
Under review as a conference paper at ICLR 2024

A PROOF: OPTIMISER IS CONTROLLER

A.1 SGD IS A P CONTROLLER

The parameter update rule of SGD from iteration t to t+ 1 is determined by

θt+1 = θt − r∂Lt/∂θt (21)

where r is the learning rate. We now regard the gradient ∂Lt/∂θt as error e(t) in the PID control
system Wang et al. [2020]. Compared to the PID controller, we find that SGD can be viewed as one
type of P controller with Kp = r. The system function of SGD becomes:

θSGD(s) = r (22)

A.2 SGDM IS A PI CONTROLLER

SGDM, which leverages historical gradients, trains a DNN more swiftly than SGD does. The rule
of SGDM updating parameter is given by{

Vt+1 = αVt − r∂Lt/∂θt
θt+1 = θt + Vt+1

(23)

where Vt is a term that accumulates historical gradients. α ∈ (0, 1) is the factor that balances the
past and current gradients. It is usually set to 0.9. Dividing two sides of the Equation 23 by αt+1,
we get:

Vt+1

αt+1
=

Vt

αt
− r

∂Lt/∂θt
αt+1

. (24)

Finally, we get θt+1 as follow by iteration:

θt+1 − θt = −r
∂Lt

∂θt
− r

t−1∑
i=0

αt−i ∂Li

∂θi
(25)

SGDM actually is a PI controller with Kp = r and Ki = rαt−i. The system function of SGDM
should be:

θSGDM (s) = r +
r

s
· 1

s− ln(α)
(26)

A.3 PID OPTIMISER IS A PID CONTROLLER

SGD and SGDM can be respectively viewed as P and PI controller Wang et al. [2020]. Given that
training is often conducted in a mini-batch manner, the learning process is very easy to introduce
noise when computing gradients. The proposed PID optimiser Wang et al. [2020] updates network
parameter θ in iteration (t+ 1) by{

Vt+1 = αVt − r∂Lt/∂θt
Dt+1 = αDt + (1− α) (∂Lt/∂θt − ∂Lt−1/∂θt−1)
θt+1 = θt + Vt+1 +KdDt+1.

(27)

Thus, the θt+1 using PID optimiser is described as follow by iteration:

θt+1 − θt = −r
∂Lt

∂θt
− r

t−1∑
i=0

αt−i ∂Li

∂θi
− rKd

(
∂Li

∂θi
− ∂Li−1

∂θi−1

)
(28)

where Kd

(
∂Li

∂θi
− ∂Li−1

∂θi−1

)
is the D component of the PID controller. The system function of PID

should be:

12



Under review as a conference paper at ICLR 2024

θPID(s) = r +
r

s
· 1

s− ln(α)
+Kds (29)

When setting the hyperparameter α = 1.0, we can get the vanilla PID optimiser: Kp = r, Ki = r
and Kd = r ·Kd

A.4 ADAM IS A PI CONTROLLER WITH AN ADAPTIVE FILTER

Based on adaptive estimates of lower-order moments, AdaM algorithm adaptively adjusts the
stochastic gradients, and it can be summarized as below:


mt+1 = β1mt + (1− β1) ∂Lt/∂θt
vt+1 = β2vt + (1− β1) ∂Lt/∂θt
m̂t+1 = mt/ (1− βt

1)
v̂t+1 = vt/ (1− βt

2)
θt+1 = θt + αm̂t/

(√
v̂t+1 + ϵ

) (30)

where mt is the first moment estimate at timestep t, and vt is the second raw moment estimate. The
default set of learning rate α, hyperparameters β1, β2 and ϵ are respectively 0.001, 0.9, 0.999 and
10−8.

The iteration of θt+1 using the AdaM optimizer is described as follows:

θt+1 = θt − r · m̂t√
v̂t + ϵ

= θt − r ·

∑t
i=0 βt−i

1 (∂Li/∂θi)∑t
i=1 βi−1

1√∑t
i=1 βt−i

2 (∂Li/∂θi)2∑t
i=1 βi−1

2

+ ϵ

= θt − r · 1

M
β0
1

∂Lt

∂θt
− r · 1

M

t−1∑
i=0

βt−1−i
1

∂Li

∂θi

(31)

where M is the adaptive part of AdaM, and its formula is:

M =
1√∑t

i=0 βt−i
2 (∂Lt/∂θt)2∑t
i=0 βi−1

2

+ ϵ

· 1∑t
i=0 β

i−1
1

(32)

Compared to Equation 25, the adaptive component M of AdaM plays an important role on adapting
the learning system. We cannot derive the system function of AdaM, as the high complexity of M .
Finally, we directly use the same S function in SIMULINK and get its system response on above
mentioned ANN models.

A.5 FILTER PROCESSED SGD

Although Gaussian LPF-SGD outperforms other SGD variants, we still do not know which part it
has filtered, for example, high frequency, low frequency or any band frequency parts. In this study,
we summarize the SGD learning process under the processing of filters as below:

{
̂∂Lt/∂θt = ∂Lt/∂θt + ∂

(∫∞
−∞ L(θt − τ)H(τ)dτ

)
/∂θt

θt+1 = θt − r ̂∂Lt/∂θt
(33)

where H is a Gaussian kernel and L(θt) is the loss function of the training process in GLPF-SGD
Bisla et al. [2022]. The θt+1 using Filter processed SGD optimiser is described as follow by itera-
tion:

13



Under review as a conference paper at ICLR 2024

θt+1 = θt − r
∂Lt

∂θt
+ r

∂
(∫∞

−∞ L(θt − τ)H(τ)dτ
)

∂θt

= θt − r
∂Lt

∂θt
+ r

∂ (L⊛H)

∂θt

= θt − r
∂Lt

∂θt
+ r

1

G

∑N
i=0 ∂ (L(θt − τi)H(τi))

∂θt

(34)

where G is the gain of the filter H with the order of N , and ⊛ is the convolution process. Finally,
the system function of filter processed SGD becomes to:

θFP−SGD(s) = r

(
Gain ·

∏m
i=0 (s+ hi)∏n
j=0 (s+ lj)

)
(35)

In this study, to analyse which frequency parts are beneficial to the training, we used a second-order
Infinite Impulse Response (IIR) filter instead of the Gaussian kernel filter. By approximately setting
the cutoff frequency at half, we imply a low-pass filter ranging from 0 Hz to half the sampling rate
and a high-pass filter from half the sampling rate up to the sampling rate. Consequently, knowledge
of the exact sampling rate is unnecessary, and essentially, it remains unobtainable.

B PROOF: LEARNING SYSTEMS OF MOST ANNS ARE CONTROL SYSTEMS

B.1 CNN AND ITS CONTROL SYSTEM

PID

Controller

Fuzzy

Parameter

Settler

(Defuzzifier)

Error

E(s)

Desired

Value
Output

g

gc

Kp

Ki

Kd

Update

θ * -

Backward System: fuzzy PID optimizer on CNN

θ (s)

Figure 6: The control system of CNN updated by
the FuzzyPID optimiser.

Most CNNs have been used to perform the clas-
sification task using the backpropagation al-
gorithm. Obviously, this learning system is a
single-input-single-output (SISO) control sys-
tem, indicating that each sample corresponds to
a single label. Figure 6 provides a concise rep-
resentation of the learning structure when fo-
cusing solely on the optimizer, exemplified here
by the fuzzyPID optimizer applied to CNNs.
If considering only optimiser, its brief learning
structure can be seen in Figure 6, and we give
an example of using fuzzyPID optimiser on CNNs. When using each Controller, the Laplace trans-
form of the learning process becomes:

θ(s) = Controller · E(s)

= Controller ·
(
θ∗

s
− θ(s)

)
=

Controller

Controller + 1
· θ

∗

s

(36)

Backpropagation algorithm based ANN models rely on the backward error to update weights them-
selves, and inevitably, the system function of their learning systems have been determined by such
designed algorithm. Therefore, there are two factors can significantly affect their performance. One
is hyperparameter that setups high techniques on ANN models, and another one is optimiser that
controls the convergence speed and stability.

It is clear that the network parameter update using SGD optimiser depends on current gradient
r∂Lt/∂θt , but other well-performed updating methods, such as SGDM, AdaM and PID, have con-
sidered the previous gradient. The accumulation part of gradients in SGDM can accelerate the learn-
ing process, and the introduction of decay term α is to keep the gradients away from the current
value so that it can alleviate noise. Building on SGDM, the PID optimizer introduces the predicted

14



Under review as a conference paper at ICLR 2024

future trend (the difference between the current gradient and the previous one) to adjust the learning
process, and its speed becomes faster than SGDM. However, coefficients of PID optimiser, such
as P, I and D, are totally fixed, and that will bring another problem – overshooting. To counteract
this issue, we used fuzzy logic to adaptively adjust the coefficients of PID optimiser. Inspired by
the GLPF-SGD, we believe the learning process using any optimiser relies on specific frequency
components. In this study, we designed two filters to figure out which frequency component ANN
models prefer. To avoid a long lag of convolution computing, we only applied a second-order IIR
filter on the SGD learning process. Even without the exact sampling rate, we have chosen from the
half, as the frequency component has no relationship with the sampling rate if we cutoff from the
2−1∗i of sampling rate. Therefore, we can get determined θ(s) of backpropagation based learning
systems using various optimisers as follow:

(1) When Controller = θSGD(s), we can get θ(s) of backpropagation based CNNs as below:

θ(s) =
Kp

Kp + 1
· θ

∗

s
(37)

(2) When Controller = θSGDM (s), and if we set α = 1.0, we can get θ(s) of backpropogation
based CNNs using SGDM as the optimiser as below:

θ(s) =
Kps+Ki

(Kp + 1)s+Ki
· θ

∗

s
(38)

(3) Based on prior knowledge of control system engineering, PID optimiser was proposed by adding
D component on SGDM optimiser. According to the analysis of PID optimiser Wang et al. [2020]
and the Ziegler–Nichols optimum setting rule Ziegler & Nichols [1942], we also set P = 1, I = 5
and D = 100 here. Therefore, when Controller = θPID(s), θ(s) can be computed by:

θ(s) =
Kp +Ki

1
s +Kds

Kp +Ki
1
s +Kds+ 1

· θ
∗

s

=
Kds

2 +Kps+Ki

Kds2 + (Kp + 1)s+Ki
· θ

∗

s

(39)

(4) Considering the use of fuzzy logic on PID optimiser, we finally get Equation 13 that can compute
the system response of FuzzyPID on backpropogation based ANNs.

(5) When using AdaM as the optmiser, apart from the adaptive part, we found AdaM shares the
same parameter updating strategy as the SGDM. With β1 = 0.9, the Laplace transform of AdaM
becomes:

AdaM(s) =
1

M
·Kp +

1

M
·Ki

1

s
· 1

s− ln(β1)
(40)

where the Laplace transform of the last term in Equation 28 becomes to:

Laplace

(
t−1∑
i=0

βt−1−i
1

∂Li

∂θi

)
= Laplace

(
t−1∑
i=0

elnβ1(t−1−i)

)
· Laplace

(
t−1∑
i=0

∂Li

∂θi

)

=
1

s− ln(β1)
· 1
s

(41)

Hence, the system function θ(s) when using AdaM as the optimiser is:

θ(s) =
AdaM(s)

AdaM(s) + 1
· θ

∗

s

=
Kps+Ki

Ms2 + (Kp −Mlnβ1)s+Ki
· θ

∗

s

(42)

15



Under review as a conference paper at ICLR 2024

(5) Additionally, when Controller = θFP−SGD(s) the system function of using SGD processed
with Filter is defined as:

θ(s) =
Filter

F ilter + 1
· θ

∗

s

=
Gain ·

∏m
i=0 (s+ hi)

Gain ·
∏m

i=0 (s+ hi) +
∏n

j=0 (s+ lj)
· θ

∗

s

(43)

B.2 FFNN AND ITS CONTROL SYSTEM

Controller

Positive

Sample

Update

+θ*

Forward System: FFNN

Output
Error

E(s)
-

Th

Controllerθ*

Negative

Sample

θ (s)

Figure 7: The control system of FFNN.

FFNN Hinton [2022], based on the forward-
forward algorithm mainly aims to visualize the
learning process. For a clear analysis on FFNN,
we set the portion of positive samples λ = 0.5
and the threshold Th = 1.0. These two hyper-
parameters were used to make the goodness be
well above some threshold value for real data
and well below that value for negative data. Es-
sentially, we still use the backpropagation algo-
rithm to update the weights for each layer, as
one method used in Hinton [2022]. Based on
Equation 14 and 15, we found when λ = 0.5,
the optimal result θ∗ has no relationship with the learning system. We analysed FFNN on seven
optimisers (e.g., SGD, SGDM, AdaM , PID, LPF-SGD, HPF-SGD and FuzzyPID) and derived their
control system functions as below:

θ(s) =

(
−(1− λ)

θ∗

s
+ λ

θ∗

s
−
[
θ(s)− Th

s

])
· Controller

=
1

Controller + 1
·
(
(2λ− 1)θ∗ + Th

s

) (44)

But when λ ̸= 0.5 and the threshold Th ̸= 1.0, the system function and its classification perfor-
mance will be influenced by these two hyperparameters. The product of (2λ− 1)θ∗ + Th is a gain
adjustment part that will affect the learning process.

B.3 GAN AND ITS CONTROL SYSTEM

The essence of GAN is that G and D play games with each other and finally reach a Nash equilibrium
point Kreps [1989], but this is only an ideal situation. The normal situation is that it is easy for one
party to be strong and the other party to be weak. Therefore, two problems appeared (1) Gradient
disappearance and (2) mode collapse corresponding to D and G being the result of the stronger side.

Controller

Desired

Value

Output

Update

Controller

Update

Random 

Input

Error

E(s)
x-

Generated

Output
θ G* θG (s)

θ D* θD (s)

 Backward-Forward System: GAN

Figure 8: The control system of classical GAN.

The situation of gradient vanishing is that D
wins the game. Because the gradient update of
G comes from D, and in the initial stage of
training, the input of G is randomly generated
noise, which will definitely not generate good
pictures, but D performs well. It is easy to judge
the true and false samples, that is, there is al-
most no loss in the training of D. Therefore,
there is no effective gradient information back
to G itself.

The problem of mode collapse is mainly that G
wins the game. That causes D to be unable to distinguish between real pictures and fake pictures
generated by G. But D cannot tell the difference, and give the correct evaluation, then G will think

16



Under review as a conference paper at ICLR 2024

that this picture is correct. Thus, D still gives the correct evaluation. Therefore, these two ANNs are
such mutual deception.

For a clear analysis on GAN, we used a classical GAN model Goodfellow et al. [2014]. We derive
its control system function (Seen from Figure 8) under seven optimisers:

(1) When using SGD as the optimiser, Controller = Kp we get the the control system of G as
below:

θG(s) =
1

2
·

 θ∗D
Kp

±

√(
θ∗D
Kp

)2

− 4

s

 (45)

(2) When using SGDM (a PI controller) as the optimiser, controller = Kp +Ki/s , we get the the
control system of G as below:

θG(s) =
1

2
·

 θ∗Ds

Kps+Ki
±

√(
θ∗D

Kps+Ki

)2

− 4

s

 (46)

(3) When using AdaM (merging the PI and an adaptive filter) as the optimiser, controller =
AdaM(s)), we get the the control system of G as below:

θG(s) =
1

2
·

 θ∗D
AdaM(s)

±

√(
θ∗D

AdaM(s)

)2

− 4

s

 (47)

(4) When using PID (considering the pass, current and future) as the optimiser, controller = Kp +
Ki/s+Kds. Finally, we get the control system of G as below:

θG(s) =
1

2
·

 θ∗D
Kp +

Ki

s +Kds
±

√√√√( θ∗D
Kp +

Ki

s +Kds

)2

− 4

s

 (48)

(5) When using Filter processed SGD as the optimiser, controller = Filter, we get the the control
system of G as below:

θG(s) =
1

2
·

 θ∗D

Gain ·
∏m

i=0(s+hi)∏n
j=0(s+lj)

±

√√√√√
 θ∗D

Gain ·
∏m

i=0(s+hi)∏n
j=0(s+lj)

2

− 4

s

 (49)

Owing to the complexity of their system functions, we finally decided to use MATLAB SIMULINK
to analyse their system response and stability, as shown in Figure 5.

C RESIDUAL CONNECTIONS

The Learning (Control) System of Residual Models

Controller
Error

E(s)
Desired

Value

Output

Update

θ * - θ (s)+

Figure 10: Control system of Residual models.

Residual connections (RSs) He et al. [2016b];
Eunice et al. [2022] aim to ease the training
of DNNs, and it can (1) increase the depth of
ANNs and (2) avoid gradient vanishing. Most
state-of-the-art (SOTA) ANN models have RSs,
but the use of such forward connections has no
systematic analysis. Compared to a plain CNN
layer, Residual Block adds a short cut from the
input features to the output of the mapping. The
output from the residual block is H(x) = f(x) + x, where input features are x, the output from the
original mapping is f(x) , then, our desired output is H(x). We are learning the residuals from the
output in relate to the input, as the RS is trying to fit the mapping f(x) = H(x)− x.

17



Under review as a conference paper at ICLR 2024

Figure 9: Step responses of models with residual connections across various optimizers: such as
SGD, SGDM, AdaM, PID, LPF-SGD, HPF-SGD and FuzzyPID optimisers.

In this study, the models we designed with two or four hidden layers constitute a first-order system,
and their system response can also be seen in Figure 9(a). However, we assume SOTA models,
such as VGG19 Simonyan & Zisserman [2014], ResNet18, ResNet50, ResNet101 He et al. [2016a],
DenseNet121 Zhu & Newsam [2017], MobileNetV2 Sandler et al. [2018], EffecientNet Tan & Le
[2019], are second-order (or higher) models. According to the computing process of SGD and the
explanation of ResNet He et al. [2016b], we present a reformulated RS mechanism below (ignoring
BN Ioffe & Szegedy [2015], ReLU Nair & Hinton [2010], pooling Wu & Gu [2015], and exponential
or cosine decay Li et al. [2021]):

∂Lt

∂θ̂t

∂θ̂t
∂θt

=
∂Lt

∂θ̂t

(
1 +

∂

∂θt

L−1∑
i=l

F (θi)

)
(50)

where F is a residual function, θ̂t is the weights in the residual block, and L (also interpretable as
the depth of a single residual block) is the deeper unit in He et al. [2016b]. Equation 50 indicates that
the gradient ∂Lt/∂θt can be decomposed into two additive terms: a term of ∂Lt/∂θt that propagates
information directly without concerning any weight layers, and another term of ∂

∂θt

∑L−1
i=l F (θi)

that propagates through the weight layers. The additive term of (or this direct component) ∂Lt/∂θt
determines that the learning system will consider information which directly propagates back to θt.
The parameter update rule of SGD from iteration t to t+ 1 using RSs is determined by :

θt+1 = θt − r∂Lt/∂θt − r (51)

where we assume the residual block F is a simple block. Thus, we finally get the system function
of residual connections θRS(s) as below:

θRS(s) = r +
r

s
(52)

where the learning rate r can be served as Kp, and r
s is aligns with the second part Kiα

t−i

s of SGDM
in Equation 25. The difference is that SGDM has a momentum that takes previous gradients into
account, but RS integrates information from preceding layers. Analysing a node within RS-based
ANN models, we found the system function of these two – SGDM and RS – have a very similar
format. SGDM optimizes the weight of models by accumulating previous gradients with the use
of a momentum factor to adjust the effect of accumulation on the time dimension. However, RS
optimizes the model by adding passed information to the current block on the space dimension.

In Figure 14, models with residual connections, such as ResNet50, DenseNet121, ModelNetV2, and
EffecientNet, have the classification advantage using SGDM and PID, even though PID displays
irregularities in the training curve. Interestingly, this observation is also echoed in Figure 9(b), as
the rising time of SGDM and PID controller on residual connections is shorter than others (except
AdaM, although AdaM can rise very fast, it demonstrates heightened oscillations). FuzzyPID trails

18



Under review as a conference paper at ICLR 2024

closely, while LPF-SGD lags due to its pronounced low-frequency characteristics leading to the
most gradual climb.

D CYCLEGAN

(a) CycleGAN on SGD. (b) CycleGAN on SGDM. (c) CycleGAN on AdaM. (d) CycleGAN on PID.

(e) CycleGAN on LPF-
SGD.

(f) CycleGAN on HPF-
SGD.

(g) CycleGAN on
FuzzyPID.

Figure 11: The system response of CycleGAN on different hyperparameters and optimisers, such as
SGD, SGDM, AdaM, PID, LPF-SGD, HPF-SGD and FuzzyPID optimisers.

 The Learning (Control) System of CycleGAN

θGa*

θDa*

Error 

E(s)

Controller θGa(s)

θDa(s)Controller

Generated

Output

Output Dax

θDb* θDb(s)Controller Output Dbx

θGb* Controller θGb(s)
Generated

Output

x

x

-

-

-

-

Figure 12: The control system of CycleGAN.

CycleGAN Zhu et al. [2017] aims to
translate an image from a source do-
main a to a target domain b in the
absence of paired examples. We de-
note the data distribution as a ∼
pdata(a) and b ∼ pdata(b). Cycle-
GAN contains two mapping func-
tions Ga: A → B and Gb: B → A,
and associated adversarial discrimi-
nators Da and Db. Db encourages
generator Ga to translate A into out-
puts indistinguishable from domain
B, and vice versa for DA and B.
According to its learning system, we
present the control system of Cycle-
GAN in Figure 12. CycleGAN has
two Generators and two Discrimina-
tors, and taking the cycle consistency loss into account, its loss function has three parts as below:

L(Ga, Gb, Da, Db) = LGAN (Ga, Db, A,B) + LGAN (Gb, Da, B,A) + λLcyc(Ga, Gb) (53)

where for the mapping function Ga: A → B and its discriminator Db, we express the objective as:

LGAN (Ga, Db, A,B) = Ea∼pdata(a)[logDb(b)] + Eb∼pdata(b)[log(1 +Db(G(a))] (54)

For each image b from domain B , Ga and Gb should satisfy backward cycle consistency: b →
Ga(b) → Ga(Gb(b)) ≈ y. Thus, the cycle consistency loss should be:

Lcyc(Ga, Gb) = Ea∼pdata(a)[||Gb(Ga(a))− a||1] + Eb∼pdata(b)[||Ga(Gb(b))− b||1] (55)

19



Under review as a conference paper at ICLR 2024

CycleGAN used the L1 norm in this loss with an adversarial loss between Gb(Ga(a)) and a, and
between Ga(Gb(b)) and b, but did not observe improved performance. Therefore, we get the system
function of CycleGAN as below:

θDa(s) = controller · θGa(s) · E(s) (56)

θGa(s) = controller · E(s) (57)

θDb(s) = controller · θGb(s) · E(s) (58)

θGb(s) = controller · E(s) (59)

E(s) =

[
θ∗Da

s
− θDa(s)

]
+

[
θ∗Db

s
− θDb(s)

]
+

[
θ∗Ga

s
− θGa(s)θGb(s)

]
+

[
θ∗Gb

s
− θGb(s)θGa(s)

]
(60)

We simulated the system response of an advanced GAN – CycleGAN on seven controllers (optimis-
ers) and summarized the result in Figure 11. PID and FuzzyPID controllers can generate the excellent
stable sinusoidal signals both on Ga and Gb. SGDM controller failed to generate sinusoidal signals,
otherwise, SGD and AdaM can generate acceptable sinusoidal signals. For the generated MNIST in
Figure 13, after 100 epochs training, PID can generate 100% correct samples both from Ga to Gb

and from Gb to Ga. Notably, the ability of CycleGAN to produce samples from a single dataset was
significantly enhanced when utilizing the FuzzyPID, which yielded flawless samples from the out-
set. This suggests that FuzzyPID might be the optimal choice for optimizing the learning updates of
CycleGAN. The generated samples are depicted in Figure 13. A manual evaluation of the alignment
between samples from and vice versa was also conducted. Preliminary observations indicate that
the PID and FuzzyPID optimisers outshine the others when applied to models that utilize a cycle
consistency loss, such as CycleGAN.

E HYPERPARAMETERS

Table 3: Hyper-parameters for the image classification task on MNIST.

Hyper-parameter Backward System Forward System Backward-Forward System
Data augmentation Auto Auto Auto

Input resolution [28,28,1] [28,28,1] [28,28,1]
Epochs 40 200 200

Batch size 100 100 100
Hidden dropout 0 0 0

Random erasing prob 0 0 0
EMA decay 0 0 0
Cutmix α 0 0 0
Mixup α 0 0 0

Cutmix-Mixup 0 0 0
Label smoothing 0.1 0.1 0.1
Peak learning rate 2e-3 2e-3 2e-4

Steps per block / 60 /
Positive samples portion λ / [0.3, 0.5, 0.7] /

Threshold / [0.1, 1.0, 10.0] /
optimiser {SGD, SGDM, AdaM, PID, LPF-SGD, HPF-SGD, FuzzyPID}

In this study, we conducted three primary experiments, as detailed in Table 3. We roughly separated
them to experiments on Backward System, Forward System, Backward-Forward System. Experi-
ments on Backward System and Backward-Forward System do not have Steps per block, Threshold
and Positive samples portion. However, to make a fair comparison, all experiment should use seven
optimisers on the same hyperparameters. These experiments were categorised based on the Back-
ward System, Forward System, and Backward-Forward System. Notably, the Backward System and

20



Under review as a conference paper at ICLR 2024

(a) Ga to
Gb on the
1st epoch.

(b) Ga

to Gb on
the 50th
epoch.

(c) Ga

to Gb on
the 100th
epoch.

(d) Ga

to Gb on
the 200th
epoch.

(e) Gb to
Ga on the
1st epoch.

(f) Gb to
Ga on
the 50th
epoch.

(g) Gb

to Ga on
the 100th
epoch.

(h) Gb

to Ga on
the 200th
epoch.

Figure 13: The generated samples from CycleGAN on corresponding optimisers (From top to bottom
is SGD, SGDM, AdaM, PID, LPF-SGD, HPF-SGD and FuzzyPID).

Backward-Forward System do not utilise the ”Steps per block”, ”Threshold”, and ”Positive sam-
ples portion” hyperparameters. Nonetheless, for a rigorous comparison, all experiments employed
the same seven optimisers with consistent hyperparameters.

Table 4: Hyper-parameters for the image classification task on CIFAR10, CIFAR100 and TinyIma-
geNet.

Hyper-parameter VGG19 ResNet18 ResNet50 ResNet101 DenseNet121 MobileNetV2 EffecientNet
Data augmentation Auto Auto Auto Auto Auto Auto Auto
Input resolution (CIFAR10,100) [32,32,3] [32,32,3] [32,32,3] [32,32,3] [32,32,3] [32,32,3] [32,32,3]
Input resolution (TinyImageNet) [64,64,3] [64,64,3] [64,64,3] [64,64,3] [64,64,3] [64,64,3] [64,64,3]
Epochs 200 200 200 200 200 200 200
Batch size 100 100 100 100 100 100 100
Hidden dropout 0 0 0 0 0 0 0
Random erasing prob 0 0 0 0 0 0 0
EMA decay 0 0 0 0 0 0 0
Cutmix α 0 0 0 0 0 0 0
Mixup α 0 0 0 0 0 0 0
Cutmix-Mixup 0 0 0 0 0 0 0
Label smoothing 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Peak learning rate 2e-2 2e-2 2e-2 2e-2 2e-2 2e-2 2e-2
optimiser {SGD, SGDM, AdaM, PID, LPF-SGD, HPF-SGD, FuzzyPID}

As shown in Table 4, we employed three datasets: CIFAR10, CIFAR100 and TinyImageNet. Addi-
tionally, one vision model – VGG19 which lacks the residual connection, and six residual connec-
tions used vision models are illustrated in our experiments. We specifically chose these seven vision
models to investigate whether a more complex system, indicating a learning system order of two or
higher, can be ascertained.

Meanwhile, we designed two filter processed SGD optimisers by using a second-order IIR structure.
The coefficient of the convolution process in Equation 31 is listed in Table 5. Owing to the frequency
cutoff around the midpoint (given the uncertainty in determining the sampling rate and the desired

21



Under review as a conference paper at ICLR 2024

Table 5: Coefficients of LPF-SGD and HPF-SGD using second-order IIR structure.

Filter Type Gain Numerator Denominator
G x0 x1 x2 y0 y1 y2

Low Pass Filter 0.49968 1 -0.99937 0.00063 1.0 0 -1.0
High Pass Filter 0.49968 1 0.99937 0.00063 1.0 0 -1.0

frequency band), this second-order IIR filter encompasses seven coefficients. It’s noteworthy that
the ’filterDesigner’ toolbox in MATLAB can be utilized to design such filters.

F CIFAR10, CIFAR100 AND TINYIMAGENET

This section presents the accuracy rate using seven vision models (e.g., VGG19, ResNet18,
ResNet50, ResNet101, DenseNet121, MobileNetV2 and EfficientNet) across seven optimisers
(SGD, SGDM, AdaM , PID, LPF-SGD, HPF-SGD, and FuzzyPID). These results are detailed in
Table 6, and the associated training and testing curves are depicted in Figure 14. VGG19 is a
straight-forward connected vision model without residual blocks, and as demonstrated by the sys-
tem response in Figure 10, no matter the assumed system order of VGG19 is one or two, compared
to SGD on ResNet50, SGD on VGG19 only can achieve the half accuracy rate on CIFAR100 and
TinyImageNet. Introducing a low pass filter to SGD results in a considerably slow learning curve
ascent. Conversely, incorporating a high pass filter facilitates the learning process. We infer that the
update of weights needs the high frequency component of gradient sequences to rapidly adapt to
the optimal. Consistently, because of the adaptive part M in Equation 7, AdaM aims to follow the
change of gradients with a faster speed. Nonetheless, relying solely on a single parameter, β2 , for
updates does not effectively mitigate the overshoot issue. Interestingly, the FuzzyPID optimiser ex-
hibits a smoother learning trajectory compared to the PID. The design intention behind FuzzyPID
was to supplement the PID optimiser, aiding in the adjustment of its overshoot issue. However, in
practice, while FuzzyPID may not consistently outperform PID, it exhibits superior performance
when deployed on CycleGAN.

Table 6: The results of CNN with different optimisers on CIFAR10 and CIFAR100. Using the 10-
fold cross-validation, the average and standard variance results are shown below.

optimiser SGD SGDM Adam PID LPF-SGD HPF-SGD FuzzyPID
CIFAR10

V GG19 90.89±0.03 93.13±0.13 78.07±0.82 93.60±0.06 13.75±0.69 92.52±0.09 93.45±0.09

ResNet18 91.65±0.15 94.67±0.17 83.54±1.32 95.42±0.05 11.07±2.09 93.05±0.12 94.98±0.19

ResNet50 91.06±0.02 94.70±0.12 81.39±0.44 95.21±0.19 11.49±0.06 92.84±0.09 94.51±0.35

ResNet101 90.87±0.29 94.70±0.08 82.78±0.05 95.39±0.14 10.49±0.14 92.42±0.11 93.95±0.20

DenseNet121 91.37±0.15 95.20±0.28 84.62±0.27 95.71±0.04 11.90±0.69 93.23±0.07 94.53±0.13

MobileNetV 2 87.97±0.07 93.78±0.01 83.02±0.24 94.12±0.25 10.02±0.75 90.74±0.12 93.46±0.03

EffecientNet 83.36±0.48 91.71±0.26 83.49±0.13 92.14±1.10 10.69±0.61 87.66±0.13 91.16±0.15

CIFAR100
V GG19 66.42±0.28 71.97±0.21 18.28±2.12 73.25±0.05 1.35±0.05 69.65±0.21 73.21±0.29

ResNet18 70.05±0.03 76.03±0.02 49.90±0.02 77.84±0.01 1.12±0.02 72.54±0.17 76.78±0.08

ResNet50 66.52±0.42 77.25±0.16 49.64±0.80 78.37±0.04 1.28±0.10 71.23±0.10 75.62±0.16

ResNet101 64.69±0.11 76.36±0.38 50.97±0.91 79.25±0.26 1.09±0.04 70.61±0.14 72.78±0.31

DenseNet121 68.45±0.39 77.78±0.31 55.87±0.82 80.06±0.12 1.12±0.16 73.72±0.21 75.71±0.25

MobileNetV 2 62.52±0.37 73.96±0.26 42.74±2.80 74.81±0.11 0.98±0.02 67.83±0.14 73.31±0.26

EffecientNet 50.35±0.77 66.87±0.38 34.06±7.41 71.32±0.29 1.01±0.04 55.98±0.21 62.92±0.35

TinyImageNet
V GG19 44.87±0.01 51.22±0.20 0.57±0.07 0.50±0.00 0.00±0.00 46.66±0.07 0.50±0.00

ResNet18 50.27±0.25 58.79±0.15 34.33±1.23 63.71±0.71 0.00±0.09 54.46±0.09 61.39±0.13

ResNet50 42.20±0.08 63.54±0.20 35.01±1.18 67.51±0.40 0.00±0.00 48.38±0.10 60.82±0.50

ResNet101 40.98±0.31 64.13±0.19 35.64±0.71 69.54±0.56 0.40±0.00 48.22±0.06 58.77±0.21

DenseNet121 43.23±0.15 63.37±0.07 38.84±0.62 68.29±0.15 0.26±0.02 49.34±0.22 55.66±0.12

MobileNetV 2 46.12±0.11 61.08±0.61 28.56±0.28 59.98±0.04 0.00±0.00 50.48±0.12 58.73±0.13

EffecientNet 54.12±0.22 62.28±0.04 23.11±0.03 62.66±0.12 0.30±0.02 57.58±0.04 60.43±0.39

22



Under review as a conference paper at ICLR 2024

(a) Training Accuracy
on CIFAR10.

(b) Testing Accuracy
on CIFAR10.

(c) Training Accuracy
on CIFAR100.

(d) Testing Accuracy
on CIFAR100.

Figure 14: The training and testing curves of SOTA models on CIFAR10 and CIFAR100 datasets,
and from the top to the bottom respectively is VGG19, ResNet50, DenseNet121, MobileNetV2 and
EfficientNet on corresponding optimisers: SGD, SGDM, AdaM, PID, LPF-SGD, HPF-SGD and
FuzzyPID.

23



Under review as a conference paper at ICLR 2024

(a) Training Accuracy on TinyImageNet200. (b) Testing Accuracy on TinyImageNet200.

Figure 15: The training and testing curves of SOTA models (e.g., VGG19, ResNet50, DenseNet121,
MobileNetV2 and EfficientNet) on TinyImageNet on corresponding optimisers: SGD, SGDM,
AdaM, PID, LPF-SGD, HPF-SGD and FuzzyPID.

24


	Proof: Optimiser Is Controller
	SGD Is a P Controller
	SGDM Is a PI Controller
	PID optimiser Is a PID Controller
	AdaM Is a PI Controller with an Adaptive Filter
	Filter Processed SGD

	Proof: Learning Systems of Most ANNs are Control Systems
	CNN and Its Control System
	FFNN and Its Control System
	GAN and Its Control System

	Residual Connections
	CycleGAN
	Hyperparameters
	CIFAR10, CIFAR100 and TinyImageNet

