world. While current agents can learn to
execute simple language instructions, we aim
to build agents that leverage diverse language—
language like “this button turns on the TV” or
“I put the bowls away”—that conveys general
knowledge, describes the state of the world,
provides interactive feedback, and more. Our
key idea is that agents should interpret such
diverse language as a signal that helps them
predict the future: what they will observe, how
the world will behave, and which situations
will be rewarded. This perspective unifies
language understanding with future prediction
as a powerful self-supervised learning objective.
We instantiate this in Dynalang, an agent that
learns a multimodal world model to predict future
text and image representations, and learns to act
from imagined model rollouts. While current
methods that learn language-conditioned policies
degrade in performance with more diverse types
of language, we show that Dynalang learns to
leverage environment descriptions, game rules,
and instructions to excel on tasks ranging from
game-playing to navigating photorealistic home
scans. Finally, we show that our method enables
additional capabilities due to learning a generative
model: Dynalang can be pretrained on text-only
data, enabling learning from offline datasets, and
generate language grounded in an environment.

1 Introduction
A long-standing goal of artificial intelligence is to develop
agents that can use language to interact naturally with people
in the physical world (Winograd, 1972). Current embod-
ied agents can follow basic instructions like “bring me the
apple” (Driess et al., 2023). However, the full potential of
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language affords much richer communication beyond task
specification. Consider a household robot—beyond delegat-
ing tasks to it one after another (“clean the dishes...pick up
the toy...”), one would imagine that a truly natural interac-
tion would allow us to communicate beyond the “here and
now” (Hockett & Hockett, 1960): sharing knowledge such
as “the top left button turns off the TV,” providing situational
information such as “we’re out of milk,” and coordinating
by saying “I already vacuumed the living room.” Language
communicates what we know about the state of the world
or how things work, not just what to do.

It is unclear how to best integrate diverse kinds of language
with vision and action in a single agent. In many ways,
current methods are specialized for learning from language
instructions, e.g. by embedding a task description (“pick
up the blue block”) at the beginning of an episode and out-
putting a sequence of motor controls (Brohan et al., 2023;
Nair et al., 2021). To freely collaborate with humans, agents
ideally would continuously integrate language inputs while
acting in the environment. This natural interaction requires
us to move beyond language “prompting” towards methods
that input and output language continuously, along with ac-
tion and video. More crucially, we hypothesize that directly
mapping diverse language to optimal actions is a difficult
learning problem, because language and optimal actions
may only be weakly correlated if their dependency is com-
plex. Consider the example “I put the bowls away”: if the
task at hand is cleaning up, the agent should respond by
moving on to the next cleaning step, whereas if it is serving
dinner, the agent should retrieve the bowls. The key question
is thus what the right learning signal is for understanding
the full range of language while acting in the world.

In this work, we propose that agents can ground diverse
kinds of language by using it to predict the future. We
instantiate this idea with Dynalang, an agent that learns a
joint generative model of language and vision (i.e., a multi-
modal world model; Ha & Schmidhuber (2018)), and uses
the model to plan and act. We build on the DreamerV3
algorithm (Hafner et al., 2023), training the world model
to predict future latent representations of all observation
modalities, using experience collected from acting in the en-
vironment. In contrast to directly predicting what to do with
a language-conditioned policy, Dynalang decouples learn-
ing to model the world with language (supervised learning
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Figure 1. Dynalang learns to use language to make predictions about future (text + image) observations and rewards. Here, we show real
model predictions in the HomeGrid environment. From the past text “the bottle is in the living room”, the agent predicts at timesteps
61-65 that it will see the bottle in the final corner of the living room. From the text “get the bottle” describing the task, the agent predicts
that it will be rewarded for picking up the bottle. The agent can also predict future text observations: given the prefix “the plates are in the”
and the plates it observed on the counter at timestep 30, the model predicts the most likely next token is “kitchen.”

with prediction objectives) from learning to act given that
model (reinforcement learning with task rewards). Future
prediction provides a rich grounding signal for learning what
language utterances mean, which in turn equip the agent
with a richer understanding of the world to solve complex
tasks. Intuitively, the utterance “I put the bowls away” helps
agents make better predictions about future observations
(i.e., that if it opens the cabinet, it will observe the bowls
there). Prior knowledge such as “wrenches can be used to
tighten nuts” helps agents predict environment dynamics.
We can also formulate instruction following predictively—
instructions help agents predict how they will be rewarded.

World models are well-studied in model-based RL (Ha
& Schmidhuber, 2018; Hafner et al., 2023)—our goal is
not to introduce a new world modeling architecture or to
demonstrate that world models can be augmented with
language, but to investigate whether learning language-
conditioned world models enable agents to scale to more
diverse language use, compared to language-conditioned
policies. First, we explore the design space for augment-
ing model-based agents with language, demonstrating that
many ways of fusing language and vision in a world model
underperform the simple and effective architecture in Dy-
nalang. Then, we investigate whether Dynalang can indeed
learn from diverse kinds of language, using language be-
yond instructions to better solve tasks, while maintaining
strong performance on instruction following benchmarks.
Our evaluation focuses on scaling up language complexity
in a controlled way (as opposed to task or visual complexity)
across a wide range of simulated environments. We build a
home cleanup environment focused on testing agents’ abil-
ity to understand diverse language types, HomeGrid, where
Dynalang learns to use language hints about future observa-
tions, environment dynamics, and corrections, outperform-

ing strong model-free language-conditioned policies whose
performance degrades with more diverse language. On the
Messenger benchmark (Hanjie et al., 2021), we show that
Dynalang can read game manuals to fit the most challenging
stage of the game, outperforming task-specific architectures.
In vision-language navigation (Krantz et al., 2020), we show
that Dynalang can also follow instructions in a visually and
linguistically complex domain.

Additionally, we explore whether Dynalang enables addi-
tional scalability benefits and capabilities due to learning
a generative model. While our previous experiments train
agents from scratch, pretraining on offline text data is known
to be an important ingredient for scaling models to open-
domain language. We validate that we can pretrain Dy-
nalang on single-modality text-only data without actions or
rewards at a small scale, demonstrating that both in-domain
text and a general-domain text dataset of ∼500M tokens
improves downstream RL performance. Finally, we explore
whether we can leverage the generative language-vision
world model to generate language, enabling the agent to
speak. In our framework, what the agent sees can inform fu-
ture token predictions; by augmenting the action space with
language and regularizing it towards the generative model,
we demonstrate that Dynalang can gather information to
answer questions about a simple visual environment.

Our contributions:

• We propose that predicting the future in a multimodal
world model allows embodied agents to ground diverse
types of language to visual experience. We implement
Dynalang to instantiate this idea.

• We explore the design space for fusing language and
vision in a world model and find a simple and effective
architecture.

2



Learning to Model the World With Language

LangRoomHomeGrid Messenger Habitat

En
vi
ro
nm

en
t

In
pu
ts

Ac
tio
ns

Pixels Instructions

Walk into the 
living room and 
turn right. Stop 
by the end table.

Motor Stop

Positions Rules
1. Your enemy is 
inside of a 
plane…
2. The top secret 
paperwork is…

0 0 0 2
3 0 0 0
0 2 0 1
0 0 0 0

Pixels QuestionsPixels

What color is the 
vase?

Tasks & Hints

clean up the 
papers
pedal to open the 
recycling bin

Motor Motor Motor AnswersInteraction
pick up

pedal

drop

grasp

get

lift

It is green.

Figure 2. We consider a range of environments that feature visual inputs and diverse types of language. We introduce HomeGrid, a
challenging visual gridworld with instructions and diverse hints. Messenger is a benchmark with symbolic inputs and hundreds of
human-written game manuals that require multi-hop reasoning. Habitat simulates photorealistic 3D homes for vision-language navigation
in hundreds of scenes and crowdsourced language. LangRoom is a simple visual grid world with partial observability, where the agent
needs to produce both motor actions and language.

• We find that the performance of language-conditioned
policies degrades when faced with more diverse language,
while Dynalang learns to utilize many kinds of language
to excel on a broad range of tasks.

• We show that learning a generative model of language and
vision enables additional capabilities, such as embodied
language generation and text-only pretraining without
actions or rewards.

2 Related Work
Much work has focused on teaching reinforcement learning
agents to utilize language to solve tasks by directly con-
ditioning policies on language (Lynch & Sermanet, 2021;
Shridhar et al., 2022; Abramson et al., 2020). More simi-
lar to our work, recent work proposes text-conditioning a
video model trained on expert demonstrations and using the
model for planning (Du et al., 2023b; Yang et al., 2023).
However, language in these settings has thus far been limited
to short instructions, and only a few works investigate how
RL agents can learn from other kinds of language like de-
scriptions of how the world works, in simple settings (Zhong
et al., 2020; Hanjie et al., 2021). In reality, human language
is far richer than imperative commands. Other work looks
to diversify the utterances that agents can understand with
supervised learning on human-annotated or expert datasets
in embodied environments (Das et al., 2018; Thomason
et al., 2019; Bara et al., 2021) or pretrained large language
models (LLMs) (Huang et al., 2022a; Li et al., 2022; Ahn
et al., 2022; Driess et al., 2023). These works approach the
realism of natural language in the diversity of utterances

and roles of language in the world they consider. However,
supervised approaches rely on expensive human data (often
with aligned language annotations and expert demonstra-
tions), and both these approaches have limited ability to
improve their behaviors and language understanding online.

In contrast to previous RL agents, Dynalang takes a step
towards more diverse language understanding by making
predictions in a world model, providing a learning signal
that is both rich (unlike rewards), self-supervised (unlike
demonstrations), and compatible with offline pretraining.
We refer to Appendix C for a more detailed discussion of
related work.

3 Dynalang
Dynalang utilizes diverse types of language in visual en-
vironments by encoding multiple modalities into learned
representations and then predicting the sequence of future
representations given actions. For our algorithm, we build
on the model-based algorithm DreamerV3 (Hafner et al.,
2023) and extend it to process and optionally produce lan-
guage. The world model is trained from a replay buffer of
past experience while the agent is interacting with the en-
vironment. It can additionally be pretrained from text-only
data. To select actions, we train an actor-critic model from
sequences of representations imagined by the world model.
The algorithm is summarized in Algorithm 1.

Problem setting To perform interactive tasks, an agent
chooses actions at to interact with an environment that re-
sponds with rewards rt, a flag for whether the episode con-
tinues ct, and observations ot. In this work, we consider
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Algorithm 1: Dynalang
define rewards rt, episode continue flag ct, images xt,
language tokens lt, actions at, model state (ht, zt).

while acting do
Step environment rt, ct, xt, lt ← env(at−1).
Encode observations zt ∼ enc(xt, lt, ht).
Execute action at ∼ π(at | ht, zt).
Add transition (rt, ct, xt, lt, at) to replay buffer.

while training do
Draw batch {(rt, ct, xt, lt, at)} from replay buffer.
Use world model to compute multimodal
representations zt, future predictions ẑt+1, and
decode x̂t, l̂t, r̂t, ĉt.

Update world model to minimize Lpred + Lrepr.
Imagine rollouts from all zt using π.
Update actor to minimize Lπ .
Update critic to minimize LV .

while text pretraining do
Sample text batch {lt} from dataset.
Create zero images xt and actions at.
Use world model to compute representations zt,
future predictions ẑt+1, and decode l̂t.

Update world model to minimize Lpred + Ll.

environments with multimodal observations ot = (xt, lt),
containing both visual xt and textual input lt at each time
step. The agent’s goal is to choose actions that maximize
the expected discounted sum of rewards E

[∑T
t=1 γ

trt
]
,

where γ < 1 is a discount factor, T is the episode length,
and cT = 0 signals the episode end. In most of our exper-
iments, the actions at are integers in a categorical action
space. However, we also consider factorized action spaces
where the agent outputs both a discrete movement command
and a language token at each time step.

Multimodal alignment While previous work assumes
that language such as instructions arrive at the beginning of
an episode, we consider a diverse range of environments,
summarized in Figure 2, where agents receive a continuous
stream of video and text observations. For humans, reading,
listening, and speaking extends over time, during which we
receive new visual inputs and can perform motor actions.
Analogously, at each time step we provide Dynalang with
one video frame xt and one language token lt as input (with
zero or padding if no video frame or token is available at that
time step), and the agent outputs one motor action (and in
applicable environments, a language token). While a natural
question is whether the language token lt needs to be seman-
tically aligned with the video frame xt, Dynalang does not
assume or require that modalities are aligned. Intuitively,
the prediction problem at each time step is to predict the
future given past inputs from all modalities, and it does not

matter how modalities were aligned in the past as long as
information from each modality is represented in the model
state. We can thus use a simple architecture that does not
require more complex temporal segmentation, while outper-
forming other ways of fusing modalities (Section 4.1) and
enabling language model-style pretraining (Section 4.6).

3.1 World Model Learning
The world model learns representations of all sensory modal-
ities that the agent receives and then predicts the sequence of
these latent representations given actions. Predicting future
representations not only provides a rich learning signal to
ground language in visual experience but also allows plan-
ning and policy optimization from imagined sequences. The
world model is shown in Figure 3a. At each time step, it
receives an image xt, a language token lt, and an action at.
The image and language observations are compressed into a
discrete representation zt and fed together with the action
into the sequence model to predict the next representation
ẑt+1. The multimodal world model consists of the following
components, where ht is a recurrent state:

Sequence model: ẑt, ht = seq(zt−1, ht−1, at−1)

Multimodal encoder: zt ∼ enc(xt, lt, ht)

Multimodal decoder: x̂t, l̂t, r̂t, ĉt = dec(zt, ht)

We implement the world model as a Recurrent State Space
Model (RSSM Hafner et al., 2018), where the sequence
model is implemented as GRU (Cho et al., 2014) with recur-
rent state ht, but other sequence models such as Transform-
ers can also be used as the backbone (Robine et al., 2023).
The decoder is trained to reconstruct observations and other
information, thus shaping the model representations. The
world model is trained jointly to minimize a representation
learning loss Lrepr and a future prediction loss Lpred, which
we describe below.

Multimodal representations The world model learns to
compress inputs images xt and language tokens lt into
stochastic latent representations zt through a variational
autoencoding objective (Kingma & Welling, 2013; Rezende
et al., 2014). Reconstructing the input observations encour-
ages the model to compress information from all modalities
into its representations. We also predict the reward, r̂t, and
whether the episode continues, ĉt, so that the policy can
be learned directly on top of the latent representations, as
discussed in the next section. Finally, the representations
are regularized towards the predicted distribution over ẑt
as a prior, essentially regularizing the representations to be
predictable. We denote the categorical cross entropy loss as
catxent, the binary cross entropy loss as binxent, the stop
gradient operator as sg, and βreg = 0.1 is a hyperparameter.
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Figure 3. During world model learning, the model compresses observations of image frames and text to a latent representation. The
model is trained to predict the next representation and reconstruct observations from the representation. During policy learning, imagined
rollouts are sampled from the world model and the policy is trained to maximize imagined rewards.

The representation learning loss Lrepr is thus the sum of:

Image loss: Lx = ∥x̂t − xt∥22
Language loss: Ll = catxent(l̂t, lt)

Reward loss: Lr = catxent(r̂t, twohot(rt))

Continue loss: Lc = binxent(ĉt, ct)

Regularizer: Lreg = βreg max(1,KL
[
zt

∥∥ sg(ẑt)
]
)

We choose a strided CNN image encoder, a strided CNN
as image decoder, and MLPs for all other model compo-
nents. We evaluate our method both with one-hot token
observations (i.e., learning the embeddings from scratch)
and pretrained embeddings from T5 (Raffel et al., 2020).
One-hot representations are reconstructed with the cross
entropy loss above and pretrained embeddings are recon-
structed with a squared error. For more details on world
model learning, refer to Appendix A.

Future prediction The world model learns to predict the
sequence of multimodal representations, which enables it to
plan and ground language. The sequence model produces
ẑt from the current model state (zt−1, ht−1) and the current
action at−1, which is trained to match the actual representa-
tion at the next timestep zt. Concretely, the future prediction
objective is:

Prediction loss: Lpred = βpred max(1,KL
[
sg(zt)

∥∥ ẑt
]
)

where the gradient around the target distribution for zt
is stopped since it is also a learned representation and
βpred = 0.5 is a hyperparameter. Intuitively, the codes
zt contains both information from current observation and
additional information that may be required to predict the
reward and episode continuation. By training the world
model to make predictions ẑt of its future representations,
it effectively learns to predict future images, language, and

rewards, encouraging the agent to extract information from
language and learn the correlations between its multiple
modalities. For example, when the language input describes
that "the book is in the bedroom" and the agent later on visu-
ally observes the book, the agent will learn this multimodal
association even if the reward signal does not directly relate
the two.The world model is trained to optimize the overall
loss Lrepr + Lpred with respect to all its parameters.

Single-Modality Pretraining One potential benefit of
separating world modeling from policy learning is that the
world model can be trained offline, benefitting from large-
scale text-only and video-only datasets without actions. To
pretrain the world model with text-only data as in Sec-
tion 4.6, we zero out the image and action inputs and set the
image, reward, and continuation decoder loss coefficients to
0 so the pretraining focuses on learning to represent text and
text dynamics (i.e. language modeling). Dynalang can then
be finetuned on experience with all modalities (language,
images, and actions) by initializing the actor and critic from
scratch, while continuing to train the world model. Note that
unlike the typical language modeling objective, the model
is not explicitly trained to predict the next token from the
prefix, except through the next-representation prediction.

3.2 Policy Learning

To select actions, we train an actor critic algorithm
(Williams, 1992) purely from imagined sequences of multi-
modal representations (Sutton, 1991), as shown in Figure 3b.
The critic estimates the discounted sum of future rewards
for each state to guide actor learning. Both networks are
MLPs:

Actor net: π(at|ht, zt) Critic net: V(ht, zt)

We do not modify the policy learning algorithm of Dream-
erV3 and refer to Appendix B for details.
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4 Experiments
Our experiments test the following hypotheses:

H1) Aligning image and language as single (image, token)
pairs per timestep outperforms other methods for in-
corporating language into DreamerV3 (Section 4.1).

H2) Dynalang can better utilize diverse types of language to
improve task performance over language-conditioned
policies. To test this, we investigate whether Dynalang
performance improves when provided with different
kinds of language hints in HomeGrid (Section 4.2) and
game manuals in Messenger (Section 4.3), compared
to model-free RL baselines.

H3) Incorporating instructions into a world model is no
worse than directly learning a language-conditioned
policy. To test this, we compare performance to base-
lines with task-only language in HomeGrid and on
vision-language navigation (Section 4.4).

H4) The multimodal generative model enables Dynalang to
handle tasks that require grounded language generation
(Section 4.5) and pretraining on offline text-only data
(Section 4.6).

Language encodings We tokenize all text with the T5
tokenizer (Raffel et al., 2020), with a vocabulary size of
32,100. In HomeGrid we use one-hot token encodings. In
Messenger and VLN-CE, where agents must generalize to
synonyms and linguistic variations, we embed each sentence
with T5-small (60M parameters) and use the last hidden
layer representation for each token.

Baselines We compare against two off-policy model-
free RL baselines: IMPALA (Espeholt et al., 2018) and
R2D2 (Kapturowski et al., 2019). The architecture for both
algorithms consists of an LSTM that takes in input embed-
dings from a CNN image encoder and an MLP language
encoder. We use the implementations from the SeedRL
repository (Espeholt et al., 2019). We pass the same lan-
guage observations to the baselines as to our method (token
embeddings or one-hot encodings). We also try providing
the baselines with sentence embeddings from a pretrained
all-distilroberta-v1 model from the Sentence Trans-
formers library (Reimers & Gurevych, 2019) and did not
find a consistent improvement across our tasks. Both base-
line models are ∼10M parameters, and we did not find that
these models benefit from scaling parameter count.

4.1 Aligning Language, Vision, and Action in a World
Model

First, we isolate the effect of our design choices for the mul-
timodal architecture in Dynalang from the base DreamerV3
architecture by comparing to other ways of conditioning
DreamerV3 on language. We use Messenger’s Stage 1 as
a testbed, where the agent must learn to read a text manual
in order to achieve high reward (see Section 4.3 for details).
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Dynalang
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Language-Cond. Policy
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Figure 4. Comparison of ways to equip the world model with lan-
guage inputs on Messenger S1. We compare ways of condition-
ing DreamerV3 on language and find that Dynalang substantially
outperforms other model-based approaches, even those based on
pretrained T5, despite training from scratch.

We implement several common language conditioning meth-
ods in DreamerV3 from previous work, comparing their
performance to Dynalang in Figure 4:

1. Language-Conditioned Policy Embed tokens with a
GRU and condition the policy on the final hidden state.
This baseline is similar to how model-free approaches im-
plement language conditioning (Shridhar et al., 2022), but
the agent still learns to model images with a world model.
This ablates the effect of learning joint representations of
language and images in the world model.

2. Sentence Embed Input text into the world model one
sentence at a time, using SentenceBERT to embed each
sentence of the manual. This ablates the effect of in-
putting one token per timestep.

3. T5 with Image Adapter Train the image encoder to
map image features to the embedding space of a pre-
trained T5 model, following multimodal models such as
LLaVA (Liu et al., 2023). This allows the agent to lever-
age the pretrained representations of the LLM. We map
the CNN output at each timestep to 10 language tokens
with an MLP, attend over the image tokens and the to-
kens of the language input with a frozen T5 encoder, and
condition the world model on the last hidden state of T5.

4. T5 with Cross-Attention Embed the entire manual
with T5 and then fuse with the image observation by
attending to the sequence of token embeddings with the
image embedding output by the image encoder, similar
to the original Messenger baseline (Hanjie et al., 2021).

5. Finetuned T5 with Cross-Att. (3.), but finetune T5.

6. T5 with Two-Way Cross-Att. (3.), but additionally
map images to a fixed number of latents and attend to it
with the pooled text embedding, following multimodal
models such as Lu et al. (2016).

We find that Dynalang outperforms these alternatives even
with token embeddings initialized from scratch while also
being simple and efficient to train, supporting H1.
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Dynalang outperforms language-conditioned IMPALA
and R2D2, as well as the task-specific EMMA architec-
ture, fitting the most complex stage of the game where
other methods fail to achieve non-trivial performance.

4.2 HomeGrid: Language Hints

As most standard RL benchmarks do not provide lan-
guage beyond instructions, we introduce a new environ-
ment, HomeGrid, that evaluates how well agents can ground
diverse types of language to solve tasks. HomeGrid is a mul-
titask gridworld where agents receive language task specifi-
cations and language hints. Hints provide prior knowledge
about world dynamics, information about world state, or
corrections that assist the agent. The agent can otherwise
acquire the same information through its own interaction
with the environment, as in standard RL. Agents can achieve
higher performance if they learn to ground language.

There are five task types involving objects and trash bins
(find, get, clean up, rearrange, open) for a total of 38 tasks.
Agents get pixel observations with a partially observed view
of the environment and can move and interact with objects
and trash bins. Object locations, bin locations, and bin
dynamics (i.e., which action correctly opens the bin) are
randomized on each episode. Objects are also randomly
moved throughout the episode. Agents receive task speci-
fications in language. When a task is completed, the agent
gets a reward of 1 and a new task is sampled. To achieve a
high score, agents must complete as many tasks as possible
before the episode terminates in 100 steps. We also provide
hints at random points throughout the episode that are pro-
vided token-by-token while the agent continues to act. We
script the following language hints, with examples shown
in Figure D.1 in the appendix:

• Future observations Descriptions of where objects are
in the world. Without language, the agent must explore
the environment to find objects.

• Dynamics Descriptions of the correct action to open
each trash bin. Without language, the agent can try all the
different actions, although taking the wrong action can

disable the trash can for a variable number of timesteps.

• Corrections Tell the agent “no, turn around” when its
distance to the current goal object is increasing. Without
language, the agent must explore on its own.

Section 4.1 shows that Dynalang benefits from all kinds
of language, achieving higher scores with hints relative to
just using instructions. Notably, agents never receive direct
supervision about what the hints mean in HomeGrid, and
hints are often far removed from the objects or observations
they refer to. We show the agent’s imagined rollouts in Ap-
pendix F, which provide qualitative evidence that Dynalang
learns to ground language to the environment purely via the
future prediction objective. IMPALA struggles to learn the
task at all, while R2D2 learns to use the types of language
that are correlated with reward (tasks and corrections). In-
terestingly, we find that while R2D2’s performance drops as
it receives more diverse language, while Dynalang improves
with more language information, supporting H2 and our ini-
tial motivation that learning actions from diverse language
is a difficult learning problem.

Dynalang also outperforms baselines even with task-only
language, supporting H3. Language-conditioned policies in
prior work often rely on supervised learning on expensive
language-action datasets; while Dynalang may also benefit
from offline data to further boost performance, it can achieve
non-trivial performance even when learning from scratch.

4.3 Messenger: Game Manuals

Next, we evaluate Dynalang on the Messenger game envi-
ronment (Hanjie et al., 2021), which tests whether agents
can read text manuals describing game dynamics to achieve
high scores. In Messenger, the agent must retrieve a message
from one of the entities in the environment and deliver it to
another entity, while avoiding enemies. In each episode, the
agent receives a manual describing the randomized entity
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Exit the bedroom, go straight down the hallway, make a right 
into the doorway of the bathroom and stop.
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Figure 7. VLN-CE results. (left) A portion of a trained agent trajectory, given the instruction "Exit the bedroom, go straight down the
hallway, make a right into the doorway of the bathroom and stop". (right) Success rate during RL training, averaged across 3 seeds for
Dynalang and 2 seeds for R2D2.

what color is the ball?
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Figure 8. LangRoom results. (left) A real trajectory from a trained agent. The agent learns to take information-gathering actions from
reward. When asked “what color is the ball?” the agent walks to the corner with the ball and generates the tokens “it is blue.” (right)
Training curve. The agent learns to answer more questions accurately.

roles and movement dynamics as a series of rules, requir-
ing multi-hop reasoning over both visual and text inputs
(e.g. combining the manual information that the goal entity
is a “fleeing wizard” with observations of entity identities
and movement dynamics). Messenger has three stages of
increasing length and difficulty.

In addition to the baselines above, we compare Dynalang to
EMMA, the original baseline for the benchmark that uses a
specialized grid-based architecture and learns a language-
conditioned policy with PPO (Schulman et al., 2017). As
seen in Figure 6, Dynalang achieves higher performance and
learns more efficiently than EMMA, IMPALA and R2D2.
While other methods fail to fit S3 at all, our method learns
to interpret the manuals to achieve non-trivial performance
on the most challenging stage, further supporting H2.

4.4 Vision-Language Navigation: Instruction
Following

To evaluate how Dynalang performs in more complex envi-
ronments, we apply it to the popular Vision-Language Navi-
gation (VLN) (Anderson et al., 2018) benchmark. Agents
must navigate Matterport3D panoramas captured in real
homes (Chang et al., 2017), following crowd-sourced nat-
ural language instructions that indicate where the agent
should navigate to, such as “Go past the bed to the door. En-
ter the hallway,..." We focus on the more challenging variant,
VLN in Continuous Environments (VLN-CE) (Krantz et al.,
2020), in which agents take low-level discrete actions (left,
forward, ...) rather than relying on a waypoint navigation

graph as in the original VLN task. In this task, our goal is
to demonstrate that Dynalang can learn to follow language
instructions (e.g. via predicting future rewards).

Each episode randomly samples a language instruction and
corresponding scene from the training dataset out of 10,819
unique instructions total. The agent gets a dense reward
based on relative position to the current goal, a success
reward when taking the stop action at the correct location,
and a penalty otherwise.

As shown in Figure 7, Dynalang succeeds at significantly
more instructions compared to the model-free R2D2 base-
line, supporting H3. While Dynalang successfully learns
to ground instructions from scratch, performance is not yet
competitive with state-of-the-art VLN methods (many of
which use expert demonstrations or specialized architec-
tures), and further work is needed to close the gap.

4.5 LangRoom: Embodied Question Answering

Next, show how Dynalang can also generate language in
the same framework. On the other benchmarks, language is
used to inform agents’ future predictions about the world,
but perception can also inform future predictions about what
might be said. For example, agents could predict that they
will hear descriptive utterances such as “the stove is on”
that are consistent with its own observations of the burner
producing flames.

We introduce the LangRoom embodied question answering
environment to demonstrate a proof-of-concept of this ca-
pability. We expand the action space to include language
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Figure 9. We scale Dynalang to a vocabulary size of 10000 on
LangRoom by regularizing the language action towards the 1-
step world model predictions. We match QA performance of
an agent with a vocab size of 15, while naively scaling up the
vocabulary size to 10000 with no prior fails to learn.
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Figure 10. One-hot token encodings underperform pretrained em-
beddings on S2, but pretraining Dynalang with a small amount
of text-only data closes much of the gap.

by allowing the agent to output one language token per
timestep as an action. The environment contains a room
with objects with fixed positions but randomized colors. The
language observations from the environment are questions
"what color is the <object>?". The agent must move
to the object and emit a language action saying the correct
color. Results are shown in Figure 8. The agent learns to
answer more questions correctly with task reward by taking
information gathering actions to observe the color of the
object and generating text consistent with the world state.

Critically, learning an generative model of language is im-
portant for scaling up to larger vocabularies, as seen in Fig-
ure 9, supporting H4. Naively increasing the vocabulary
size to 10k (by adding dummy tokens) fails to learn, likely
because selecting actions from such a large action space
with RL is intractable. We recover performance by using
the world model to guide language generation, regularizing
the language action towards the predicted next token in the
world model by adding KL

[
π(lact

t | ht, zt)
∥∥ sg(p(l̂t+1 |

ĥt+1, ẑt+1))
]

to the entropy regularizer. Intuitively, this
regularizes the generated language actions towards valid
and likely utterances in the current context, similar to how
LLMs are trained with RL (Ziegler et al., 2019).

4.6 Text-only Pretraining

Our experiments thus far have investigated how Dynalang
can learn from multimodal experience online, demonstrating
that the world modeling objective enables the agent to under-
stand language in the context of vision and action even with
no prior or pretrained initialization. However, we expect
that large-scale offline training will be necessary to scale
to realistic settings. Thus, in this section, we investigate
whether the generative model in Dynalang can be pretrained
on single-modality data to benefit downstream learning.

To evaluate this capability, we zero out the other modality
and action inputs and pretrain Dynalang from scratch on
text-only corpora: (1) in-domain text with manuals from
Messenger S2 games (2) domain-general text with TinyS-
tories (Eldan & Li, 2023), a dataset of 2M short stories

(∼500M tokens) generated by GPT-4. We evaluate on Mes-
senger S2, where models that learn to embed one-hot token
observations from scratch struggle to learn the complex lan-
guage in S2 without pretraining on S1. We compare S2 task
performance with learned embeddings to using pretrained
T5 embeddings, training all methods from scratch on S2
without initializing from S1. Results are shown in Figure 10.
Dynalang is able to benefit from offline pretraining, support-
ing H4. Even a small amount of in-domain text closes
much of the gap between training text embeddings from
scratch and using T5 embeddings. Furthermore, pretraining
on TinyStories exceeds the final performance of using T5
embeddings, likely because pretraining allows the model to
learn text dynamics offline rather than during environment
interaction. Although the model is not trained explicitly to
do language modeling except through next-representation
prediction, we show generated language samples in Ap-
pendix E. These results suggest that our paradigm can lever-
age the benefits of large-scale offline pretraining, providing
a way to unify offline and online data with language, vision,
and action in a single agent.

5 Conclusion
Taken together, our results suggest a way forward for multi-
modal agents that can understand language and vision and
act in the world. We presented Dynalang, an agent that
does so through future prediction as a rich self-supervised
objective. In contrast to model-free methods that struggle
with increased language perplexity, we demonstrated in four
diverse environments how Dynalang can understand various
types of language and what they mean in the world, even
when learning from scratch from its own experiences. Addi-
tionally, we show the same world model architecture can be
pretrained on offline text data in a way that benefits down-
stream learning from experience, paving the way towards a
self-improving multimodal agent that interacts with humans
in the world.
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A World Model Learning
Representation Learning The discrete codes zt are vectors of one-hot categoricals that are sampled during the forward
pass and optimized using straight-through gradients on the backward pass (Bengio et al., 2013; Hafner et al., 2020).

Two-hot Reward Prediction We follow DreamerV3 in predicting rewards using a softmax classifier with exponentially
spaced bins that regresses the twohot encoding of the real-valued rewards and in clipping the regularizer at 1 free nat
(Kingma et al., 2016). The two-hot regression decouples the gradient scale from the arbitrary scale of the rewards and free
nats prevent over-regularization, known as posterior collapse.

B Actor Critic Learning
Because we optimize the policy from imagined rollouts, all involved quantities are predictions rather than environment
observations. For simplicity, we omit the hats from the notation now and e.g. write zt instead of ẑt. To train the actor
and critic networks, we predict a sequence of T = 15 representations zt by sampling from the world model and the actor
network. The sequences start at all representations computed from the world model training step. From a sequence of
representations zt and recurrent states ht, we fill in the rewards rt and episode continuation flags ct by applying their two
MLPs, without invoking the image or language decoders. Given the quantities, we compute a λ-return (Sutton & Barto,
2018) that estimates the discounted sum of future rewards:

Rt = rt + γct

(
(1− λ)V (zt+1, ht+1) + λRt+1

)
RT

.
= V (zT , hT ) (1)

The return estimate Rt serves as a prediction target for the critic network, which uses discrete regression using a categorical
cross entropy loss towards the twohot encoded targets. The actor network is trained to maximize the return estimates subject
to an entropy regularizer on the action distribution:

LV = catxent(Vt(ht, zt), sg(twohot(Rt)))

Lπ = − sg(Rt − V (zt, ht))/max(1, S) log π(at | ht, zt)− ηH
[
π(at

∣∣ ht, zt)
] (2)

To trade off the two actor loss terms without having to tune hyperparameters, the actor loss normalized returns that
exceed a magnitude of 1 are normalized by an exponential moving average of the 5th to 95th percentile range of returns,
S = ema(per(Rt, 95)− per(Rt, 5)). When interacting with the environment, we choose actions by incorporating the new
observation into the world model representation and then sampling from the actor network.

C Detailed Related Work
Language and Embodied Agents Language can be used in embodied settings in a variety of ways (Luketina et al., 2019).
In instruction following, agents must interpret language specifications of high-level goals or step-by-step guidance (Branavan
et al., 2010; Andreas & Klein, 2015; Anderson et al., 2018; Shridhar et al., 2020a; Lynch & Sermanet, 2021). Language can
also be used as an abstraction to assist learning or decision-making, e.g. for planning by decomposing high-level tasks into
low-level subgoals (Andreas et al., 2017; Jiang et al., 2019; Ahn et al., 2022; Huang et al., 2022a; Li et al., 2022; Sharma
et al., 2021) or guiding exploration (Mirchandani et al., 2021; Tam et al., 2022; Mu et al., 2022; Du et al., 2023a). Instead
of using language as a scaffolding mechanism for planning or exploration, our model treats language as another modality in
observation space and plans in latent space. Additionally, human language is far richer than imperative commands. Other
work looks to diversify the utterances that agents can understand with supervised learning on human-annotated or expert
datasets in embodied environments, e.g. to understand more complex instructions (Ku et al., 2020; Shridhar et al., 2020a) or
environment descriptions (Zhong et al., 2022), ask for assistance in simulated navigation or household tasks (Thomason
et al., 2019; Padmakumar et al., 2022; Abramson et al., 2020), answer questions (Das et al., 2018), communicate domain
knowledge (Eisenstein et al., 2009; Branavan et al., 2010; Narasimhan et al., 2018; Zhong et al., 2020), or collaborate
dynamically on a shared goal (Bara et al., 2021). While these works consider more realistic natural language, they often rely
on supervised approaches and expensive human data (often with the assumption of aligned language annotations and expert
demonstrations).

Our work investigates how to unify these settings so that agents can learn from all kinds of language they might encounter in
the world, including instructions and descriptions. While most of these works directly condition policies on language to
generate actions (model-free), our algorithm uses language for future prediction, learning a world model that is then used for
planning and acting.
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Multimodal Models Developing agents that can leverage both vision and text observations requires training multimodal
models. Previous works develop vision-language models (VLMs) by augmenting LLMs with visual encoders (Alayrac
et al., 2022; Li et al., 2023b; Chen et al., 2022; Guo et al., 2023) or training models jointly over all modalities (Lu et al.,
2022) However, because VLMs are prohibitively expensive to query and finetune, recent work on using VLMs as policies
has focused on supervised learning from demonstrations (Driess et al., 2023; Jiang et al., 2022), rather than using them
in embodied agents that can learn online. Reed et al. (2022) trains a multimodal embodied agent across various tasks,
modalities, and embodiments by additionally learning to generate actions. Perhaps most similar, a recent line of work (Du
et al., 2023b; Yang et al., 2023) trains text-conditioned video models for planning. Their approach works by using a video
model trained on expert demonstrations to generate a video plan conditioned on a text instruction, and then imputing the
actions to execute that plan. From a generative modeling perspective, our approach differs in that it also learns to generate
language instead of being solely input text-conditioned, enabling text-only pretraining, interactive dialogue, and future
possibilities for learning shared representations of text and video. Additionally beyond both VLMs and text-conditioned
video models, our approach enables learning from online experience in addition to offline pretraining, allowing agents to
improve their behaviors and understanding of the world autonomously rather than being inherently limited to an offline
dataset.

Decision-making with Large Language Models Large language models (LLMs) learn about the world via next-token
prediction on web-text, implicitly modeling world state (Li et al., 2021; 2023c) and relations between concepts (Piantadosi
& Hill, 2022). When acting in purely text-based or symbolic environments, language models can be used as complete
world models (Ammanabrolu & Riedl, 2018; Singh et al., 2021). In visual environments, LLMs can be used to break
down complex language context into simple instructions for low-level policies (Huang et al., 2022a; Li et al., 2022; Ahn
et al., 2022), integrate knowledge from text (Wu et al., 2023), or directly serve as the policy (Driess et al., 2023; Wang
et al., 2023; Carta et al., 2023). However, LLMs are not grounded to real environment observations and cannot directly
take actions unless observations are translated to text (Shridhar et al., 2020b; Huang et al., 2022b; Dasgupta et al., 2023),
and representing visual inputs as text is inherently low bandwidth. Additionally, while LLMs can be used as a prior over
actions or observations (Li et al., 2023a), they are difficult to update with feedback from the environment except in limited
cases (Carta et al., 2023; Dagan et al., 2023). In contrast, we learn a single multimodal world model from experience with
autoregressive prediction on both text and images (predicting both modalities in the future from both modalities as input),
thus grounding language to experience (Bisk et al., 2020). Our model can also be trained on text-only data as a language
model or video-only data as a video prediction model.

D Environment Details

D.1 HomeGrid

The HomeGrid environment is a grid with different objects, receptacles, and rooms. Agents receive pixel observations of
3x3 grid cells centered on the current agent position. The action space is: movement (left, right, up, down), object
interaction (pick up, drop), and trash bin interaction (get, pedal, grasp, lift). The agent can carry one object in its
inventory by executing the pick up action in front of an object or the get action in front of a trash bin with an object inside.
There are three rooms (living room, dining room, kitchen) indicated by different flooring textures, three possible trash bin
types with different colors (blue recycling, black trash, green compost) and four possible trash object types (bottle, fruit,
papers, plates). Trash bins can be open, closed, or knocked over (represented visually as toppled over sideways). Each trash
bin can be opened with a specific action that is randomly selected from {pedal, grasp, lift} in each episode. If agents
apply the wrong action on a bin, it becomes broken and cannot be interacted with further until reset by the environment.
When a trash bin is open, one object can be dropped into the bin with the drop action and the current object in the bin (if
any) can be retrieved into the agent’s inventory with get.

For each episode, the environment is randomly initialized with two objects and two trash bins in random positions. Trash
bins are initialized in the open state with probability 0.5. One bin is irreversibly broken if the wrong action is applied and
the other bin is reset after 5 timesteps if broken. At each timestep, each object is moved to a new position with probability
0.05 and new objects are spawned with probability 0.1∗num_remaining_unique_objects at a random position.

In our experiments, agents are evaluated on setups with different language inputs: task instructions, task instructions +
dynamics, task instructions + future observations, and task instructions + corrections. Language for each type is generated
with templates from the underlying environment state, with the following semantics:
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Future Observations

Corrections

Dynamics

the papers are in 
the living room

get the papers

get the fruit no, turn around

pedal to open the 
compost bin

open the compost 
bin

t=25 t=35

Figure D.1. HomeGrid provides language hints
and task specifications. We show real trajecto-
ries from a trained agent.

Tasks

• find the [object/bin]: the agent will receive a reward of 1 if it is
facing the correct object / bin

• get the [object]: the agent will receive a reward of 1 if it has the
correct object in inventory

• put the [object] in the [bin]: the agent will receive a reward of
1 if the bin contains the object

• move the [object] to the [room]: the agent will receive a reward
of 1 if the object is in the room

• open the [bin]: the agent will receive a reward of 1 if the bin is in the
open state

Future Observations: descriptions of environment state the agent may
observe in the future

• [object/bin] is in the [room]: the object or bin is in the indicated
room

• i moved the [object] to the [room]: the object has been moved
to the room

• there will be [object] in the [room] later: the object will
spawn in the room in five timesteps

Dynamics: descriptions of environment transitions

• [action] to open the [bin]: the indicated action is the correct
action to open the bin

Corrections: task-specific feedback about the agent’s current trajectory

• no, turn around: the agent’s distance to the current goal object or bin
(given the task) has increased compared to the last timestep

Language is provided to the agent one token per timestep. All language are provided while the agent acts and the environment
state is changing, except for dynamics descriptions (which apply to the whole episode). For dynamics descriptions, we
randomly shuffle all possible descriptions and input them to the agent in sequence up to a maximum of 28 tokens while the
agent is fixed in place. For language provided during the episode, on each timestep, if there is not currently an utterance
being provided to the agent, either (1) the task instruction is repeated, every 20 timesteps (2) an utterance describing one of
the events that occurred at this timestep is provided (i.e. objects moved or spawned) (3) a description of future observations
or dynamics is provided (4) a correction is provided, with probability 0.1. If there is a new task instruction (i.e. the agent
just completed the last task), any currently streaming sentence will be interrupted and the agent will immediately receive the
tokens of the new instruction. All evaluation setups share the same underlying environment dynamics and parameters (e.g.
each trash bin must be operated with the correct action even if the agent does not receive hints about dynamics).

D.2 Messenger

Language in Messenger is generated from human-written templates, resulting in diverse sentences with multiple ways of
referring to each entity and a total vocabulary size of 1,125. Observations are a symbolic grid of entity IDs, and the agent
takes discrete actions to move. We input the manual into the world model token-by-token before the episode begins.

The EMMA baseline provides a gridworld-specific inductive bias that each text token should map to some region in the
current observation, and assumes that the model has access to the spatial locations of entities in the scene. As in the original
benchmark, we initialize all models from the converged model trained on the previous game stage.

D.3 VLN-CE

The best-performing methods on VLN-CE use expert demonstrations (An et al., 2023) or train navigation-specialized
hierarchical agents (Krantz et al., 2021). The VLN-CE training set consists of 10,819 unique natural instructions total, spread
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across 61 scenes. The instruction and corresponding scene are randomly sampled per episode. In addition to language,
the agent observes an egocentric RGB and depth image at each timestep. Agents have access to discrete low-level actions
(moving forward 0.25 meters, turning left or right 15 degrees), as well as a stop action. Crucially, the agent must learn to
take the stop action when it thinks it has reached the goal to indicate that it recognizes the goal position. This makes the
task more challenging, as the agent must learn to only terminate the episode at the appropriate goal locations. The agent
receives a dense reward at every timestep based on the delta in position from the goal. Following (Krantz et al., 2021), we
provide an additional success reward of 1000 when the agent takes the stop action at the correct location, and a penalty of
−10 when the agent takes the stop action elsewhere.

D.4 LangRoom

In LangRoom, the environment contains four objects in the corners of a room. The positions of the objects are fixed but the
colors are randomized. The action space for the agent includes the four cardinal movement actions, stay, and 15 tokens that
the agent can say. The language observations from the environment are questions "what color is the <object>?" followed by
a random silence duration (allowing the agent to find out the answer), followed by the answer "it is <color>". After each
question and answer, the colors are randomized and the environment asks a new question, up to a fixed episode length of
200 timesteps. Agents are rewarded +1 for saying the correct “<color>” token at the same timestep that the environment
produces the “<color>” token, −0.1 for saying the wrong color at that timestep, −0.01 for speaking at other timesteps,
and 0 for saying nothing. The agent only has a partial view over the environment, so it must move to the object before the
environment starts prompting it for the answer.

E Text Pretraining: Text Generation Samples
Dynalang is not explicitly trained on the language modeling objective, but we can still generate text from the model by
sampling rollouts from the world model and decoding the token from the latent representation at each timestep. Here, we
show sampled 10-token generations conditioned on a prefix of 50 tokens for validation examples in TinyStories.

Prompt: Once upon a time, in a big forest, there lived a rhinoceros named Roxy. Roxy loved to climb. She climbed trees, rocks, and hills.
One day, Roxy found an icy hill.
True: She had never seen anything like it before. It
Samples:
She wanted to climb down the hill.</s> friends and
It was a steep tree, but she was not
She wanted to own it, but it was too hot
She thought it would be fun banana scary, andffy
She wanted to skip through the. But Once upon

Prompt: Once upon a time, there was a thoughtful girl named Sue. Sue loved to help her mom around the house. One day, her mom
asked her to wipe the table after they ate their lunch. Sue was happy to help. As
True: Sue was wiping the table, she saw
Samples:
they her big room. playly remembered her
she was placing„, she saw a
she got being, she saw hera all she on
she was organizing, she saw the pin case in the
she was their best delicate turkey on, she saw

Prompt: Once upon a time, there was a little girl named Lucy. She had a pet cat named Tom. They loved to play together in the big green
park near their house. One sunny day, they went to the park to play.
True: While playing, Tom saw a big s
Samples:
</s> Once upon a time, there was scarf
</s> " Jenny, you are my sweet. You must
</s> Once heard a kind girl and asked Mom to
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</s> When taking a small, thin thing he
</s> The. lesson its if can improve and

Prompt: Once upon a time, there was a little boy named Tom. He loved to play with his red ball. One sunny day, Tom went outside to
play with his ball in the land near his home. Tom kicked the ball high in
True: the sky. The ball went far, far away
Samples:
the sky and ity it."</s> Once day,
the air and loved then it rain outside. We can
the sky, but was enormous diary to with baby
the sky.</s> red ball went and all game,
the air and ran after to catchMoo. His was

Prompt: Once upon a time, there was a girl named Mia. Mia loved her jewelry. She had a big box full of pretty things. She liked to wear
them all day. But at night, she had to sleep. One
True: day, Mia met a talking cat named
Samples:
day, shea was mad. She did not want
night, shea socks out wanted to hurt up.
day, shea could not find her skirt dress She
day, hera’s mom came to her.
day, Miaa fell her hair could. It

Prompt: Once upon a time, there was a little boy named Tom. Tom had a special belt that he loved to wear. One day, he could not find his
belt and felt very sad. Tom’s mom saw him and
True: asked, "Why are you sad, Tom?"
Samples:
frustrated and asked him what was rude.</s> Once upon
asked, "Why are you sad, Tom?"</s>
asked, "Howeny, I did, get
said, "Don’t worry, Tom. We
said, "To tree, you look be in

Prompt: Once upon a time, in a small house, there lived a kind and honest girl named Lily. She loved to bake cakes for her friends and
family. One day, she made a big, yummy cake for her best friend
True: ’s birthday. Lily carefully put the cake
Samples:
, Ben.</s> Tom went Mike opened the and,
, Tom.</s> Oneo decided the biggest ow
, Tim.</s> Once upon a time, there
, Tim.</s> lady.</s> </s> and Lily
, Tom.</s> Once upon a time, there

Prompt: One day, a young boy named Tim found a dull, round rock. He picked it up and looked at it. He thought it was not very fun, but
he took it with him to the park. At the park, Tim
True: saw a girl named Sue. She had
Samples:
he met. favorite friend He put it his to
met a girl named Sue. Sue saw the ball
saw a stick top Sam. He kept playing with
played with his friends and but they friends!"</s> Li
met a girl named Lily.</s> ly saw

Prompt: Once upon a time, there was a little boy named Tim. Tim loved candy more than anything else. One day, Tim saw a big candy
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store. He was very happy and ran to the store. Inside the store, Tim met
True: a strange man. The man said, "
Samples:
a nice lady named Sue.</s> The thing the
a tall named Max.</s> that the clever
a girl friend named Sue. They said, "
a big dog named Theffy.</s> said
a new prize car two cars. things.</s>

Prompt: Once upon a time, there was a big, heavy alligator. He lived near a small pond. He was very hungry and wanted to eat something.
One day, a little bunny came close to the
True: pond. The alligator saw the bun
Samples:
flower. The bunny said, "Hello
kitchen. He thisly and said, "This
bunny and askede "Do, smell you
sunflower. The bun said, "Stop, sunset
bunny. The bunny said, "
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F Qualitative Analysis

Context Ground Truth

Sampled Dynalang Model Rolloutsthe papers are in the 
living room

the bottle is in the 
living room

get the papers

t=29t=0

t=29 t=36

t=36

r=1

r=1

r=0

Figure F.1. Imagined rollouts from the world model. Conditioned on a language description, the task, and the same action sequence, we
sample rollouts of the world model’s imagined trajectories. Since the papers and bottle can be in any of multiple possible locations in the
living room, the model samples exhibit uncertainty over the possible futures. In one rollout (top), the agent predicts the papers are on the
table and correctly predicts it will get rewarded for picking it up. In the second rollout (bottom), it predicts that the bottle is on the table
and that it will not get rewarded.

Figure F.1 shows that we can interpret what the model has learned by rolling out the world model state into the future and
reconstructing observations from the latent state, conditioned on some history. We can see that the model represents the
information and correctly grounds it to observations: given the information that the papers and bottle are in the living room,
different samples from the world model represent different possible futures, both of which are consistent with the text. The
model also correctly predicts that in the future where the papers are on the table, it will receive a reward of +1 for doing a
pickup action, and that it will not be rewarded if it picks up the bottle.
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G HomeGrid Training Curves
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Figure G.1. HomeGrid training curves.

H Additional Baseline Experiments

H.1 Token vs. Sentence Embeddings for Baselines
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(a) HomeGrid.
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Figure H.1. Token vs. sentence embedding performance for IMPALA and R2D2 on all tasks, averaged across 3 seeds. Sentence
embeddings help R2D2 perform better on Messenger S1 and S2 but does not help consistently across tasks and methods.
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H.2 Model Scaling for Baselines

We find that scaling the baseline R2D2 and IMPALA models does not improve their performance. Stage 2 runs were
initialized from scratch.

Model Size LSTM hidden size Language MLP size CNN hidden size Policy/Value Hidden Size

1.7M 256 256 [16, 32, 32] None (linear)
10M 1024 512 [16, 32, 32] [512]
37M 2048 1024 [64, 64, 64] [1024, 1024]

Table H.1. R2D2 architecture sizes for model scaling experiment.
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Figure H.2. Model scaling curves for R2D2.

Model Size LSTM hidden size Language MLP hidden size CNN hidden size Policy/Value Head

1.5M 512 [64] [16, 32, 32] None (linear)
8.8M 1024 [512] [16, 32, 32] [512]
34M 2048 [1024] [16, 32, 32] [1024, 1024]

Table H.2. IMPALA architecture sizes for model scaling experiment.
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Figure H.3. Model scaling curves for IMPALA.
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H.3 Auxiliary Reconstruction Loss for Baselines

We tried adding an auxiliary loss for reconstructing the visual and language observations at the current timestep. The loss
was implemented by adding a linear layer that predicts each auxiliary target from the LSTM hidden state. The loss used is
MSE (for continuous values) or cross-entropy (for discrete language vocab tokens). The auxiliary loss was added to the RL
loss with a loss scale of 1. This did not meaningfully change performance.
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Figure H.4. Model-free R2D2 performance with an auxiliary reconstruction loss.
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I Model and Training Details

I.1 Baseline Hyperparameters

HomeGrid Msgr S1 Msgr S2 Msgr S3 VLN

Total model parameters 27M 10M 10M 10M 10M
Language inputs One-hot T5 Embed T5 Embed T5 Embed T5 Embed
Vocabulary size 32100 n/a n/a n/a n/a
Language MLP layers 1 1 1 1 1
Language MLP units 512 512 512 512 512
Image input Pixel Symbol Symbol Symbol Pixel
Image size (64, 64, 3) (16, 16, 17) (16, 16, 17) (16, 16, 17) (64, 64, 3)
Replay ratio 7 7 7 7 7
Batch size 32 64 16 16 8
Unroll length 100 100 100 100 100
LSTM recurrent units 1024 1024 1024 1024 1024
Learning rate 4.8e-4 4.8e-4 4.8e-4 4.8e-4 4.8e-4
Buffer Size 1000 1000 1000 1000 1000

Env steps 50M 1M 25M 50M 30M
Number of envs 80 80 80 80 5

Table I.1. Model hyperparameters and training information for the R2D2 baseline.

HomeGrid Msgr S1 Msgr S2 Msgr S3

Total model parameters 10M 9M 9M 9M
Language inputs One-hot T5 Embed T5 Embed T5 Embed
Vocabulary size 32100 n/a n/a n/a
Language MLP layers 1 1 1 1
Language MLP units 512 512 512 512
Image input Pixel Symbol Symbol Symbol
Image size (64, 64, 3) (16, 16, 17) (16, 16, 17) (16, 16, 17)
Batch size 16 64 64 64
LSTM recurrent units 1024 1024 1024 1024
Learning rate 3e-4 3e-4 3e-4 3e-4

Env steps 50M 1M 25M 50M
Number of envs 80 80 80 80

Table I.2. Model hyperparameters and training information for the IMPALA baseline.
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I.2 Dynalang Hyperparameters

We use the default model hyperparameters for the XL DreamerV3 model unless otherwise specified below. For VLN, we
use a larger GRU deterministic state and a bottleneck layer of size 1024 between timesteps. To process both one-hot and
embedding language inputs, we use a 5-layer MLP with 1024 MLP units in each layer. All models were trained on NVIDIA
A100 GPUs.

HomeGrid Msgr S1 Msgr S2 Msgr S3 VLN LangRoom

Total model parameters 281M 148M 148M 148M 268M 243M
Language inputs One-hot T5 Embed T5 Embed T5 Embed T5 Embed One-hot
Vocabulary size 32100 n/a n/a n/a n/a 15
Language MLP layers 5 5 5 5 5 5
Language MLP units 1024 1024 1024 1024 1024 1024
Image input Pixel Symbol Symbol Symbol Pixel Pixel
Image size (64, 64, 3) (16, 16, 17) (16, 16, 17) (16, 16, 17) (64, 64, 3) (64, 64, 3)
Train ratio 32 64 64 32 32 16
Batch size 16 16 24 24 8 16
Batch length 256 256 512 512 256 64
GRU recurrent units 4096 4096 4096 4096 8192 6144
Bottleneck units n/a n/a n/a n/a 1024 2048

Env steps 50M 1M 25M 50M 30M 45M
Number of envs 66 16 16 66 8 4
Training time (GPU days) 3.75 2.5 16 24 16 2

Table I.3. Dynalang hyperparameters and training information for each environment.
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