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A IMPLEMENTATION DETAILS OF TILDE-Q SUBLOSSES

As we discussed in Sec. 4.2, TILDE-Q consists of three sublosses: La.shift, Lphase, and Lamp. Our
design rationale for selecting these sublosses is described in Sec. 4.1. In this section, we describe the
detailed connection between the sublosses and the design rationale (Eqs. 1, 2, and 3).

Amplitude Shifting Given two sets of points with the same length T , X,X ′ ∈ RT , let us define
their distance using the signed distance function g : R× R → R. Then, for each point x, x′ in set
X,X ′, we can define a point-wise distance set D with g as below:

D = [g(x1, x
′
1), . . . , g(xT , x

′
T )] = [d1, . . . , dT ].

When we design La.shift, we have one main question: given an arbitrary X,X ′, and g, how do we
build a loss function that is invariant to any arbitrary gap k. In this work, we have reformulated this
task from ensuring equal gaps between all points into making uniform distribution of the gaps (i.e.,∑

i pdi
log pdi

on the interval [1, T ]). Please note that we convert gaps into relative values since an
absolute domain requires information for k for each data sample. Without loss of generality, we can say
that this problem is equivalent to the problem of entropy maximization. Let us suppose that we convert
the distance set D into the probability distribution by Softmax function, pdi = Softmax(di). In
this case, we can say that our optimization problem is maximize the entropy as below:

maximize L =

T∑
i=1

pdi log pdi ,

which is well-known to have its global optima with ∀i∈[1,T ]pdi
= 1

T . Therefore, we formulate
La.shift as Eq. 5, which satisfies Eq. 1. Please note that the noise robustness of La.shift relies on
that of the signed distance function, g. Since La.shift requires computation of g and Softmax, it
takes O(n) time for its computation.

Phase Shifting To discuss phase shifting and periodicity of a time-series, Fourier transform is an
inevitable factor. However, in the real-world dataset, a few problems arise: 1) we are unaware of
the frequencies and periodicity of the data itself, and 2) a direct use of Fourier coefficients may be
biased by noise. During the design phase, we aim to solve these problems with Lphase. To extract
the main flow of time-series data (i.e., the dominant periodicity or frequencies), we first define the
dominant frequencies based on their statistical significance. Let X ∈ RT as an input signal. In the
machine learning domain, researchers commonly suppose the input signal follows normal distribution
X ∼ N (0, I). Accordingly, its Fourier coefficients on frequency k is:

F(X) =

T∑
n=1

xne
−i2πkn/T ∼ N (0, T ).

After Fourier transform, we define k as a dominant frequency if k is greater than
√
T , which indicates

statistical significance. However, in some cases, we have only a short sample to represent signals or
a noisy signal that has no periodicity, which does not yield a statistically significant k. To prevent
such cases, in Lphase, we guarantee that at least

√
T ′ number of frequencies are selected as dominant

frequencies. Lphase requires O(n log n) time for its computation, which is inherited from complexity
of Fast Fourier Transform.

Uniform Amplification Although effective, Lphase has two limitations: 1) it is not perfectly phase
shifting invariant as it is optimized with Fourier coefficients, and 2) aforementioned two subloss
terms still make no consideration for uniform amplification invariance. Inspired by Paparrizos &
Gravano (2015), we utilize normalized correlation for the uniform amplification. Specifically, we
normalize correlation R as follows:

R(X,Y) =
Corr(X,Y)√

Corr(X,X) · Corr(Y,Y)
,

where Corr is cross-correlation or auto-correlation, and R is normalized correlation. By using this
term, we have uniform amplification invariant measure. We utilize Lamp as the subcomponent with
small γ, since tolerance for the multiplication factor (i.e., uniform amplification) has greater influence
than addition or phase shifting. As Lphase, by using fast Fourier transform, Lamp takes O(n log n)
time.
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TILDE-Q Design Rationale: α and γ La.shift is built for amplitude shifting and designed
to be effective with both periodic and nonperiodic signals. In contrast, Lphase handles uniform
amplification and is tailored to perform optimally with periodic signals. Since La.shift and Lphase
complement each other, we set α to balance them. For example, a large α value will work well for
nonperiodic signals and will have less penalty for amplitude shifting. Additionally, we utilize Lamp
as a subcomponent to calibrate the results (e.g., gamma = 0.01). With this design, while preserving
the shape-awareness of TILDE-Q, users can control specific invariances or conditions. For example,
users can increase the value of α to emphasize nonperiodic modeling when a dataset has no particular
periodicity. This user-oriented objective setting is one of the strengths of TILDE-Q and increases its
utility.

B DETAILED EXPERIMENT SETUP

Dataset In our experiment, we utilize eight datasets – Synthetic, ECG5000, and Traffic dataset for
the simple model (i.e., Sequence-to-Sequence Gated Recurrent Unit) and ETTm1, Electricity (i.e.,
ECL), Traffic, Weather, Exchange, and ILI for the eight recent time-series forecasting models. For
each dataset, we describe some metadata of them and the experimental setting, including the input
length n and prediction window L. Our implementation could be found in Anonymous Github1.

Synthetic: As Le Guen & Thome (2019) describe, the Synthetic dataset is an artificial dataset for
measuring model performance on sudden changes (step functions) with an input signal composed of
two peaks. The amplitude and temporal position of the two peaks are randomly selected. Then the
selected position and amplitude of the step are determined by a peak position and amplitude. We use
500 time-series for training, 500 for validation, and 500 for testing. For the Synthetic dataset, we set
the input length as n = 20 and the prediction window as L = 40. The generation code is provided in
DILATE Github2.

ECG5000: This dataset is originally a 20-hour long ECG (Electrocardiogram), downloaded from
Physionet3 and archived in UCR Time Series Classification Archive (Dau et al., 2019). The data is
split by each heartbeat and processed in equal lengths (140). In the training, we use 500 for training,
500 for validation, and 4000 for testing. We take the first n = 84 steps as input and predict the last
L = 56 steps.

Traffic: Traffic dataset is a collection of 48 months (2015-2016) hourly road occupancy rate (between
0 to 1) data from the California Department of Transportation4. For the GRU model, we utilize
univariate series of the first sensor, a total of 17544 data points as Le Guen & Thome (2019) do. We
set our problem as forecasting L = 24 future occupancy rates with n = 168 historical data (past
week). We use 60% of the data for training, 20% for validation, and the rest for evaluation. For
recent time-series forecasting models, we conduct multivaraite time-series forecasting and adopt
hyperparameter settings from Time-Series-Library Github5.

ETT: The ETT (Electricity TraNSformer Temperature) dataset, published by Zhou et al. (2021), is
2-year data collected from two separate counties in China, including ETTm1 dataset. Each data point
has a target value of “oil temperature” and other 6 power load features. As Zhou et al. (2021) do, we
split them into 12/4/4 months for the training/validation/testing. Detailed settings, such as the input
and output length and hyperparameter setting, are based on the information at Time-Series-Library
Github 5.

ECL: The ECL (Electricity Consuming Load) is a dataset recorded in kWh every 15 minutes
from 2012 to 2014, for 321 clients. In our experiment, we split them into 15/3/4 months for the
train/validation/test, as Zhou et al. (2021) do. Note that we use the same hyperparameter settings in
the ETTm1 dataset.

Weather: Weather dataset contains 21 meteorological indicators from Weather Station of the Max
Planck Biogeochemistry Institute in 2020 with 10-minute interval.

1https://anonymous.4open.science/r/TILDE-Q-9E54
2https://github.com/vincent-leguen/DILATE
3https://physionet.org/
4http://pems.dot.ca.gov
5https://github.com/thuml/Time-Series-Library
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Table 3: Experimental results on six real-world datasets. We compared TILDE-Q and MSE by
conducting extensive experiments with eight models. For all baselines, we set input sequence length
T = 96 except ILI dataset. For ILI dataset, we set input sequence length T = 36. Avg. means the
average results from all four prediction lengths. We have colored the best training metric in red.

Model iTransformer PatchTST Crossformer TimesNet DLinear FEDformer NSformer Autoformer

Methods MSE TILDE-Q MSE TILDE-Q MSE TILDE-Q MSE TILDE-Q MSE TILDE-Q MSE TILDE-Q MSE TILDE-Q MSE TILDE-Q

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
*

96 0.344 0.378 0.334 0.365 0.323 0.363 0.318 0.351 0.361 0.407 0.344 0.380 0.338 0.379 0.343 0.377 0.346 0.373 0.336 0.360 0.384 0.420 0.364 0.410 0.420 0.416 0.404 0.407 0.506 0.482 0.452 0.447
192 0.381 0.394 0.380 0.390 0.368 0.389 0.372 0.389 0.423 0.449 0.395 0.413 0.399 0.407 0.389 0.400 0.382 0.392 0.380 0.386 0.444 0.449 0.425 0.442 0.488 0.446 0.474 0.439 0.609 0.518 0.596 0.513
336 0.418 0.418 0.416 0.415 0.398 0.405 0.397 0.404 0.612 0.575 0.436 0.447 0.423 0.425 0.411 0.419 0.414 0.413 0.415 0.410 0.495 0.476 0.468 0.468 0.553 0.484 0.533 0.478 0.635 0.534 0.553 0.499
720 0.488 0.457 0.481 0.450 0.458 0.444 0.461 0.443 0.742 0.652 0.533 0.517 0.498 0.464 0.462 0.447 0.475 0.453 0.473 0.445 0.519 0.490 0.496 0.482 0.669 0.535 0.638 0.530 0.593 0.528 0.562 0.509
Avg. 0.408 0.412 0.403 0.405 0.387 0.400 0.387 0.397 0.535 0.521 0.427 0.439 0.415 0.419 0.401 0.411 0.404 0.408 0.401 0.400 0.461 0.459 0.438 0.451 0.533 0.470 0.512 0.465 0.586 0.516 0.541 0.492

E
le

ct
ri

ci
ty

96 0.148 0.240 0.146 0.238 0.181 0.270 0.181 0.261 0.147 0.248 0.146 0.245 0.167 0.270 0.166 0.269 0.210 0.302 0.199 0.278 0.196 0.310 0.197 0.308 0.166 0.269 0.172 0.274 0.201 0.316 0.200 0.313
192 0.166 0.255 0.164 0.255 0.187 0.276 0.186 0.267 0.162 0.261 0.161 0.260 0.185 0.286 0.184 0.284 0.210 0.305 0.197 0.279 0.211 0.323 0.210 0.319 0.188 0.288 0.185 0.286 0.224 0.335 0.224 0.331
336 0.178 0.271 0.176 0.270 0.203 0.291 0.201 0.282 0.193 0.291 0.181 0.282 0.204 0.305 0.200 0.300 0.223 0.319 0.208 0.292 0.237 0.348 0.228 0.339 0.202 0.302 0.195 0.297 0.252 0.355 0.242 0.346
720 0.225 0.310 0.214 0.301 0.245 0.325 0.242 0.316 0.250 0.334 0.230 0.324 0.224 0.320 0.216 0.314 0.258 0.350 0.244 0.325 0.263 0.367 0.260 0.364 0.227 0.322 0.224 0.316 0.324 0.396 0.263 0.363
Avg. 0.179 0.269 0.175 0.266 0.204 0.291 0.203 0.282 0.188 0.284 0.181 0.278 0.195 0.295 0.192 0.292 0.225 0.319 0.212 0.294 0.227 0.337 0.224 0.333 0.196 0.295 0.194 0.293 0.250 0.351 0.232 0.338

Tr
af

fic

96 0.395 0.268 0.401 0.270 0.544 0.359 0.499 0.323 0.522 0.290 0.515 0.280 0.593 0.321 0.576 0.311 0.696 0.429 0.709 0.420 0.587 0.366 0.595 0.372 0.622 0.346 0.614 0.340 0.629 0.383 0.597 0.372
192 0.417 0.276 0.421 0.278 0.540 0.354 0.493 0.319 0.530 0.293 0.534 0.290 0.617 0.336 0.582 0.325 0.647 0.408 0.636 0.386 0.606 0.379 0.598 0.375 0.643 0.356 0.628 0.349 0.637 0.403 0.622 0.392
336 0.433 0.283 0.427 0.280 0.551 0.358 0.510 0.337 0.558 0.305 0.550 0.298 0.629 0.336 0.615 0.333 0.657 0.410 0.641 0.387 0.621 0.383 0.613 0.379 0.645 0.354 0.642 0.353 0.623 0.391 0.614 0.383
720 0.467 0.302 0.454 0.294 0.586 0.375 0.552 0.362 0.589 0.328 0.562 0.316 0.640 0.350 0.627 0.341 0.689 0.424 0.680 0.406 0.626 0.382 0.619 0.379 0.667 0.365 0.662 0.362 0.658 0.404 0.644 0.397
Avg. 0.428 0.282 0.426 0.281 0.555 0.362 0.514 0.335 0.550 0.304 0.540 0.296 0.620 0.336 0.600 0.328 0.672 0.418 0.667 0.399 0.610 0.378 0.606 0.376 0.644 0.355 0.637 0.351 0.637 0.395 0.619 0.386

W
ea

th
er

96 0.177 0.218 0.174 0.213 0.177 0.216 0.174 0.215 0.158 0.230 0.157 0.226 0.172 0.220 0.171 0.217 0.200 0.256 0.196 0.243 0.217 0.296 0.216 0.285 0.189 0.238 0.179 0.224 0.274 0.336 0.259 0.310
192 0.223 0.256 0.220 0.244 0.225 0.258 0.221 0.257 0.206 0.277 0.200 0.260 0.219 0.261 0.210 0.255 0.240 0.295 0.237 0.284 0.276 0.336 0.267 0.311 0.268 0.296 0.263 0.293 0.330 0.378 0.323 0.364
336 0.280 0.299 0.277 0.293 0.285 0.301 0.279 0.298 0.272 0.335 0.270 0.319 0.280 0.306 0.284 0.300 0.285 0.332 0.282 0.324 0.339 0.380 0.330 0.365 0.351 0.338 0.367 0.350 0.389 0.410 0.355 0.382
720 0.359 0.350 0.356 0.347 0.360 0.350 0.357 0.349 0.398 0.418 0.363 0.399 0.365 0.359 0.359 0.354 0.348 0.384 0.347 0.372 0.403 0.428 0.395 0.405 0.441 0.418 0.433 0.402 0.469 0.458 0.448 0.448
Avg. 0.260 0.281 0.257 0.274 0.262 0.281 0.258 0.280 0.259 0.315 0.248 0.301 0.259 0.287 0.256 0.282 0.268 0.317 0.266 0.306 0.309 0.360 0.302 0.342 0.312 0.323 0.310 0.317 0.366 0.396 0.346 0.376

E
xc

ha
ng

e 96 0.092 0.214 0.089 0.209 0.086 0.204 0.083 0.196 0.271 0.377 0.236 0.351 0.105 0.234 0.104 0.233 0.078 0.200 0.077 0.194 0.160 0.290 0.152 0.279 0.144 0.265 0.133 0.258 0.172 0.302 0.154 0.279
192 0.185 0.308 0.184 0.308 0.181 0.302 0.177 0.296 0.515 0.533 0.451 0.495 0.214 0.337 0.202 0.328 0.166 0.301 0.163 0.295 0.282 0.385 0.277 0.378 0.268 0.370 0.236 0.350 0.318 0.413 0.271 0.378
336 0.366 0.438 0.345 0.426 0.329 0.416 0.337 0.422 1.239 0.873 1.037 0.779 0.365 0.439 0.360 0.430 0.298 0.410 0.259 0.384 0.484 0.512 0.457 0.497 0.470 0.507 0.450 0.485 0.513 0.534 0.488 0.516
720 0.914 0.724 0.895 0.715 0.864 0.718 0.857 0.698 1.745 1.060 1.606 1.014 0.926 0.733 0.962 0.759 0.749 0.655 0.703 0.643 1.288 0.873 1.209 0.844 1.302 0.811 1.078 0.733 1.126 0.822 1.061 0.799
Avg. 0.389 0.421 0.379 0.415 0.365 0.410 0.364 0.403 0.943 0.711 0.833 0.660 0.403 0.436 0.407 0.438 0.323 0.392 0.301 0.379 0.554 0.515 0.524 0.499 0.546 0.488 0.474 0.457 0.532 0.518 0.494 0.493

IL
I

24 2.551 1.023 2.352 0.956 2.308 0.954 2.257 0.896 3.541 1.249 3.300 1.208 2.007 0.942 1.753 0.876 2.858 1.160 2.771 1.134 3.567 1.355 3.177 1.253 2.453 0.981 1.708 0.860 3.597 1.324 3.577 1.358
36 2.237 0.964 2.206 0.950 2.333 0.926 2.280 0.929 3.615 1.251 3.170 1.168 2.752 1.005 2.447 0.942 2.689 1.110 2.526 1.089 3.553 1.331 3.259 1.248 2.959 1.069 2.220 0.957 3.389 1.274 3.315 1.269
48 2.290 0.975 2.173 0.935 2.307 0.935 2.080 0.890 3.698 1.278 3.187 1.180 2.533 0.962 2.239 0.880 2.814 1.151 2.273 1.016 2.979 1.196 2.963 1.176 2.592 1.025 2.122 0.923 3.160 1.234 2.973 1.159
60 2.255 0.975 2.147 0.954 2.064 0.917 1.954 0.896 4.043 1.344 3.529 1.253 2.092 0.942 1.892 0.898 2.900 1.178 2.331 1.043 3.127 1.222 3.054 1.222 2.446 1.021 2.078 0.942 3.163 1.210 2.930 1.179

Avg. 2.333 0.984 2.220 0.949 2.253 0.933 2.143 0.903 3.724 1.281 3.297 1.202 2.346 0.963 2.083 0.899 2.815 1.150 2.475 1.071 3.307 1.276 3.113 1.225 2.613 1.024 2.032 0.921 3.327 1.261 3.199 1.241

Exchange: Exchange (Wu et al., 2021) collects the panel data of daily exchange rates from 8 countries
from 1990 to 2016. We follow the hyperparameter settings from author’s official codes.

Illness: Illness dataset contains the influenza-like illness patients in the United states in a weekly
frequency.

Deep Learning Model Architectures We perform experiments with three different model architec-
tures, including Sequence-to-Sequence GRU, Informer, and N-Beats. To induce models to predict
future time-series in a timely manner, we set α = 0.5 and γ = 0.01 for TILDE-Q. Other training
metrics, including MSE and DILATE, are used as described in their original papers. All models are
trained with Early Stopping and ADAM optimizer. To evaluate TILDE-Q in simple model, we utilize
one layer Sequence-to-Sequence GRU model. For the training of the GRU model, we set a learning
rate of 1e− 3, hidden size of 128, trained by maximum 1000 epochs with Early Stopping and ADAM
optimizer. In addition to the basic GRU model, we conduct experiments with eight state-of-the-arts
models as follows: 1) Autoformer (Wu et al., 2021), the first model that utilize frequency-domain
information with autocorrelation module, 2) FEDformer (Zhou et al., 2022), an advanced version of
Autoformer by introducing frequency-enhanced decomposition module, 3) nonstationary transformer
(NSformer in this paper), which introduces series stationarization and de-stationary attention to
resolve non-stationary characteristics of real-world time-series, 4) DLinear (Zeng et al., 2023), a
simple linear model with input decomposition, tackling the importance of understanding of time-
series, 5) TimesNet (Wu et al., 2023), a model to discover multiple periods and capture temporal
2D-variations with TimesBlock module, 6) Crossformer (Zhang & Yan, 2023), a first model to handle
cross-dimension dependency for MTS forecasting, 7) PatchTST, a model patching time-series data
for the better embedding, and 8) iTransformer (Liu et al., 2023), embed single time-series to the
vector to preserving its temporal information.

C ADDITIONAL EVALUATIONS

C.1 DETAILED EXPERIMENT RESULTS AND ANALYSIS

At first, we observe that the model optimized with TILDE-Q outperforms the same model optimized
with other objective functions in both short- and long-term forecasting tasks. However, each model
has a wide range of TILDE-Q’s performance improvement caused by their design. In this section,
we describe our findings related to both model design and the difficulty of the tasks. In the case
of Autoformer and NSformer, we could observe that their performance improvements are signifi-
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Figure 3: Qualitative results with simple sequence-to-sequence GRU model (a) and state-of-the-art
model (b).

cantly higher than that of FEDformer or TimesNet. In design, Autoformer makes predictions with
autocorrelation, which has a limitation in being aware of frequency-domain features than that of
FEDformer or TimesNet. In the case of the NSformer, it utilizes series stationarization, which could
be helpful to remove possible side effects from TILDE-Q, such as an equal gap caused by La.shift.
This difference caused by design indicates two facts: 1) TILDE-Q could help the unseen feature
modeling with its shape-awareness, as in Autoformer’s case, and 2) the model design influences the
loss function, as NSformer helps the optimization with TILDE-Q. Crossformer is one good example
with 8.85% improvement. For the Crossformer, which aims to resolve inter-domain dependency
but has less attention to the temporal dependencies, TILDE-Q improves Crossformer’s temporal
dependency modeling, and Crossformer’s inter-domain modeling supports TILDE-Q’s limitation for
the inter-domain modeling.

In case of the dataset, Electricity or Traffic datasets makes the lowest improvements among all
datasets. This is caused by task difficulty–for example, in case of the Autoformer, Electricity tasks
with prediction lengths T ′ = {96, 192, 336}, Autoformer can solve the tasks without support for
the shape-awareness. However, in case of the Electricity with prediction length 720, a relatively
challenging task, Autoformer with MSE struggles to properly solve the task. This problem is also
observable in Crossformer, which has relatively limited ability for temporal dependency modeling
than the other models.

Next, we present a qualitative analysis of the results. Fig. 3 shows how the model with different
training metrics forecasts with different datasets. From the figure, we have noticed that TILDE-Q
allows the model to generate more robust, shape-aware forecasting, regardless of amplitude shifting,
phase shifting, and uniform amplification. For example, in the case of Autoformer (Fig. 3 (b) top),
TILDE-Q helps the model to handle multiple periodicity, which is not achieved with MSE (blue line).
In contrast, Autoformer trained with MSE predicts only a single periodicity, indicating the limitation
of MSE on shape-awareness. The strength of TILDE-Q is also observable in the iTransformer (Fig. 3
(b), bottom). Even when the model could make multiple periodicity modeling, TILDE-Q makes it
more precise. In summary, TILDE-Q proves that it is model-agnostic, noise-robust, and shape-aware
loss function and is far beneficial for the time-series forecasting.

C.2 QUALITATIVE RESULTS WITH VISUALIZATION

To provide a clear comparison for MSE and TILDE-Q among different datasets and models, we list
supplementary forecasting results of four representative datasets in Fig 4– 6. We provide qualitative
results with six models–Autoformer (Wu et al., 2021), DLinear (Zeng et al., 2023), TimesNet (Wu
et al., 2023), Crossformer (Zhang & Yan, 2023), PatchTST (Nie et al., 2023), and iTransformer (Liu
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(a) iTransformer

0 50 100 150 200 250 300 350 400
0.00

0.02

0.04

0.06

0.08

0.10 Prediction_MSE
Prediction_TILDE-Q
GroundTruth

(b) PatchTST

0 50 100 150 200 250 300 350 400

0.00

0.02

0.04

0.06

0.08

0.10 Prediction_MSE
Prediction_TILDE-Q
GroundTruth

(c) DLinear

0 50 100 150 200 250 300 350 400
0.00

0.02

0.04

0.06

0.08

0.10 Prediction_MSE
Prediction_TILDE-Q
GroundTruth

(d) TimesNet
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(e) Crossformer
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Figure 4: Qualitative Example with input-96-output-96 results on Weather dataset.
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(a) iTransformer
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(b) PatchTST
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(c) DLinear
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(d) TimesNet
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(e) Crossformer
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Figure 5: Qualitative Example with input-96-output-96 results on ETTm1 dataset.
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Figure 6: Qualitative Example with input-96-output-96 results on Weather dataset.

et al., 2023). Among various models and datasets, TILDE-Q shows its superior performance than
MSE baseline.

Table 4: Ablation study with varying α and γ on ETT*, Crossformer, and 96-I-{192,720}-O settings.
Methods TILDE-Q α = 0.2 α = 0.8 γ = 0.1 La.shift Only Lphase Only Lamp Only

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
* 192 0.395 0.413 0.393 0.418 0.418 0.425 0.403 0.417 0.744 0.681 0.402 0.423 10.4 10.6

720 0.533 0.517 0.546 0.528 0.531 0.508 0.571 0.550 0.818 0.689 0.546 0.525 2.57 2.56
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