Under review as a conference paper at ICLR 2020

A APPENDIX

We provide details on experimental procedures from the main text and a few auxiliary experiments.

A.1 DETAILS OF VISUALIZATION EXPERIMENTS

While this is stated in the main text, we emphasize the fact that we use a pretrained SimCLR model
from Google’s public repository: https://github.com/google-research/simclr|
This characterizes one of the strengths of the DUM approach: it can leverage existing algorithms
as they are. This implementation of SimCLR used slightly different data augmentations than ones
we trained from scratch: it does not normalize the images and does not center crop images to 224
by 224 pixels during evaluation. Furthermore, this implementation uses a ResNet50x1 encoder. To
train DUM on ImageNet representations, we optimize the DUM objective for 50 epochs using SGD
with learning rate 0.01, batch size 256, momentum 0.9, and no weight decay. The input to the DUM
model are the post-pooling ResNet50 features (2048 dimensions) after the final convolutional layer.
The DUM encoder is a 3-Layer MLP with 4096 hidden dimensions.

A.2 ADDITIONAL VISUALIZATIONS

We include a more expansive set of visualizations showing the least and most certain examples to
embed sorted by variance norm of the encoded distribution. Fig. [3|show more classes chosen ran-
domly from ImageNet whereas Fig. [2| shows 80 of the images with the lowest and highest variance
norm for 10 datasets in the Meta-Dataset collection (Triantafillou et al., [2019). Note that these
variances were extracted with a ResNet18 encoder pretrained on CIFAR10, which suggests that the
features captured generalize to varied image distributions.

A.3 DETAILS OF CORRUPTION EXPERIMENTS

CIFAR10-C, CIFAR100-C, and TinylmageNet-C datasets were downloaded from https://
github.com/hendrycks/robustness. The standard TinyImageNet dataset, which we need
for its test set, was found at https://tiny-imagenet.herokuapp.com. All hyperparam-
eters for ImageNet are as in the visualiation experiments, detailed above. For CIFAR10 and CI-
FAR100, we train a ResNet18 encoder using the SimCLR objective with output dimension 128.
We use SGD with batch size 128, learning rate 0.03, momentum 0.9, weight decay le-4 for 200
epochs with no learning rate dropping. The data augmentations we use are a composition of ran-
dom cropping to 224 by 224 pixels, random color jitter, random horizontal flipping, and random
grayscale, plus normalization using dataset statistics. For ResNet18, we use the pre-pooling features
after the last convolutional layer as the input to the DUM model. All following details are as above.
To conduct the two-sample t-test, we use SCIPY.STATS.TTEST_IND. To compute AUROC, we use
SKLEARN.METRICS.ROC_AUC_SCORE.

A.4 DETAILS ON ANOMALY DETECTION EXPERIMENTS

We first describe the preprocessing for each dataset, which we found to not be obvious from prior
literature. For Arrhythmia, all entries with missing data (denoted by “?”’) were replaced with 0. Ev-
erything except class 1 is considered to be an outlier. For Covertype, PIMA, SpamBase, and Skin,
the least frequent class is chosen as the outlier. For Ionosphere, if the label is “g”, it is considered in
outlier. For Isolet, we use the split ISOLET1+2+3+4.DATA and treat classes “C”, “D”, and “E” as
outliers. Note that we do not only use 10 instances of each class. All other classes are inliers. For
KDD1999, we treat the LOGGED_IN column as the outlier label. In addition, we ignore the follow-
ing columns as they contain categorical, duplicate, or label information: NUM_OUTBOUND_CMDS,
LABEL, IS_HOST_LOGIN, PROTOCOL_TYPE, SERVICE, FLAG, LAND, IS_GUEST_LOGIN. For MFeat,
we concatenate the following file contents into one: FAC, FOU, KAR, MOR, PIX, ZER. Classes 6 and
9 are considered inliers whereas class 0 is considered an outlier (again we do not only choose 10
points of class 0). For OptDigits, we consider classes 3 and 9 as inliers and all of class 0 as outliers.
For PAMAP?2, we concatenate all subject files from 1 to 10 and drop the third column as it contains
too much missing data. The second column is treated as the outlier label. For Record, we concate-
nate data in blocl files 1 to 10. We drop columns CMP_FNAME_C2 and CMP_LNAME_C?2 and replace

13

https://github.com/google-research/simclr
https://github.com/hendrycks/robustness
https://github.com/hendrycks/robustness
https://tiny-imagenet.herokuapp.com

Under review as a conference paper at ICLR 2020

03208Z2204¥8?%0@
D0OFOISZ2O3RA900
330000k3K3040
8 0

FRO0Z00LOOALD2

(q) MSCOCO: ngh Variance (r) MSCOCO: Low Variance
) = T3} v !

(s) Quickdraw: High Variance (t) Quickdraw: Low Variance

Figure 2: Top and bottom 80 Images sorted by the norm of the variance predicted by the variational
encoder for datasets in the Meta-Dataset collection (Triantafillou et al.,[2019).

all remaining missing entries, denoted as “?” with zero. We take the least frequent class (over the
last column) as the outlier label. For StatLog, all rows with missing data are discarded, following
which the least frequent class is chosen as the outlier. Finally, for WDBC, the second column con-

14

Under review as a conference paper at ICLR 2020

uv,i ‘,,“ ¢
S = =
]
Sl i ==\ =i
MO e By . \
g O
o
A oK L = ¥/
< ImoEoEoi
“ -
: lww 38 &

T
il

Figure 3: Expanded set of ImageNet classes showing highest and lowest DUM variance norms.

tain the outlier labels, where the label “B” is treated as an outlier and all other labels are inliers. This
preprocessing procedure is largely based on the one described in[Sugiyama & Borgwardt| (2013).

We use the implementations of ISO, LOF, SVM, EE found in scikit-learn package [IE
dregosa et al| (2011) in the following packages: SKLEARN.ENSEMBLE.ISOLATIONFOREST,
SKLEARN.NEIGHBORS.LOF.LOCALOUTLIERFACTOR, SKLEARN.SVM.ONECLASSSVM,
SKLEARN.COVARIANCE.ELLIPTICENVELOPE. We found it unfair to give the models knowl-
edge of the contamination rate, which is unknown in real world contexts. For KNN, ABOD, and
AE, we use the implementations found in the Python toolkit for detecting outlying objects, PyOD
(Zhao et al.,[2019). For the autoencoder, we use a batch size of 32 if the datasize is less than 10k
entries, otherwise a batch sie of 256. In the first case, we trainf or 100 epochs whereas we train
for 20 in the latter. The architecture of the AE is an MLP with the hidden sizes 16, 8, 8, 16. We
base our PyTorch implementation of RAMODO/REPEN after the public implementation found at
https://github.com/GuansongPang/deep-outlier—detection, although with
significant refactoring. We use Adam optimizer with a learning rate of le-3, weight decay of
le-5, batch size 256 and 30 epochs. For our proposed method, we use an MLP with three layers,

15

https://github.com/GuansongPang/deep-outlier-detection

Under review as a conference paper at ICLR 2020

each with 4096 hidden nodes and followed by ReLU nonlinearity. We optimize with Adam with
a learning rate of le-3, batch size 256, and a temperature of 0.07. For REPEN and our method,
we train for 5 epochs only for very large datasets like PAMAP2 or KDD1999. In RAMODO, we
intialize the elements in the outlier set with a subsample size of 8§ and an ensemble size of 50. The
KDTree uses a euclidean metric.

A.5 ADDITIONAL EXPERIMENTS FOR ANOMALY DETECTION

We mentioned in the main text that training DUM on top of the raw features performs about the
same as DUM on top of SimCLR embeddings train on the raw features. Table[d]shows results using
SimCLR embeddings for a subset of the 14 datasets below (chosen for speed).

Table 4: Lesion: comparing DUM with and without SimCLR features.

Area under the Receiver Operating Characteristic (AUROC)

#data | #out | DUM+SimCLR | DUM

Arrhythmia 452 207 76.0 76.6
Tonosphere 351 126 82.1 81.0
Isolet 960 240 99.9 100.0
MFeat 600 200 99.1 99.9
OptDigits 1.7K 554 95.4 99.6
PIMA 768 268 82.0 81.5
Spambase 4.6K 1.8K 82.5 83.4
Statlog 6.4K 626 84.7 89.2
Wdbc 569 212 96.2 96.9

A.6 DETAILS ON OUT-OF-DISTRIBUTION DETECTION EXPERIMENTS

We first train SimCLR on each of the inlier distributions using a ResNet34 encoder (to be compa-
rable to supervised baselines, which all use ResNet34), temperature 7 = 0.07, and an embedding
dimension of 128. For optimization we use SGD, momentum 0.9, learning rate 0.03, batch size
128 for 200 epochs. All images are resized to 256 by 256 prior to augmentations. After this,
we fit DUM on learned embeddings, using the same MLP architecture and hyperparameters as in
Sec.[4.2] Our implementation of baselines is heavily based on the following public github reposito-
ries: https://github.com/pokaxpoka/deep_Mahalanobis_detector, https://
github.com/EvZissel/Residual-Flow, and https://github.com/hendrycks/
ss—ood, https://github.com/VectorInstitute/gram-ood—-detection, which
in total contain implementations for all six baselines. In addition, these baselines contain pretrained
backbone networks on CIFAR10, CIFAR100, and SVHN, which we download and utilize in our
replications of their results. The LSUN and TinylmageNet dataset splits were downloaded from
the Mahalanobis public repository. For Rotation Prediction, we pretrain the joint supervised and
contrastive objective with 0.5 weight on the rotation objective and 0.5 weight on the translation ob-
jective. We use SGD with a learning rate of 0.1, momentum 0.9, weight decay 0.0005, batch size 32
for 50 epochs with linear learning rate scheduling. For our proposed method, we optimize SimCLR
with ResNet32 for 200 epochs using SGD, momentum 0.9, weight decay le-4. The representation
dimensionality is 128, and we use a temperature of 0.07. Following this, we train DUM for 100
epochs, using Adam with learning rate le-3.

16

https://github.com/pokaxpoka/deep_Mahalanobis_detector
https://github.com/EvZissel/Residual-Flow
https://github.com/EvZissel/Residual-Flow
https://github.com/hendrycks/ss-ood
https://github.com/hendrycks/ss-ood
https://github.com/VectorInstitute/gram-ood-detection

	Introduction
	Background
	The Deep Uncertainty Model
	Applications of Uncertainty
	Embedding Interpretability
	Anomaly Detection
	Out-of-Distribution Image Detection

	Related Work
	Conclusion
	Appendix
	Details of Visualization Experiments
	Additional Visualizations
	Details of Corruption Experiments
	Details on Anomaly Detection Experiments
	Additional Experiments for Anomaly Detection
	Details on Out-of-Distribution Detection Experiments

