
A Additional Notation and Preliminaries

A.1 Notation

In this section, we provide the basic notation we are going to use in the technical part.

General Notation. We define [n] := {1, . . . , n}. We denote vectors with small bold letters x
and matrices with bold letters P = [Pxy]. For a vector x, we let xi = x(i) be its i-th entry. For
p ∈ {1, 2,∞}, we denote the Lp norm by ‖.‖p. For a matrix A, let ‖A‖2 denote its spectral norm
(largest singular value). We consider graphs G = (V,E), with |V | = n vertices, whose associated
Laplacian matrix is denoted Λ(G). The edge set of the graph G is the set E(G). In Appendix A.2.2,
we have included some basic definitions and facts about random walks and Markov chains. We define
the weighted Laplacian matrix of GQ for a distribution Q as

Qxy = −Q(x, y) for any x 6= y and Q1 = 0 , (2)

Distributions and Distances. The probability simplex is denoted by ∆n. We let supp(D) denote
the support of a distribution D. The total variation distance between two discrete distributions D1,D2

over [n] is equal to TV(D1,D2) = maxS⊆[n](D1(S)−D2(S)) = 1
2‖D1 −D2‖1. We let D(S) =∑

x∈S D(x) and DS is the conditional distribution on the set S, i.e., DS(x) = D(x)
D(S)1{x ∈ S}. The

vector z ∈ Rn with zi = log(D(i)) is called the natural parameter vector of D.

Random Walks. For a reversible transition matrix P , let its (real) spectrum be 1 = λ1 ≥ λ2 ≥
· · · ≥ λn ≥ −1. We define the absolute spectral gap of P to be the difference Γ(P ) = 1 −
max{λ2(P ), |λn(P )|}. If P is aperiodic and irreducible, then Γ(P ) > 0. One could also define
the spectral gap 1 − λ2(P ). The two gaps are equal when the chain is lazy, i.e., when ∀i ∈ [n],
Pii ≥ 1/2. We let λ(L) be the second smallest eigenvalue of a Laplacian matrix L, a.k.a., its Fiedler
eigenvalue. The Laplacian matrix L ∈ Rn×n is positive semi-definite and induces a semi-norm on
Rn with ‖v‖L :=

√
vTLv for v ∈ Rn. Recall that a semi-norm differs from a norm in that the

semi-norm of a non-zero element is allowed to be zero. In Algorithm 1, Algorithm 2 and Algorithm
7, we use the notation Ft(x)← Ft+1(w) for some t < 0. This means that we append the path of x at
time t by adding the transition x→ w and then the path of w from time t+ 1 up to 0.

Matrix Operators. We denote by A � B = (AijBij)1≤i≤j≤n the standard Hadamard matrix
product and byA ◦B a variation of the Hadamard matrix product, where the off-diagonal entries are
equal to those of the standard Hadamard productA�B, but the diagonal entries correspond to the
diagonal matrix with entries (−

∑
j 6=iAijBij)i∈[n]. Finally, we letA⊗B = I −A ◦B.

A.2 Preliminaries

In this section, we provide some preliminaries and some useful tools about (i) concentration of
random matrices, (ii) random walks and (iii) CFTP. The reader may skip this section.

A.2.1 Random Matrices

We continue with some definitions for random matrices, needed for the proof of Lemma 17. The
following can be found at [Tro15].

Definition 6. Let (Ω,F , µ) be a probability space. A random matrix X is a measurable map
X : Ω→Mn1×n2 .

The entries ofX may be considered complex random variables that may or may not be correlated
with each other. A finite sequence {Xi} of random matrices is independent when

µ(Xk ∈ Fk for each k) =
∏
k

µ(Xk ∈ Fk) ,

for any collection {Fk} of Borel subsets ofMn1×n2 .

17



Proposition 7 (Hermitian Matrix Chernoff Bounds (see [Tro15])). Consider a finite sequence {Xi}
of m independent, random, Hermitian square matrices with common dimension n. Assume that
0 ≤ λmin(Xi) ≤ λmax(Xi) ≤M for any i ∈ [m]. Let Y =

∑
iXi. Then, for ε ∈ [0, 1):

Pr
[
λmin(Y ) ≤ (1−ε)λmin(EY )

]
≤ n(e−ε/(1−ε)1−ε)λmin(EY )/M ≤ n exp

(
−ε2λmin(EY )/(2M)

)
.

A.2.2 Random Walks and Markov Chains

This section is mostly based on [LP17] and we refer the reader to [LP17] for a thorough exposition.

Markov Chains. Let Ω be a finite state space. A Markov chain is a sequence of random variables
X0, X1, . . . that satisfy the Markov property, i.e.,

Pr[Xt+1 = x|X0 = x0, . . . , Xt = xt] = Pr[Xt+1 = x|Xt = xt] .

A Markov chain is called time-homogeneous, if the RHS of the above equation does not depend of t.
Such a chain is associated with a transition matrix P = {P (x, y)}, where (x, y) ∈ Ω× Ω. It holds
that

P (x, y) = Pr[Xt+1 = y|Xt = x] for all x, y ∈ Ω, t ∈ N .
A Markov chain is ergodic if there exists a time t ∈ N such that P (t)(x, y) > 0 for any x, y ∈ Ω, i.e.,
there exists a finite time t so that the probability of going from any vertex to any other in t steps is
positive. For finite state Markov chains, ergodicity is equivalent to irreducibility and aperiodicity.
A Markov chain is irreducible if for any two states x, y ∈ Ω, there exists a time step t such that
P (t)(x, y) > 0 and is aperiodic if, for any state x, it holds that gcd{t|P (t)(x, x) > 0} = 1. Observe
that a Markov chain with self-loops is aperiodic.

Stationary Distribution. A stationary distribution π ∈ ∆n, i.e., the (n− 1)-dimensional simplex
whose vertices are the n standard unit vectors, is defined as the fixed point of the transition matrix
P , that is πTP = πT . An ergodic Markov chain has a unique stationary distribution π and, as t
increases, it converges to it. An interesting property of Markov chains is the reversibility. A Markov
chain is reversible if there exists a distribution π that satisfies the detailed balanced equations:

π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ Ω . (3)

In this case, we can verify that π is a stationary distribution. We can simply write π for the stationary
distribution with associated probability vector π.

Mixing Time. It is important to understand the convergence time of a Markov chain to its stationary
distribution π. A crucial random variable for convergence time is the mixing time.
Definition 8 (Mixing Time). Let 0 < ε < 1/2. Let M be an ergodic Markov chain on a finite state
space Ω with stationary distribution π. Then, the mixing time with accuracy ε of M equals:

Tmix(P ; ε) = inf{t > 0 : max
x∈Ω

TV(Px(Xt), π) ≤ ε} ,

where Px(Xt) is the distribution of the state Xt at time t for starting state x ∈ Ω.

For a reversible transition matrix P , let its spectrum be:

1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 .

Note that λ2 < 1 if and only if the chain is irreducible (exactly one connected component) and
λn > −1 if and only if the chain is aperiodic (e.g., not a bipartite graph). We define the absolute
spectral gap of P to be the difference: Γ(P ) = 1 − max{|λ2(P )|, |λn(P )|}. It holds that if P
is aperiodic and irreducible, then Γ(P ) is strictly positive. One could also define the spectral gap
λ(P ) = 1− λ2(P ). The two gaps are equal when the chain is lazy, i.e., when for any state x ∈ Ω, it
holds that P (x, x) ≥ 1/2.
Lemma 9 (Bounding Tmix, see [LP17]). Let 0 < ε < 1. Assume that the transition matrix P is
aperiodic, irreducible and reversible with respect to π. Then, it holds that:

(trel − 1) log
( 1

2ε

)
≤ Tmix(P ; ε) ≤ log

( 1

επmin

)
trel ,

where trel = 1/Γ(P ) is the relaxation time of the Markov chain, i.e., the inverse absolute spectral
gap.

18



Coalescencing Random Walks. Let Ω = [n]. In a coalescing random walk, a set of n particles
perform independent discrete time random walks on an undirected connected graph G = (V,E) with
|V | = n, with each particle initially placed at a single (distinct) vertex x ∈ V . In each time step, all
particles move simultaneously. Whenever two or more particles meet at a vertex, they unite to form a
single particle which then continues to make a random walk through the graph. The coalescence time
Tcoal is a random variable and is the first time when all particles coalesce. More formally, we can
define coalescence as follows.
Definition 10 (Coalescence of Stochastic processes (see [Hub16])). Let A be a collection of stochas-
tic processes, defined over a common index set I and common state space Ω. If there is an index
i ∈ I and state x ∈ Ω such that, for all stochastic processes X ∈ A, it holds that Xi = x, then we
say that the stochastic processes have coalesced.

Coalescence Time of Random Walks. Consider the random variable X(i)
t , that indicates the

position of the i-th particle at time t. The coalescence time is equal to:

Tcoal = inf
t>0

{
X

(i)
t = X

(j)
t for any i 6= j, i, j ∈ [n]

}
.

We conclude this section with a folklore result, that deals with the possible locations in the complex
plane of the eigenvalues of a square matrixA ∈Mn.
Lemma 11 (Geršgorin’s Theorem (see [HJ12])). LetA = [Aij ] ∈Mn. For any i ∈ [n], let

Ri(A) =
∑
j 6=i

|Aij | ,

and consider the n Geršgorin disks

Bi = {z ∈ C : |z −Aii| ≤ Ri(A)} .
Then, the eigenvalues ofA are in the union of the Geršgorin disks, i.e.,

spec(A) ⊆
n⋃
i=1

Bi .

A.2.3 Exact Sampling and CFTP Preliminaries

Markov chain Monte Carlo (MCMC) methods constitute a class of algorithms for sampling from
probability measures and arise naturally in various fields of science such as theoretical computer
science (e.g., approximation algorithms for #P-complete problems (see [Jer03, JSV04])), statistical
physics (e.g., in order to understand phase transition phenomena for Ising models) and statistics.
However, the theory of MCMC, in terms of exact sampling, can be seen as an asymptotic analysis (i.e.,
in the limit, the total variation distance vanishes). Perfect simulation is analogous to MCMC and deals
with techniques for designing algorithms that return exact draws from the target distribution, instead
of long-time approximations. Exact sampling comprises a well-studied field (see [Ken05, Hub16])
and has numerous applications in computer science (e.g., in approximate counting [Hub98]). The
importance of exact simulation gave rise to various procedures in order to generate perfect samples.
A small sample of this line of research ([PW96, GM99, Wil00, HS00, FH00, Hub04]).

Coupling from the past (CFTP) is a technique developed by Propp and Wilson ([PW96, PW98]),
that provides an exact random sample from a Markov chain, that has law the (unique) stationary
distribution. The algorithm assumes that a particle has been running on the Markov chain since time
−∞ (arbitrarily long in the past) and we are concerned with the location of the particle at (the fixed)
time t = 0. The fact that the stopping time is deterministic and not a random variable (as in MCMC)
is crucial. Since the particle performs a random walk in the Markov chain infinitely long, one would
intuitively believe that the particle at time t = 0 is distributed according to the stationary distribution.

We define F(t,0] as the t-step evolution of the Markov chain from time t ∈ Z≤0 to the fixed time
T = 0 (evolution from the past). Note that we can decompose the evolution of the chain into t
independent applications of the random function f , which encodes the information of the random
walk, i.e., Pr[f(x) = y] = Pxy for any pair of states x, y ∈ Ω. Hence, we have that

F(t,0] = f−1 ◦ f−2 ◦ . . . ◦ ft .

19



Figure 2: Execution of the CFTP Algorithm for a random walk on the path graph. Observe that it
suffices to execute the random procedure only for the two extreme points, since their trajectories
dominate any intermediate point of the path. After a series of executions which did not coalesce
(see the right part of Figure 2), we observe that the two stochastic evolutions, the blue and the red
one in the left part of Figure 2, coalesce and continue as a single trajectory until t = 0 (see the
green trajectory). A sample execution code can be found at https://warwick.ac.uk/fac/sci/
statistics/staff/academic-research/kendall/personal/perfect_programs/

Algorithm 4 Coupling From The Past Algorithm
1: procedure COUPLINGFROMTHEPAST() . Assuming (adaptive) access to the Markov oracle.
2: t← 0
3: F(t,0](i)← i, for any i ∈ [n]
4: while F(t,0] has not coalesced do
5: t← t− 1
6: ft ← Markov()
7: F(t,0] ← F(t+1,0] ◦ ft
8: end
9: return F(t,0](1)

10: end procedure

We can think of the data structure F(t,0] as a list of n values, each one capturing the evolution of the
Markov chain, initiated in a different state at time t and stopped at time 0. Similarly, the oracle call
Markov() corresponds to n adaptive calls, each one giving a transition from a fixed state x ∈ Ω,
where the next state is distributed according to P (x, ·). Hence, ft is an n-dimensional vector with
values in Ω. We refer the reader to Figure 2 for an execution of the CFTP algorithm.

The following fact is the main result behind CFTP.

Fact 1 ([PW96]). With probability 1, the Coupling from the Past algorithm returns a value, and this
value is distributed according to the stationary distribution of the Markov chain.

The following proposition provides an upper bound on the convergence of the CFTP algorithm.

Proposition 12 ([ZCKM20]). Let π be the stationary distribution of an ergodic Markov chain P
with n states. We run n simulations of the chain each starting at a different state. When two or more
simulations coalesce, we merge them into a single simulation. With probability at least 1− δ, all n
chains have merged after at most O(nTmix(P ; 1/4) log(1/δ)) iterations.

20



B The Proof of Theorem 2 (Direct Exact Sampling from LSS)

In this section, we provide the proof of Theorem 2. Let us begin with the algorithm. We remark that
in the proof we will use the more technical notation F(a,b] to denote the evolution of the chain from a
to b. In Algorithm 1, this is abbreviated as Ft to denote F(t,0].

Proof. At each iteration, the algorithm draws a single sample from Samp(Q;D) Then, the algorithm
performs the following procedure for each state v ∈ [n]: let the drawn sample be (i, j, w), where
(i, j) ∈ E and w ∈ {0, 1} indicating the winning node between i and j, i.e., the node i stays in i (if
w = 1) or node i moves to j (if w = 0). For any v ∈ [n], the algorithm checks whether v ∈ {i, j}. If
not, the state v remains at v; otherwise, assume that i = v. Then, the transition v → j is implemented
only if w = 0, otherwise it remains at v. We claim that this process simulates the transitions of the
matrixM and has unique stationary distribution D. The probability that the transition v → j occurs
is

Pr[v → j] = Pr[(v, j, w) is drawn and w = 0] = Pr[(v, j) is drawn] · Pr[w = 0|(v, j) is drawn]

= Q(v, j) · D(j)

D(v) +D(j)
= Mvj .

Hence, for v ∈ [n] and by the above process, the transition probabilities are given by the matrixM ,
that is a transition matrix with unique stationary distribution D. We will see that this random process
gives a perfect sample.

Consider the state space Ω = [n] and let T be a positive integer. Let (Xt)t∈Z be a random walk
on [n] with transition probabilities as in M (see Equation (1)). Let F(a,b] : [n] → [n] be such that
F(−t0,T ](x0) denotes the state of the walk at time t = T , i.e., XT ∈ [n], when the random walk
begun at time t = −t0 (i.e., in the past) with initial state X−t0 = x0. Specifically, for each t0, T ,
we have that F(−t0,T ] : [n]→ [n] is a random map and F(−t0,T ](x0) is a realization of the Markov
chain, with initial state x0, executed from time −t0 to time T . We call F(−t0,T ] a stochastic flow.

The CFTP method is initialized at time t = −t0 into the past and places n particles (i.e., simulates
n concurrent random walks), one at each state x ∈ [n]. CFTP terminates when the stochastic flow
F(−t0,0] is constant (it has a single point random image, i.e., F(−t0,0](x) = F(−t0,0](y), for all x, y).
Namely, CFTP terminates when all the random walks that start at time t = −t0 have coalesced at
time t = 0 at a single z ∈ [n]. Then, the algorithm outputs the (common) state z = F(−t0,0](x), for
any x ∈ [n].

Since the transitions of each random walk are performed with respect to M , the resulting sample
z is distributed according to the stationary distribution D. This can be shown as follows (see
also [PW96, Hub16]): Let L(X) denote the distribution of the random variable X . Since the chain is
aperiodic and irreducible, coalescence occurs almost surely. Specifically, assume that coalescence
occurs when the simulation starts at a finite time t = −t0. First, observe that if coalescence occurs
at time −t0, then if CFTP starts at any time −t < −t0, we end up in the same state (because the
randomness in [−t0, 0] remains the same), i.e., F(−t,0](x) = F(−t0,0](x) for any −t < −t0 and any
state x ∈ [n]. Since, coalescence has occurred, we can work with a fixed starting state x0 and let
F(−t,0] = F(−t,0](x0). Hence, it holds that L(F(−t,0]) = L(F(−t0,0]) and so

TV(L(F(−t0,0]),D) = lim
t→∞

TV(L(F(−t,0]),D) .

We note that the distribution of the time-backward coalescing random walk is equal to the distribu-
tion of the time-forward random walk, i.e., L(F(−t,0]) = L(F(0,t]). Thus, TV(L(F(−t0,0]),D) =
limt→∞TV(L(F(0,t]),D) = 0. So, the output sample of the CFTP algorithm is distributed ac-
cording to D. Using Proposition 12, we get that, with high probability, coalescence occurs after
O(nTmix(M ; 1/4)) iterations. From Lemma 9 with ε = 1/4, we get that the mixing time of the
Markov chain is O(log(1/Dmin)/Γ(M)). Finally, note that in order to perform a single iteration
of the CFTP method, it requires to draw a single sample from the Local Sampling Scheme oracle.
This concludes the analysis of the sample complexity. The time complexity is also polynomial in the
number of samples [PW96].

Remark 1. As we mentioned in the discussion after Informal Theorem 1, in order to obtain Theorem
2 only Assumption 1 is required. Under only this assumption, a quite large amount of Local Sampling

21



Schemes is allowed and the resulting sample complexity is Õ
(
n log(1/Dmin)

Γ(M)

)
. However, if we

additionally assume that Assumption 2 holds, as we did in the statement of Informal Theorem 1,
we accept only LSSs whose target distribution satisfies Dmin = Ω(2−n). This yields the (non-tight)
bound Õ(n2/Γ(M)) of Informal Theorem 1. We preferred to omit this detail in Informal Theorem 1
and emphasize only on the exponential dependence due to Γ(M) for many natural instances.

C The Proof of Theorem 3 (Exact Sampling from LSS using Learning)

The main result of this section is the convergence analysis of the Coupling From the Past algorithm
when the algorithm performs the rescaling transformation internally in each transition.
Theorem 13 (Convergence of CFTP). Assume that Assumption 1 and Assumption 2 both hold.
Algorithm 2, assuming access to a Local Sampling Scheme Samp(Q;D) with weighted Laplacian
matrix Q (see Equation (2)) associated with the pair distribution Q over [n] × [n], satisfies the
following:

(i) Algorithm 2 reaches Line 12 with probability 1.

(ii) For any δ ∈ (0, 1), a single execution of of Algorithm 2 uses Õ
(
n log(n) log(1/δ)

λ(Q)

)
samples

with probability 1− δ and the running time is polynomial in the number of samples.

(iii) Algorithm 2, with input the output of the Learning Phase, outputs a state x ∈ [n] with
probability proportional to D(x) or outputs ⊥. Moreover, Algorithm 3 outputs a perfect
sample from D.

Using the above properties, for any δ > 0, Algorithm 3 draws, with probability at least 1 − δ,
N = O

(
n2 log2(n)/λ(Q) · log(1/δ)

)
samples from a Local Sampling Scheme Samp(Q;D), runs

in time polynomial in N , and outputs a sample distributed as in D.

Proof of Theorem 13. Consider a target distribution D, supported on [n] and sample access to a
Local Sampling Scheme Samp(Q;D) for a pair distribution Q. LetM = Q⊗D be the transition
matrix of the Markov chain associated with the Local Sampling Scheme graph. From Theorem 4
with accuracy ε > 0, there exists an algorithm that, with high probability, computes the rescaling
of the Markov chain that corresponds to M , which we denote by M̃ , the transition matrix of the
rescaled (by 1/D̃) Markov chain. The learning algorithm uses Õ(n2/(λ(Q))) with probability 1− δ
and is executed only once. We now analyze a single execution of Algorithm 2.

Claim 2 (Termination of CFTP). Algorithm 2 reaches Line 12 with probability 1.

Proof. Since the chain M̃ is ergodic, there is a T such that for any pair of states (x, y), the probability
M̃T (x, y) > 0. Similarly to the proof sketch of the naive exact sampling algorithm (see also
Theorem 2), let (Xt)t∈Z be a random walk on [n] and define the mapping F(a,b] : [n]→ [n], so that
F(−t0,T ](x0) is the state of the random walk at time t = T , i.e., XT ∈ [n], where the random walk
begun at time t = −t0 (in the past) with starting state X−t0 = x0. Then, the n random walks have
coalesced after T steps if and only if |Image(F(−T,0])| = 1. By the ergodicity of the chain, each one
of the events ET = {|Image(F(−T,0])| = 1} for T ∈ Z≥0 has strictly positive probability to occur.
Since the events are independent, with probability 1, there will be an event ET? that occurs. Then,
for any T > T ?, the desired property holds.

Claim 3 (Sample Complexity of a Single Iteration). It holds that each execution of Algorithm 2 uses
O
(
n log(n) log(1/δ)

λ(Q)

)
samples from the Local Sampling Scheme with probability 1− δ.

Proof. The CFTP draws a single sample for each iteration and performs a step according to the
matrix M̃ due to the rescaling. First, the unique stationary distribution is almost uniform (Lemma
15) and so log(1/Dmin) = Θ(log(n)). This implies, by Lemma 9 and Lemma 15, that the mixing
time of M̃ for some constant accuracy ε0 = 1/4 is Tmix(M̃ ; 1/4) = O(log(n)/λ(Q)). Hence, by
Proposition 12, we get the desired result.

22



Moreover, the update time of each execution of the CFTP algorithm is polynomial in n. Note that,
since during the Learning Phase, the algorithm uses O(n2/λ(Q)) and is executed once, the sample
complexity of Algorithm 3 follows, since Algorithm 2 will be executed Θ(n) times.

Claim 4 (Rejection Sampling). Algorithm 2, with input the output of the Learning Phase, outputs a
state x ∈ [n] with probability proportional to D(x) or outputs ⊥. Moreover, Algorithm 3 outputs a
perfect sample from D.

Proof. Let us setA =
∑
y∈[n]D(y)/D̃(y). At the end of Line 11, the parameterized CFTP algorithm

(Algorithm 2) outputs a sample x ∝ D(x)/D̃(x). This is because the unique stationary distribution is
π̃(x) = (D(x)/D̃(x))/A and the utility of the CFTP mechanism guarantees that when the Algorithm
initiates a CFTP simulation from time T = −T ?, the generated sample x = F(−T?,0] = F(−∞,0]

will be distributed according to π̃. This follows from the observation that the distribution of the
state F(−∞,0] is equal to the distribution of the state F[0,+∞) obtained by running the simulation
up to the limit T → +∞ forward in time. Hence, we have that x has law the unique stationary
distribution π̃. We now have to remove the bias induced by the learning step. For the sample x,
we perform a rejection sampling process, with acceptance probability D̃(x). The Algorithm 2 has
n+ 1 potential outputs: It either prints x ∈ [n] or ⊥ indicating failure. The sample x is the output

of the algorithm with probability D(x)/D̃(x)
A · D̃(x) = D(x)/A. This holds for any x ∈ [n]. The

remaining probability mass is assigned to ⊥ . Hence, a single execution of Algorithm 2 outputs a
point x ∈ [n] with probability D(x)/A and outputs “reject” with probability 1− 1/A. As we will
see, the accepted sample is distributed according to D. This is because, conditional on acceptance, its
mass is exactly that assigned by D. Specifically, we claim that the output of Line 6 of Algorithm 3
has law D. Observe that the whole stochastic process of Algorithm 3 outputs x ∈ [n] with probability

∞∑
i=0

Pr[Reject]i Pr[x is Accepted] =

∞∑
i=0

Pr[Reject]i · (D(x)/D̃(x)) · D̃(x)∑
y∈[n]D(y)/D̃(y)

=
D(x)∑

y∈[n]D(y)/D̃(y)

∞∑
i=0

Pr[Reject]i .

We have that Pr[Reject] = 1
A

∑
y∈[n]

D(y)

D̃(y)
(1− D̃(y)) = 1− 1

A ∈ (0, 1) . Hence, we have that the

whole stochastic process of Algorithm 3 outputs x ∈ [n] with probability
∞∑
i=0

Pr[Reject]i Pr[x is Accepted] =
D(x)∑

y∈[n]D(y)/D̃(y)
·A = D(x) ,

since
∑
i≥0 λ

i = 1
1−λ for λ ∈ (−1, 1). As a result, we get that the probability that x is the output of

the above stochastic process is D(x).

These claims complete the proof. Specifically, the total sample complexity is derived as follows:
Since we have to execute the CFTP iterations Θ(n) times, we should call each CFTP process with
δ′ = Cδ/n for some constant C. Proposition 12 guarantees that the CFTP process will terminate
using O(n log(n)/λ(Q) · log(n/δ)) samples with probability 1−Θ(δ/n). Hence, applying the the
union bound for the Θ(n) CFTP calls and the single call of the learning algorithm, gives that, with
probability 1 − δ, a number of O(n2 log2(n)/λ(Q) · log(1/δ)) samples suffices in order to get a
perfect sample from D.

D The Proof of Lemma 5 (Properties of Rescaled Random Walk)

In the next section, we discuss some useful steps as a warm-up for the proof of Lemma 5. The proof
can be found at the Appendix D.2.

D.1 Sketch of the Idea

By downscaling the transition probabilities (as we will see below), we can decouple the Markov
chain from D. Then, the transition matrix of the modified Markov chain only depends on the pair

23



distribution Q, and the convergence of the CFTP algorithm is determined by λ(Q). Hence, we
can sample efficiently even from target distributions D that may be multimodal or has many low
probability points. E.g., in case of a multimodal stationary distribution D, the spectral properties
of the walk would remind these of a disconnected graph and the sample complexity of Algorithm
1 would be quite high. We use the estimate D̃ (which we obtained from our learning algorithm)
of the target distribution D to transform the Markov chain of the Local Sampling Scheme defined
in Equation (1) to a modified Markov chain with an almost uniform stationary distribution. This
transformation can be viewed as a downscaling mechanism:
Definition 14 (Downscaling). Let p ∈ (0, 1) and let X ∼ Be(p) be a Bernoulli random variable.
Let λ ∈ (0, 1). The random variable Y ∼ Be(λp) is called a λ-downscaler of X .

Applying Theorem 4, we can consider that, for any x ∈ [n], there exists a coefficient D̃(x) ≈ D(x).
The idea is to use D̃(x) and make the stationary distribution of the modified chain close to uniform.
Intuitively, this transformation should speedup the convergence of the CFTP algorithm.

Step 1. Implementation of the downscaling and the rescaled matrix M̃ .

We can implement the modified Markov chain via downscaling as follows: Consider an edge {x, y}
with transition probability pair (pxy, pyx). Without loss of generality, we assume that D̃(y) > D̃(x)
(which intuitively means that we should expect that pxy > pyx). Then, the downscaler leaves pyx
unchanged and reduces the mass of pxy to make the two transitions almost balanced. Our exact
sampling algorithm will perform this downscaling phase to the matrixM (see Equation (1)).

Consider the transition matrix M with Mxy = Q(x, y) D(y)
D(x)+D(y) and Mxx = 1 −

∑
y 6=xMxy.

Also, let D̃ be an estimate for the distribution D with some sufficiently small accuracy ε, to be chosen
(see also Theorem 4). For the pair (x, y), we modify the transition probability pxy := Mxy, only if
pxy > pyx, to be equal to the following

p̃xy = Q(x, y)
D(y)

D(x) +D(y)

D̃(x)

D̃(y)
≈ Q(x, y)

D(x)

D(x) +D(y)
= pyx ,

where we use that D̃(x) ≈ D(x) and D̃(y) ≈ D(y). The transition probability from x to y

corresponds to a Bernoulli variable Be(pxy), which is downscaled by D̃(x)/D̃(y) < 1. The modified
transition probability p̃xy can be implemented by drawing a Λ ∼ Be(D̃(x)/D̃(y)) and then drawing
a P ∼ Be(pxy) (from Samp(Q;D)) and, finally, realizing the transition from x to y only if ΛP = 1.
This implementation is valid since the two sources of randomness are independent.

The modified transition matrix M̃ can be written as:

M̃ = D̃ ⊗Q+Q ◦ [εxy] , (4)

where D̃ is a symmetric matrix with D̃xy = min{D(x),D(y)}/(D(x)+D(y)) = D̃yx andQ is the
Laplacian matrix of the graph associated with the Samp(Q;D) andQ ◦ [εxy] denotes the modified
Hadamard product3 between the LaplacianQ and the matrix with the estimation error εxy is only non-
zero in the modified transitions x→ y, i.e., if pxy > pyx then M̃xy = Q(x, y) · ( D(x)

D(x)+D(y) + εxy).
For this pair, we set εyx = 0. We denote this error matrix with [εxy].

Specifically, for a pair (x, y), before the downscaling, the pairwise (x, y)-comparison corresponds to
the random coin

(
D(y)

D(x)+D(y) ,
D(x)

D(x)+D(y)

)
and let D(y) > D(x). After the downscaling, this coin

becomes (locally) almost fair, i.e., ( D(x)
D(x)+D(y) + εxy,

D(x)
D(x)+D(y) ).

Step 2. Obtaining a simpler matrix M̃ with absolute spectral gap of the same order.

Since the coins are locally fair, we can work with the following matrix that has also almost uniform
stationary distribution and conductance of the same order (since making each transition (x, y) more
lazy (i.e., increasing the probability of x → x and y → y by some constant) and still keeping the

3We have that
(
Q ◦A

)
xy

= QxyAxy,
(
Q ◦A

)
xx

= −
∑
y 6=xQxyAxy.

24



transitions x → y and y → x (almost) equal cannot significantly affect the conductance, i.e., the
desired symmetry is preserved). Let M̃ = I − c ·Q +Q ◦ [εxy] for some constant 0 ≤ c ≤ 1/2.
This matrix with c = min(x,y)∈E D(x)/(D(x) + D(y)) can be obtained by further performing
downscaling at each transition (and c is constant due to Assumption 2); then each transition will be
equal to the minimum global transition probability (potentially with some O(1/

√
n) noise term). For

simplicity, we let c = 1/2. The next proof We get the following matrix

M̃xy = Q(x, y)
(1

2
+ εxy

)
, M̃yx = Q(x, y)

(1

2
+ εyx

)
, (5)

and
M̃xx = 1−

∑
y 6=x

M̃xy = 1− 1

2

∑
y 6=x

Q(x, y)−
∑
y 6=x

εxyQ(x, y) .

Also, we observe that the generator of the Markov chain I−M̃ is close up to scaling to the Laplacian
Q. This explains why the convergence time of the Markov chain with transition matrix M̃ spectrally
depends only on the distribution Q. Specifically, the Laplacian Q corresponds to the dominant
component for the convergence of the algorithm and the Hadamard product is the low-order noise
induced by the chain transformation. As we will see, the larger the smallest non-zero eigenvalue of
the Laplacian matrix and, hence, the larger the spectral gap of the transition matrix of the transformed
chain, the faster the Markov chain converges to its stationary distribution.

D.2 The Proof of Lemma 5

The following lemma summarizes the key properties of the downscaled random walk.

Lemma 15 (Properties of Rescaled Random Walk). Let D be a distribution on [n] and consider an
ε-relative approximation D̃ of D, as in Theorem 4 with ε = O(1/

√
n). Consider the transition matrix

M of the Local Sampling Scheme Samp(Q;D) (see Equation (1)), and let M̃ be the D̃-scaling of
M (see Equation (4)). Then, the following hold.

(i) The transition matrix M̃ has stationary distribution π̃0(x) = Θ(1/n) for all x ∈ [n].

(ii) The absolute spectral gap Γ(M̃) of M̃ and the minimum non-zero eigenvalue λ(Q) of the
Laplacian matrixQ satisfy Γ(M̃) = Ω(λ(Q)).

(iii) For any ε0 ∈ (0, 1), the mixing time of the transition matrix M̃ is Tmix(M̃ ; ε0) =

O
(

log(n/ε0)
λ(Q)

)
.

In the above, we can choose ε0 = 1/4. The proof of the Lemma 15 follows.

Proof of Lemma 15. We remark that it suffices to work with the matrix of Equation (5), since the
results will only change by at most some constant. Observe that the spectral gap of the matrix
of Equation (4) is at least as high as one of the matrix I − c · Q + Q ◦ [εxy] with constant c =
min(x,y)∈E D(x)/(D(x) +D(y)) = Θ(φ) and this matrix has spectral gap of the same order as the
matrix of Equation (5). We break the proof into three claims.

Claim 5. The transition matrix M̃ has stationary distribution π̃0, that satisfies π̃0(x) = Θ(1/n) for
any x ∈ [n].

Proof. The chain M̃ remains irreducible and the detailed balance equations of the matrix M̃ satisfy:

p̃xy
p̃yx

=
Q(x, y)D(y)/D̃(y)

Q(y, x)D(x)/D̃(x)
.

Since D̃ is an ε-relative approximation of D with ε = O(1/
√
n), it holds that for any x ∈ [n]:

D(x)/D̃(x) ∈ [1− ε, 1 + ε] ,

25



and hence the unique stationary distribution π̃0 satisfies: π̃0(x)/π̃0(y) ∈ [1 − ε, 1 + ε] for any
x, y ∈ [n]. So, this holds for x = argmax π̃0 and y = argmin π̃0 and, since it should hold that∑
x π̃0(x) = 1, it must be the case that π̃(x) = Θ(1/n).

Claim 6. For the absolute spectral gap Γ(M̃) of M̃ and the minimum non-zero eigenvalue λ(Q) of
the Laplacian matrixQ, it holds that: Γ(M̃) = Ω(λ(Q)).

Proof. For x 6= y, there exist error estimates εxy and εyx; one of them is zero and the other’s absolute
value is of order O(1/

√
n). Our goal is to control the absolute spectral gap Γ(M̃). Recall that the

transition matrix can be written as follows

M̃ = I − 1

2
Q+Q ◦ [εxy] ,

where εxy ∈ [−ε, ε] for some ε = O(1/
√
n). Note that [εxy] denotes the n× n error matrix and the

operator ◦ denotes the standard Hadamard product. Note that the matrix I − 1
2Q is symmetric, while

Q ◦ [εxy] needs not to be.

Let λ1 > λ2 ≥ · · · ≥ λn be the spectrum of the transition matrix M̃ . Also, the matrix is right
stochastic with M̃1 = 1 and λ1 = 1. Let Γ(M̃) be the absolute spectral gap, that is strictly positive
by aperiodicity and irreducibility. The Weyl’s Inequality for general matrices ([HJ12, Tao12])
describes a multiplicative majorization between the ordered absolute eigenvalues and singular values
of A and gives a useful perturbation bound. Recall that σ2

i (A) = λi(AA
∗) = λi(A

∗A) for an
arbitrary matrixA ∈ Cm×n.

Fact 2 (Weyl’s Inequality (see [HJ12])). Consider the matricesA,E ∈ Cn×n. Define the singular
value of A in decreasing order (counting multiplicity) σ1(A) ≥ . . . ≥ σn(A) ≥ 0. Then, for
k = 1, . . . , n, the following hold

•
∏
i∈[k] |λi(A)| ≤

∏
i∈[k] σi(A) with |λ1(A)| ≥ |λ2(A)| ≥ . . . |λn(A)|.

• |σk(A+E)− σk(A)| ≤ ‖E‖2 .

For the matrix M̃ , we have that |λ1| = 1 and the second largest absolute eigenvalue is
max{|λ2|, |λn|}. We can apply the first property for the singular values from the Fact 2 and get that

Γ(M̃) = λ1 −max{|λ2|, |λn|} ≥ 1− σ1(M̃)σ2(M̃) ,

where σ1, σ2 correspond to the two largest singular values. Observe that the largest singular value
is σ1(M̃) = max‖v‖2=1 ‖M̃v‖ = 1 and, using the second property of Fact 2, we can control the
perturbation of the second largest singular value

σ2

(
I − 1

2
Q

)
− ‖Q ◦ [εxy]‖2 ≤ σ2(M̃) ≤ σ2

(
I − 1

2
Q

)
+ ‖Q ◦ [εxy]‖2 .

In order to lower bound the absolute spectral gap, it suffices to upper bound the second largest singular
value. But, for the second largest singular eigenvalue of the real symmetric matrix I −Q/2, it holds
that

σ2

(
I − 1

2
Q

)
= max

{∣∣∣∣λ2

(
I − 1

2
Q

)∣∣∣∣ , ∣∣∣∣λn(I − 1

2
Q

)∣∣∣∣} .

Since the matrix I −Q/2 is symmetric, we have that

σ2

(
I − 1

2
Q

)
= max

{∣∣∣ max
v⊥1,‖v‖2=1

v>
(
I − 1

2
Q

)
v
∣∣∣, ∣∣∣ min
‖v‖2=1

v>
(
I − 1

2
Q

)
v
∣∣∣} ,

and, hence, if we let 0 = µ1 ≤ µ2 ≤ . . . ≤ µn be the spectrum of the Laplacian matrixQ, we have
that

σ2

(
I − 1

2
Q

)
= max

{∣∣∣1− 1

2
µ2(Q)

∣∣∣, ∣∣∣1− 1

2
µn(Q)

∣∣∣} .
For the Laplacian matrixQ, observe that |Qxx| = |

∑
y∼xQ(x, y)| ≤ 1. Hence, from Gershgorin’s

Theorem (see Lemma 11), we get that all the eigenvalues of the Laplacian lie on the real axis (since

26



the matrix is symmetric) and all the disks B(x, r) are centered at points |x| ≤ 1 and the radii r
are upper bounded by 1. Hence, it holds that 0 ≤ µ2(Q) ≤ µn(Q) ≤ 2. So, we can take that
σ2(I − 1

2Q) = 1 − 1
2µ2(Q)

def
= 1 − 1

2λ(Q) ≥ 0, where λ(Q) denotes the smallest non-zero
eigenvalue of the Laplacian matrixQ.

Now, we have that ‖Q ◦ [εxy]‖2 = max‖v‖2=1 ‖(Q ◦ [εxy])v‖2 = O(1/
√
n) · µn(Q) = O(1/

√
n)

and so we get σ2(M̃) ≤ (1−Θ(λ(Q))) +O(1/
√
n). This implies that

σ2(M̃) . max{1−Θ(λ(Q)), O(1/
√
n)} ,

and so
Γ(M̃) & 1−max{1−Θ(λ(Q)), O(1/

√
n)}

This implies that Γ(M̃) = Ω(λ(Q)) for sufficiently large n. The above proof will be similar for any
matrix M̃ = I − c ·Q+Q · [εxy] for 0 ≤ c ≤ 1/2 which is obtained by the discussion of Step 2.
Such a matrix has an absolute spectral gap that is, on the one side, lower bounded by λ(Q) (as we
showed above) and, on the other side, upper bounded by the absolute spectral gap of the original
matrix of Equation (4). This completes the proof.

We continue with the mixing time result of the transformed Markov chain. Since we have shown that
the absolute spectral gap is Ω(λ(Q)), we can directly get the desired result, whose proof relies on the
analysis of Lemma 9 and can be found, e.g., in [LP17].

Claim 7. The ε0-mixing time of the transition matrix M̃ is equal to

Tmix(M̃ ; ε0) = O(log(n/ε0)/λ(Q)) .

In the above claim, we choose ε0 = 1/4.

Combining these claims, the proof is completed.

E The Proof of Theorem 4 (Main Result of Learning Phase)

The first step of Algorithm 3 is to learn the target distribution D in ε-relative error for some ε > 0
and pass it as input to Algorithm 2. In this section, we will provide the learning results for abstract
ε; however, our algorithm applies these results with ε = 1/

√
n. For two distributions D, D̃ with

ground set [n], we introduce the sequence/list (of length n) 1 − D/D̃ := (1 − D(x)/D̃(x))x∈[n].

Observe that the pair of sequences (1−D/D̃, 1− D̃/D) captures the relative error between the two
distributions. The sample complexity of the task of learning D in ε-relative error is summarized by
the following (restatement of Theorem 4):
Theorem. For any ε, δ > 0, there exists an algorithm (Algorithm 5) that draws N =

O
(

n
λ(Q)ε2 log( 1

δ )
)

samples from a Local Sampling Scheme Samp(Q;D) satisfying Assump-
tions 1 and 2, runs in time polynomial in N , and, with probability at least 1 − δ, computes
an estimate D̃ of the target distribution D, that satisfies the following relative error guarantee
max

{
‖1−D/D̃‖∞, ‖1− D̃/D‖∞

}
≤ ε.

Let us sketch the proof of Theorem 4. For an arbitrary weight vector w ∈ Rn>0, we use the re-
parameterization zi = log(wi). When in addition w ∈ ∆n, i.e., w is a probability distribution over
[n] and is usually denoted by D, we call z the natural parameter vector of D. Recall that Q is a
Laplacian matrix whereQxy = −Q(x, y), i.e., it is the Laplacian matrix of the graph GQ weighted
by the mass assigned by Q. The proof goes as follows: we draw i.i.d. samples from the LSS. We first
apply the following result which is a modification of the results of [SBB+16].
Theorem 16 (Variant of [SBB+16]). LetGQ be the graph of the support E ofQ satisfying Assumption
1 with |V | = n vertices and associated weighted Laplacian matrixQ (see Equation (2)). Let L be the
associated empirical Laplacian matrix with E[L] = Q. Consider a vector z ∈ Rn with 〈1, z〉 = 0
satisfying the constraint maxx,y∈E |zx− zy| ≤ log(φ) for some constant φ > 1. Let Ex(Q; z) be the
oracle that generates the example {(x, y), q} as follows: the edge (x, y) is chosen with probability
Q(x, y) and the bit q is set to 1 with probability exp(zx)/(exp(zx) + exp(zy)); otherwise it is set

27



Algorithm 5 Learn using Shifting from (Pairwise) Local Sampling Schemes
1: procedure LEARN-SHIFT(ε, δ) . Sample access to oracle Samp(Q;D).
2: Set N = Θ

(
n

λ(Q)ε2 log( 1
δ )
)

.
3: Draw N samples of the form ((xi, yi), qi) ∈ E × {0, 1}.
4: Obtain ẑ using Algorithm 6 (the estimation vector satisfies 〈1, ẑ〉 = 0 and must be shifted).
5: Compute C = log

(∑
x∈[n] exp(ẑx)

)
6: Set z′x = ẑx − C for any x ∈ [n] . See Appendix F.2.
7: Output z′ . The output satisfies ‖z − z′‖∞ ≤ ε.
8: end procedure

to 0. For any ε, δ > 0, there is a maximum likelihood estimator of z (Algorithm 6) which draws
N = O

(
n

λ(L)ε2 log( 1
δ )
)

samples from Ex(Q; z) and computes, in time polynomial in the number of

samples N , an estimate ẑ such that ‖z − ẑ‖2 ≤ ε, with probability at least 1− δ.

The proof can be found at Appendix F.1. Some comments are in order:

1. In the work of [SBB+16], the target is the (re-parameterized) weights vector z? ∈ Rn
satisfying the conditions 〈1, z?〉 = 0 and ‖z?‖∞ ≤ B for some constant B. The provided
algorithm minimizes the empirical log-likelihood and, using O(n/(λ(Q) · ε2))) samples,
computes an estimate ẑ so that ‖z? − ẑ‖2 ≤ ε.

2. Our provided Algorithm 6 has the same guarantees as the algorithm of [SBB+16] but the
target weight vector satisfies the conditions 〈1, z?〉 = 0 and |z?x−z?y | ≤ B for some constant
B. The algorithm draws sufficiently many samples and then minimizes the empirical negative
log-likelihood objective over an appropriately selected constrained set (see Appendix F.1).
Observe that for a Local Sampling Scheme with distribution D, the natural parameter vector
z? does not satisfy 〈1, z?〉 = 0 and so Theorem 16 and Algorithm 6 cannot be directly
applied.

3. We will discuss (Appendix F.2) how to apply Algorithm 6 to distributions, i.e., target weight
vectors with 〈1, z?〉 ≤ 0. This results in learning the target vector z? in L∞ norm (which is
sufficient for Algorithm 3).

The algorithm of Theorem 16 follows:

Algorithm 6 Learning from (Pairwise) Local Sampling Schemes
1: procedure LEARN(ε, δ) . Sample access to oracle Ex(Q; z).
2: Set N = Θ

(
n

λ(Q)ε2 log( 1
δ )
)

.
3: Draw N samples of the form ((xi, yi), qi) ∈ E × {0, 1}.
4: Compute the empirical negative log-likelihood objective

LN (z; {((xi, yi), qi)}i∈[N ]) = − 1

N

N∑
i=1

1{qi = 1}zxi+1{qi = 0}zyi−log(exp(zxi)+exp(zyi)) .

5: Minimize LN using gradient descent in the subspace Ωφ. . See Appendix F.1.
6: Output the guess vector ẑ.
7: end procedure

To complete the proof of Theorem 4, we combine the upcoming Lemma 17 and Lemma 18 with the
main result of [SBB+16].

Lemma 17 states that, after drawing sufficiently many samples from Samp(Q;D), we can construct
an empirical Laplacian matrix L, whose Fiedler eigenvalue is of the same order as the one of the
unknown matrixQ of the Local Sampling Scheme. Moreover, notice that Lemma 17 implies that,
with high probability, the graph induced by the matrix L is connected, i.e., λ(L) > 0.

28



Lemma 17 (Concentration of Empirical Fiedler Eigenvalue). Let ε > 0 and V = {v ∈ {±1, 0}n :
v = ei − ej for any i < j} and let Q be a distribution over V . LetQ be the Laplacian matrix of Q
(see Equation (2)). There exists an algorithm that uses O(log(n/δ)/(λ(Q)ε2)) samples from Q and
computes a matrix L that satisfies |λ(L)− λ(Q)| ≤ ελ(Q), with probability at least 1− δ, where
λ(·) denotes the second smallest eigenvalue of a Laplacian matrix.

Proof. Let {Xi = viv
T
i } be a finite sequence of m independent symmetric square matrices (of

common dimension n) with vi ∼ Q, let L = 1
m

∑m
i=1Xi, and let M = λmax(Xi) = Θ(1). To deal

with the second smallest eigenvalue of the Laplacian matrix, we can project the Laplacian matrix L
to the orthogonal complement of the vector 1. Under this transformation, we can obtain a matrix L′
that has two crucial properties. First, it still is a sum of independent positive semidefinite terms and
its minimum eigenvalue coincides with the Fiedler eigenvalue of L. To achieve this, as in [Tro15],
we introduce the transformationR ∈ R(n−1)×n, that satisfiesRRT = In−1 andR1 = 0. Hence, it
holds that L′ = RLRT and E[L′] = RQRT . Then,

Pr
v1..m∼Q⊗m

[
λ(L) ≤ (1− ε)λ(Q)

]
= Pr

v1..m∼Q⊗m

[
λmin(L′) ≤ (1− ε)λmin(RQRT )

]
.

Using Proposition 7, we get that:

Pr
v1..m∼Q⊗m

[
λ(L) ≤ (1−ε)λ(Q)

]
≤ n

(
e−ε/(1− ε)1−ε)λmin(RQRT )/M ≤ n exp

(
−ε2mλ(Q)

2M

)
.

To upper bound this probability by δ, it suffices to draw O(log(n/δ)/(ε2λ(Q))) samples. So, we
get that, with probability at least 1 − δ, the Fiedler eigenvalue of the empirical matrix L satisfies
λ(L) ∈ (1± ε)λ(Q). Moreover, the second smallest eigenvalue of the empirical Laplacian matrix
L is strictly positive and thus, the induced graph is connected (recall that the number of connected
components in the graph is the dimension of the nullspace of the Laplacian matrix).

The next lemma guarantees that learning the natural parameters of any distribution in L∞ norm is
sufficient for learning the distribution with small relative error over its support.
Lemma 18 (Stability of Relative Error). LetD1,D2 be discrete distributions supported on the ground
set [n] and let z1, z2 be the corresponding natural parameter vectors. For any sufficiently small
accuracy parameter ε > 0, if it holds that ‖z1 − z2‖∞ ≤ ε , then the distributions D1,D2 are close

in relative error, i.e., max
{
‖1−D1/D2‖∞, ‖1−D2/D1‖∞

}
≤ ε.

Proof of Lemma 18. Let ε > 0 sufficiently small and assume that ‖z1 − z2‖∞ ≤ ε, i.e.,

max
x∈[n]

∣∣∣ log
(D1(x)

D2(x)

)∣∣∣ ≤ ε .
For x > 0, it holds that 1− 1

x ≤ loge(x)4. Hence, for any x ∈ [n], we get that

1− D2(x)

D1(x)
≤ log

(D1(x)

D2(x)

)
≤ ε ,

and

1− D1(x)

D2(x)
≤ log

(D2(x)

D1(x)

)
≤ ε .

This gives that
D1(x)

D2(x)
≥ 1− ε and

D2(x)

D1(x)
≥ 1− ε .

This implies that both ratios are upper bounded by 1 + ε. For contradiction, assume that

D1(x)

D2(x)
> 1 + ε ⇐⇒ D2(x)

D1(x)
<

1

1 + ε
.

But, the Taylor expansion of the function x 7→ 1
1+x is equal to 1− x+O(x2) for |x| < 1. Hence,

for sufficiently small ε, the desired bound follows.
4This inequality holds when the base of the logarithm is e, the base that we have assumed that we work with.

29



To wrap up, the proof of Theorem 4 goes as follows:

of Theorem 4. Assume that z? ∈ Rn is the true natural parameter vector for the target distribution
D. By Lemma 18, in order to obtain the desired relative error, it suffices to control z? in L∞. Also,
let z ∈ Rn be a shifted variant of z? so that 〈1, z〉 = 0, i.e., z? = z + C1 for some C. First, the
algorithm draws N = Θ

(
n

λ(Q)ε2 log( 1
δ )
)

i.i.d. samples from the LSS with Laplacian matrix Q.
Using the concentration of the Fiedler eigenvalue (Lemma 17), we have that this number of samples
is sufficient to apply Theorem 16. This will yield a vector ẑ so that ‖z − ẑ‖2 ≤ ε with probability
1− δ. We then apply the transformation described in Appendix F.2 (which corresponds to Line 5-6
of Algorithm 5). This yields the desired L∞ bound and completes the proof.

F The Proof of Theorem 16 (Variant of [SBB+16])

In this section, we prove a slight variant of the algorithm of [SBB+16] where the target weight vector
satisfies the conditions 〈1, z?〉 = 0 and |z?x − z?y | ≤ B for some constant B.

F.1 Description of the Learning Algorithm for Abstract Weight Vectors

In this section, we provide a complete description of the learning algorithm of [SBB+16] (with a
slight modification). We remark that the technical steps required in order to establish our result
follow the analysis of [SBB+16]. It suffices to present an efficient learning algorithm that estimates
the target weights vector z? = (z?1 , . . . , z

?
n) in L∞ norm. We underline that for this section, the

target vector z? is an abstract weight vector and not the natural parameter vector induced by a
distribution. We assume that z? lies in the subspace Ωφ, defined in Equation (6). Hence, it suffices
that the learning algorithm computes an estimate ẑ such that ‖z? − ẑ‖2 ≤ ε, with high probability,
for some accuracy parameter ε > 0.

of Theorem 16. The algorithm minimizes the empirical negative log-likelihood over a subspace
Ωφ ⊆ Rn of the natural parameter vectors. The empirical negative log-likelihood objective with N
draws from the Local Sampling Scheme corresponds to the function

LN (z; {((xi, yi), qi)}i∈[N ]) = − 1

N

N∑
i=1

1{qi = 1}zxi +1{qi = 0}zyi− log(exp(zxi)+exp(zyi)) ,

where xi, yi ∈ [n] and qi ∈ {0, 1} for any i ∈ [N ]. We optimize this objective using gradient descent
in the subspace Ωφ, where

Ωφ = {z ∈ Rn : 〈1, z〉 = 0, max
(x,y)∈E

|zx − zy| ≤ log(φ)} . (6)

The first constraint 〈1, z〉 = 0 is imposed in order to work in the subspace where Laplacian matrices
are positive definite (since any Laplacian matrix has its first eigenvalue equal to 0 with corresponding
eigenvector 1). The second constraint5 is equivalent to Assumption 2. Since any valid target
distribution satisfies 1

φ ≤
D(x)
D(y) ≤ φ for (x, y) ∈ E , we have that

− log(φ) ≤ zx − zy ≤ log(φ) for any x, y ∈ E .
Let L be the empirical Laplacian matrix whose Fiedler eigenvalue λ2(L) is close to the true λ2(Q)
(see Lemma 17). We introduce the following notation for the quadratic form ‖v‖2L := vTLv for any
vector v ∈ Rn. The key idea of the algorithm of [SBB+16] is to compute an estimate ẑ in the ‖ · ‖L
semi-norm. Afterwards, by the min-max principle for Hermitian matrices, we have that

‖z? − ẑ‖2L ≥ λ2(L)‖z? − ẑ‖22 . (7)

Hence, the estimation of the true natural parameter vector in L2 norm is directly implied. The analysis
for the estimation in the L semi-norm is based on the following fact about M -estimators. A proof of
this result can be found in [SBB+16].

5As we mentioned, our learning algorithm almost exactly follows the algorithm of [SBB+16]. The only
difference appears in the second constraint of the set Ωφ, where [SBB+16] optimize over vectors with upper
bounded L∞ norm.

30



Fact 3 (see [SBB+16]). Let Ω1 = {z ∈ Rn : 〈1, z〉 = 0} and let Ω ⊆ Ω1. Consider the
M -estimator

ẑ ∈ argmin
z∈Ω

`(z) ,

and let ` be a differentiable objective that is κ-strongly convex6 at z? ∈ Ω with respect to the L
semi-norm. Then, it holds that

‖z? − ẑ‖2L ≤
1

κ
‖∇`(z?)‖L† ,

where L† is the Moore-Penrose pseudo-inverse of L.

Using the above result, it suffices to verify that the empirical negative log-likelihood objective
is strongly convex in the true parameter vector z? ∈ Ωφ and to upper bound the dual norm
‖∇LN (z?)‖L† = ∇LN (z?)TL†∇LN (z?). Recall that L is the empirical estimate of the true
Laplacian matrix Q. We continue with two claims, that are sufficient in order to control the L
semi-norm of the vector z? − ẑ.
Claim 8 (Strong Convexity at z?). The empirical negative log-likelihood LN (z) is κ-strongly convex
at z? ∈ Ωφ with respect to the L semi-norm with κ = poly(1/φ).

Proof. It suffices to lower bound the quadratic form wT∇LN (z)w for all vectors w ∈ Rn and
z ∈ Ωφ. As in Lemma 17, we introduce the measurement vector notation vi ∈ {−1, 0, 1}n in order
to represent each drawn sample ((xi, yi), qi) (recall that the edges in this training set lie in E and
qi ∈ {0, 1}). We set vi(xi) = 2qi − 1,vi(yi) = −vi(xi) and the other coordinates are set to 0.
These measurement vectors are the building blocks of the empirical matrix (see Lemma 17), since we
have that

L =
1

N

N∑
i=1

viv
T
i :=

1

N
XTX .

Note that the matrixX ∈ {−1, 0, 1}N×n has the i-th measurement vector vTi as its i-th row. Using
this notation and following the computations of [SBB+16] for the Hessian of LN , we get that

∇2LN (z) =
1

N

N∑
i=1

{
1{vi = 1}A1 + 1{vi = 0}A0

}
viv

T
i ,

where

A1 = (logF )′′(〈z,vi〉), A0 = (log(1− F ))′′(〈z,vi〉) and F (x) = 1/(1 + exp(−x)) .

The function F (x) = 1/(1 + exp(−x)) is the Bradley-Terry function. The function F is strongly-log
concave in the interval [− log(φ), log(φ)]. Specifically, we have that

d2

dx2

(
− logF (x)

)
=

ex

(1 + ex)2
≥ φ

(1 + φ)2
=: κ(φ) ,

since the mapping x 7→ exp(x)/(1 + exp(x))2 is symmetric and, so, focusing on the interval
[0, log(φ)], its minimum is attained at log(φ).

The physical interpretation of these properties is that for the pair i, j, it does not matter whether i � j
or j � i (symmetry) but if the comparison gap (i.e., |zi − zj |) attains very large values, then the
strong convexity will be very low. Intuitively, note also that, since exp(x)/(1 + exp(x))2 ≤ 1/4, the

6A function f : X → R is κ-strongly convex with respect to a norm ‖ · ‖ if, for all x, y in the relative interior
of the domain of f and λ ∈ (0, 1), we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− 1

2
κλ(1− λ)‖x− y‖2 .

If the function f is differentiable, then a second definition for κ-strong convexity with respect to a norm ‖ · ‖
is that for all points x, y, we have that f(y)− f(x)− 〈∇f(x), y − x〉 ≥ κ‖x− y‖2. Recall that the relative
interior of a set S is defined as its interior within the affine hull of S, i.e., relint(S) = {x ∈ S : ∃ε >
0,Nε(x) ∩ aff(S) ⊆ S}.

31



−5 5 10

5 · 10−2

0.1

0.15

0.2

0.25

y = exp(x)
(1+exp(x))2

Figure 3: The second derivative of the negative logarithm of the Bradley-Terry function F .

desired objective is also smooth and it is known that strong convexity and smoothness of a function
over a domain of the form {z ∈ Rn : 〈1, z〉 = 0} ∩ Z , where Z is convex, imply that the function
satisfies the PL inequality over Z . Hence, for this function, gradient-based methods will converge
with fast rates (see e.g., [VYZ20]).

Since any z ∈ Ωφ, we conclude that for any w

wT∇LN (z)w ≥ κ(φ)

N
‖Xw‖22 ,

whereX the above measurement matrix and z ∈ Ωφ. Hence, if we define ∆ = ẑ − z?, we get (in
order to form the definition of strong convexity) that

LN (z? + ∆)− LN (z?)− 〈∇LN (z?),∆〉 ≥ κ(φ)

N
‖X∆‖22 = κ(φ)‖∆‖2L ,

since ‖∆‖2L = ∆TL∆ = 1
N∆TXTX∆ = 1

N ‖X∆‖22. Hence, the empirical negative log-
likelihood objective is κ(φ)-strongly convex at the true natural parameter vector z? with respect to
the L semi-norm.

From the strong-convexity guarantee and, using Fact 3, we get that

‖∆‖2L ≤
1

κ(φ)
‖∇LN (z?)‖L† . (8)

Claim 9 (Dual norm). Let L be the empirical Laplacian estimate matrix of Q and let L† the
Moore-Penrose pseudo-inverse of L. There exists a random vector Y ∈ Rn such that

‖∇LN (z?)‖L† =
1

N2
(XTY )TL†(XTY ) ,

whereX is the N × n measurements matrix.

Proof. We first provide a compact form the the gradient ∇LN (z?). Again, following the analysis
of [SBB+16], we define a random vector Y ∈ Rn with independent coordinates (Y1, . . . , Yn)
where we set Yi = F ′(〈z?,vi〉)/F (〈z?,vi〉) with probability F (〈z?,vi〉) and we set Yi =
−F ′(〈z?,vi〉)/(1 − F (〈z?,vi〉)) otherwise. Recall that F , in our setting, is the Bradley-Terry
function F (x) = 1/(1 + exp(−x)) and vi ∈ {−1, 0, 1}n is the i-th comparison vector indicating
the drawn edge. Hence, after computing the gradient at the true parameter vector z?, one gets

∇LN (z?) = − 1

N
XTY .

Claim 9 follows.

32



We now introduce the matrix J := 1
κ(φ)N2XL

†XT . Combining Equation (8) with Claim 9, we get
that

‖z? − ẑ‖2L ≤ Y TJY .

Hence, in order to bound the L semi-norm estimation error, it suffices to control the quadratic form
of the right hand side. Similarly to [SBB+16], our goal is to apply the Hanson-Wright inequality
(see Lemma 19) in order to control the quadratic form.

Lemma 19 ([HW71, RV13]). Let Y ∈ Rn be a random vector with independent zero-mean compo-
nents, which are sub-Gaussian with parameter K and let J ∈ Rn×n be an arbitrary matrix. Then
there is a universal constant c > 0 such that

Pr
[∣∣Y TJY − E[Y TJY ]

∣∣ > t
]
≤ 2 exp

(
−cmin

{
t2

K4‖J‖2F
,

t

K2‖J‖2

})
,

for any t > 0.

Observe that E[Y ] = 0 and, for any i ∈ [n], we have that

|Yi| ≤ sup
z∈Ωφ

sup
x∈X

max

{
F ′(〈z,x〉)
F (〈z,x〉)

,
F ′(〈z,x〉)

1− F (〈z,x〉)

}
,

where X ⊆ {−1, 0, 1}n is the space of all valid measurement vectors (they should induce edges in
E). Hence, we get that

|Yi| ≤ max
x∈[− log(φ),log(φ)]

max
{exp(−x)/(1 + exp(−x))2

1/(1 + exp(−x))
,

exp(−x)/(1 + exp(−x))2

exp(−x)/(1 + exp(−x))

}
=: u(φ) .

Note that u(φ) ≤ 1, since, for 0 < b < 1, it holds that max
{

1
b ,

1
1−b

}
≤ 1

b(1−b) . Since each |Yi| is
bounded, we get that the random variables are u(φ)-sub-Gaussian. Also, we have that

E[Y TJY ] ≤ E
[
‖Y ‖2∞tr(J)

]
≤ u(φ)2

poly(κ(φ))

n

N
.

It remains to compute the two matrix norms. As in [SBB+16], one gets that

‖J‖2F =
∑
i,j

|Jij |2 =
n− 1

poly(κ(φ))N2
= Θ(n/N2) ,

and
‖J‖2 = max

x6=0
‖Jx‖2/‖x‖2 =

1

poly(κ(φ))N
= Θ(1/N) .

Applying the Hanson-Wright concentration inequality, we conclude that

Pr
[
‖z? − ẑ‖2L > c · t u(φ)2

poly(κ(φ))

n

N

]
≤ e−t ,

for all t ≥ 1 and some universal constant c > 0. Recall that φ is the constant of Assumption 2 and
hence the term u(φ)2

poly(κ(φ)) ∈ Θ(1). Finally, note that integrating the above tail bound, one gets the
desired on expectation bound.

F.2 Application of Algorithm 6 to Distributions

Given a target distributionD, the associated natural parameters vector z = log(D) satisfies 〈1, z〉 ≤ 0.
Hence, we have to shift it appropriately in order to apply Algorithm 6. Recall that the condition
〈1, z〉 = 0 is only useful for identifiability purposes of the BTL model.

Given a target distribution D ∈ ∆n, we convert it to the following weights vector: let A =∑
x∈[n] log(D(x)) and set D′(x) = exp(−A/n)D(x). So, we have to shift z in the direction

(−A/n) · 1 and obtain the weight vector z′. For the weights (D′(x))x∈[n] with weight vector z′, it
holds that

33



1. 〈1, z′〉 =
∑
x∈[n](−A/n+ log(D(x))) = 0 and

2. for any x, y ∈ [n], it holds that D′(x)/D′(y) = D(x)/D(y).

Given an estimate for z′, one can extract a good approximation for the natural parameter vector
z of D. In particular, the following properties hold: first, given two distributions p 6= q, it holds
that z′(p) 6= z′(q), i.e., any z′ is uniquely identified by its distribution since one of the following
will hold: if

∑
i∈[n] log(pi) = A =

∑
i∈[n] log(qi), then since there exists j ∈ [n] so that pj 6= qj ,

we have that z(p)′j = log(pj) − A/n 6= log(qj) − A/n = z(q)′j . Otherwise, if, without loss of
generality, Ap =

∑
i log(pi) >

∑
i log(qi) = Aq, we have that there exists j ∈ [n] so that pj < qj

and so z(p)′j = log(pj) − Ap/n < log(qj) − Aq/n = z(q)′j . Hence, any distribution D uniquely
induces a vector z′. Moreover, the actual natural parameter vector z can be estimated having an
estimation for z′. Assume that we have an estimate ẑ′ that satisfies ‖z′ − ẑ′‖2 ≤ ε. We can estimate
z using a vector ẑ (that can be extracted from our estimate ẑ′) as follows: Let z′ = z + C1, where
C = −A/n. In order to initiate our exact sampling algorithm, an L∞ estimate for z is only required.
We have that

‖z − ẑ‖∞ = ‖(z′ − C1)− (ẑ′ − C ′1)‖∞ ≤ ‖z′ − ẑ′‖∞ + |C − C ′| ,
where the estimate ẑ′ satisfies ‖z′ − ẑ′‖∞ ≤ ‖z′ − ẑ′‖2 ≤ ε via Algorithm 6 and the shift constant
can be estimated since we know that D is a distribution:∑

x∈[n]

exp(ẑx) = 1 ⇐⇒
∑
x∈[n]

eẑ
′
x−C′ = 1 ⇐⇒ eC

′
=
∑
x∈[n]

eẑ
′
x .

Note that the right hand side of the above equation contains only our estimates. We have that∑
x∈[n] exp(zx) = 1 and so we set eC :=

∑
x∈[n] e

z′x . Since it holds that |z′x − ẑ′x| ≤ ε for any
x ∈ [n], we have that |C − C ′| ≤ O(ε). This gives that for the actual natural parameters it holds that
‖z − ẑ‖∞ ≤ O(ε).

Hence, given a distribution D, we can learn the weights z′ in L2 norm, satisfying the conditions
of Algorithm 6. From this estimation, we can get the estimation for the natural parameters z by
removing the introduced shift. We remark that the above shifting methodology can be applied to any
score vector z satisfying 〈1, z〉 = B 6= 0.

G Local Sampling Schemes and Hypergraphs

In this section, we discuss how to extend our analysis to sets of size larger that 2. The hypergraph
structure of Local Sampling Schemes can be settled as follows:
Definition 20 (Hypergraph Structure of LSS). Let Z be a finite discrete domain and let Q be a
distribution supported on subsets of Z . Then, the hypergraph G = (V,E) with vertex set V = Z
and hyperedge set E = supp(Q) is called a Local Sampling Scheme hypergraph. If Q is a pair
distribution supported on Z × Z , G corresponds to a graph.

The general Markov Chain for distributionsQ, supported on sets S ⊆ 2[n] has the following transition
probabilities:

pxy =
∑

S⊇{x,y}

Q(S)
D(y)

D(S)
= D(y)

∑
S⊇{x,y}

Q(S)

D(S)
. (9)

For the transition x → y, we can think of a flow fxy with mass pxy and, hence, induce a (simple)
graph structure on a flow graph F = (fxy)xy . Observe that any pair (x, y) shares the same collection
of hyperedges and, hence, we have that:

pxy
pyx

=
D(y)

D(x)

∑
S⊇{x,y}Q(S)/D(S)∑
S⊇{x,y}Q(S)/D(S)

=
D(y)

D(x)
.

The ergodicity of the flow graph implies that the stationary distribution corresponds to D and is
unique. For what follows, we consider the case where any hyperedge has size k, i.e., k-uniform
hypergraphs. The Laplacian of the distribution Q can be generalized over hyperedges and have that

Qxy = −
∑

S⊇{x,y}

Q(S) for any x, y ∈ [n] andQxx = (k − 1)
∑
S3x
Q(S) for any x ∈ [n] .

In the following section, we describe some necessary notation.

34



G.1 Notation

We denote the set
(

[n]
k

)
the family of size k subsets of the ground set [n]. Let Q be a distribution on(

[n]
k

)
. Such a distribution will be called a k-set distribution. Recall that a pair distribution is simply

a 2-set distribution. A sample from the Local Sampling Scheme Sampk(Q;D), where Q is a k-set
distribution, will be denoted

(S,v) ∼ Sampk(Q;D) ,

where S ∈ supp(Q) and, in the case where i ∈ S won between the elements of S, we have that
v = ei ∈ Rn (v is the indicator vector of the winning node) and we have that Pr[v = ei] =
D(i)/D(S)1{i ∈ S}. For the hypergraph case, the canonical transition matrix induced by the
Local Sampling Scheme will be denoted by P . In the case k = 2, this matrix was denoted by M
(recall Equation (1)). Let P denote the transition matrix of the Markov chain, associated with the
Local Sampling Scheme Sampk(Q;D), where Q corresponds to a k-set distribution. The entries of
P = [Pxy]x,y∈[n] are defined as:

Pxy =
∑

S⊇{x,y}

Q(S)
D(y)

D(S)
for x 6= y and Pxx = 1−

∑
y 6=x

Pxy for x ∈ [n] . (10)

Observe that the transition from x to y is performed when

1. a hyperedge S ∈ supp(Q) is chosen (with probability Q(S)) and both x and y lie in S,
2. and the vertex y ∈ [n] is the ’winning’ node among the nodes of S, i.e., y is drawn from the

conditional distribution DS .

There is a natural reduction to the graph case. Consider the marginals of Q to 2-sets (i.e., edges).
Then, one can define a Markov chain over a graph with [n] nodes, whose transition probabilities are
described by P . The random walk has the following properties: Since any pair of vertices shares the
same collection of hyperedges, we get that

Pxy
Pyx

=
D(y)

D(x)

∑
S⊇{x,y}Q(S)/D(S)∑
S⊇{x,y}Q(S)/D(S)

=
D(y)

D(x)
,

for any pair of vertices. Moreover, the Markov chain is ergodic, since it is irreducible, since by the
structure of Q and since D is supported on [n], one eventually can get from every state to every other
state with positive probability; and aperiodic, since it contains self-loops. Hence, it has a unique
stationary distribution which coincides with D, using the detailed balance equations.

Modifications of the LSS Conditions. We can modify the information-theoretic connectivity
condition (Assumption 1) for k-uniform hypergraphs and let E the support of Q. Also, we have to
consider the variation of Assumption 2 over the support E with

1/φ ≤ max
(x,y)∈S∈E

D(x)/D(y) ≤ φ ,

for some constant φ. We remark that the learning results of [SBB+16] hold for k = O(1). Similar,
our learning tools which are modifications of the work of [SBB+16] hold for the same regime.

G.2 Learning Phase for Hypergraphs

As in the learning phase of the 2-set case, the learning algorithm for the k-set problem is essentially a
variation of the analysis of [SBB+16], but the steps are similar. Consider N i.i.d. samples (Si,vi)
drawn from the sampling oracle Sampk(Q;D) with natural parameter vector z? ∈ Rn. The analysis
that follows assumes that any k-set sample in the empirical likelihood lies in E , i.e., the support of Q.
Our goal is to estimate the true parameter vector. We consider the negative empirical log-likelihood
objective

LN (z; {Si,vi}i∈[N ]) = − 1

N

N∑
i=1

〈z,vi〉 − log
∑
j∈Si

exp(zj) ,

and we optimize it over the parameter space

Ωφ = {z ∈ Rn : 〈1, z〉 = 0, max
(x,y)∈S∈E

|zx − zy| ≤ log(φ)} .

35



Likelihood Objective and PL model. We now observe that the above likelihood objective is
directly connected to the Plackett-Luce model, which captures the process of choosing a single
alternative from a given set, i.e., given a set S of m alternatives with values w1, . . . , wm, the
likelihood of choosing the i-th item is

F (wi, w1, ..., wi−1, wi+1, ..., wm) = exp(wi)/

m∑
j=1

exp(wj) .

Note that the negative log-likelihood of the Plackett-Luce model is exactly the same as the single
sample version of our objective function. Observe that this function is shift-invariant and its value is
independent of the ordering of the last (m− 1) elements. Shift invariance is crucial: if one does not
work in the subspace {z : 〈1, z〉 = 0}, then neither our problem nor the problem of determining the
values of the alternatives in the Plackett-Luce model are identifiable, since any solution of the form
z? + c1 is valid. Technically, shift invariance implies that 1 lies in the nullspace of the Hessian of
the negative log-likelihood (and this is where the first constraint of the set Ωφ arises).

Hessian matrix. Let us introduce the vector ez(S) = (exp(zi))i∈S ∈ Rk for an arbitrary set
S ⊆

(
[n]
k

)
. After standard computations (see also [SBB+16]), we get that

∇2
z

(
− 〈z,v〉+ log

∑
j∈S

exp(zj)
)

=

(∑
j∈S exp(zj)

)
diag(ez(S))− ez(S)ez(S)T(∑
j∈S exp(zj)

)2 ,

and hence

∇2
zLN (z; {Si,vi}i∈[N ]) =

1

N

N∑
i=1

〈ez(S),1〉diag(ez(Si))− ez(Si)ez(Si)T(
〈ez(Si),1〉

)2 .

Quantitative Strong Convexity of PL model. Consider an arbitrary direction v ∈ Rk. Without
loss of generality, assume that S = [k]. Then, it holds that

vT
(
ez(S)ez(S)T

)
v =

k∑
i,j=1

vivj exp(zi+zj) ≤
k∑
i=1

exp(zi)

k∑
j=1

v2
j exp(zj) = 〈ez(S),1〉diag(ez(S)) ,

using the Cauchy-Schwarz inequality, where equality holds if and only if v ∈ span(1). Hence, for
the Plackett-Luce function F : Rk → R, we have that

λ2(− log(F (w))) > 0, for any w ∈ Ωφ .

In order to quantify the strong convexity parameter, we will make use of the second constraint. For
the Plackett-Luce function F , we have that

∇2(− log(F (w)) �H ,

for some k × k symmetric matrixH with λ2(H) > 0. We can observe that the matrix

H = β(φ)(I − 11T ) ,

where β(φ) = minz∈Ωφ λ2

 〈ez(S),1〉diag(ez(S))−ez(S)ez(S)T(
〈ez(S),1〉

)2

, satisfies the strong log-concavity

condition for the Plackett-Luce model, i.e., the function F : Rk → R.

Underlying Laplacian matrix and estimation. Similarly to the case k = 2, our goal is to establish
strong convexity for the empirical negative log-likelihood around the true parameters z? ∈ Ωφ with
respect to the L semi-norm. Hence, we have to first introduce the appropriate Laplacian matrix L. In
the k-set setting, we have that

Qx,y = −
∑
S3x,y

Q(S) for any x, y ∈ [n], Qx,x = (k − 1)
∑
S3x
Q(S) for any x ∈ [n] .

36



Observe thatQ1 = 0 (since each set S ⊆
(

[n]
k

)
that contains x, also contains other k − 1 elements).

Recall that for the case k = 2, the estimate for the Laplacian matrix Q is given by the empirical
matrix L = 1

N

∑N
i=1 viv

T
i = 1

NX
TX (see Appendix F.1). In the case k > 2 case, the Laplacian

estimate for the matrixQ is given by the n× n matrix

L =
1

N

N∑
i=1

Ei(kI − 11T )ET
i ,

where the vectors vi are substituted by the (n× k) matrices Ei, where each one of the k columns of
Ei is a unit vector. The k non-zero elements of Ei correspond to the k elements that lie in the i-th
drawn set Si, i.e., Ei =

[
ei1

∣∣∣ei2 ∣∣∣ . . . ∣∣∣eik] for Si = {i1, i2, . . . , ik}.

In the estimation part7, our goal is to estimate the unknown matrixQ. Using concentration results of
the Fiedler eigenvalue of sums of Hermitian matrices [Tro15], using O(log(n)/λ(Q)) samples, one
can compute an estimate L (that corresponds to the above empirical estimate) that approximates the
true λ(Q) with (1 + ε) multiplicative error.

We have that

L =
1

N

N∑
i=1

Xi ,

where8 Xi = Ei(kI − 11T )ET
i , i.e., the estimate L is a sum of independent Hermitian matrices

with λmax(Xi) = Θ(k). Using Proposition 7 in a similar manner as in Lemma 17, we get that

Pr
X1..m∼Q⊗m

[λ(L) ≤ (1− ε)λ(Q)] ≤ n exp

(
−ε2mλ(Q)

2k

)
.

Hence, it suffices to draw at least

m = O

(
k

ε2 · λ(Q)
log(n/δ)

)
in order to guarantee the desired concentration bound with confidence at least 1− δ.

Strong Convexity of Empirical NLL w.r.t. ‖ · ‖L. Having introduced the empirical Laplacian
matrix, we are able to get the desired strong convexity result for the empirical negative log-likelihood
with respect to the L semi-norm. Following the analysis of [SBB+16], we get that, for any vector
w ∈ Rd and parameter z ∈ Ωφ,

wT∇2LN (z)w ≥ λ2(H)

k

1

N

N∑
i=1

k∑
j=1

1{vi = ej}wTEi(kI − 11T )ET
i w ,

whereH = β(φ)(I − 11T ). Hence, we get that

wT∇2LN (z)w ≥ λ2(β(φ)(I − 11T ))

k
‖w‖2L .

Note that λ2(I−11T ) = 1. 9 Consequently, the empirical negative log-likelihood is β(φ)/k-strongly
convex around the true parameters z? ∈ Ωφ. Using Fact 3, we get that

‖z? − ẑ‖2L ≤
k2

β(φ)2
‖∇LN (z?)‖2L† .

7Recall that the learning algorithm does not require the knowledge of the Laplacian matrix Q. The concen-
tration result for the empirical estimation of the matrix Q using the matrix L enables us to express our sample
complexity results using the second smallest eigenvalue of the true (population) matrix Q and not its empirical
estimate.

8For instance, let n = 5, k = 3 and S = {1, 2, 3}.

We have that E = [e1|e2|e3] =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

 and X =


2 −1 −1 0 0
−1 2 −1 0 0
−1 −1 2 0 0
0 0 0 0 0
0 0 0 0 0


9The characteristic polynomial of A = I − 11T is det(A− λI) = (λ− 1)n−1(λ+ n− 1).

37



Bounding the (expected) dual norm ‖ · ‖L† . Following the exact analysis of [SBB+16] for the
expected value of the dual norm, we get that for our setting

E
[
〈∇LN (z?),L†∇LN (z?)〉

]
≤ n

N
sup

z∈Rk:|zx−zy|≤log(φ)

‖∇ logF (z)‖22 ,

where F is the Plackett-Luce function and assuming that S = [k] (and S satisfies the modified mass
condition, i.e., S lies in the support of Q). We have that

∇z logF (z) = ei −
(exp(z1), ..., exp(zk))T∑

j∈[k] exp(zj)
,

for some i ∈ [k]. Hence, we get that

‖∇z logF (z)‖22 =

(
1− ezi∑

j∈[k] e
zi

)2

+

∑
j∈[k]\{i} e

2zj

(
∑
j∈[k] e

zj )2
=

(
∑
j∈[k]\{i} exp(zj))

2 +
∑
j∈[k]\{i} exp(2zj)

(
∑
j∈[k] exp(zj))2

Over the optimization space Ωφ and since the natural parameters zx = log(D(x)) ≤ 0, we have that

1

kφ
≤ D(x)

kmaxj∈S D(j)
≤ D(x)∑

j∈S=[k]D(j)
≤ D(x)

kminj∈S D(j)
≤ φ/k

Hence, we have that (∑
j∈[k]\{i}D(j)∑
j∈[k]D(j)

)2

≤ ((1− 1/k)φ)2 ,

and ∑
j∈[k]\{i}D(j)2

(
∑
j∈[k]D(j))2

=
∑

j∈[k]\{i}

D(j)∑
j∈[k]D(j)

D(j)∑
j∈[k]D(j)

≤ (k − 1)
φ2

k2
.

Finally, we get that

‖∇z logF (z)‖22 ≤ φ2 k − 1

k
.

Conclusion of the Learning Phase in k-sets. We get that we can estimate the true parameters in
L semi-norm, i.e.,

‖z? − ẑ‖2L ≤
k2

β(φ)2

n

N
φ2 k − 1

k
.

Hence, we can transfer this result to an L2 bound and get

‖z? − ẑ‖22 ≤
k2

β(φ)2

n

Nλ2(L)
φ2 k − 1

k
.

Using N = O
(

nk2

λ2(L)β(φ)2 ·
1
ε2

)
=ε O

(
nk2

λ(Q)β(φ)2 ·
1
ε2

)
samples from the oracle Sampk(Q;D) on

the support set E , we can learn the parameter vector in L2. At this point, the proof of the learning
phase is similar to the k = 2 case: We can apply the trick of Appendix F.2 and get an L∞ bound.
Hence, using Lemma 18, we can estimate the target distribution with relative error.

G.3 Downscaling Phase for Hypergraphs

Let ẑ be the estimate of the natural parameters vector and let D̃ the correspond distribution. We use
the estimate D̃ of the target distribution D to transform the Markov chain of the k-set Local Sampling
Scheme into another almost uniform stationary distribution, as in the case k = 2. Using the Bernoulli
downscaling mechanism, for the pair (x, y), we have that

p̃xy = D(y)
D̃(x)

D̃(y)

∑
S3x,y

Q(S)

D(S)
≈ D(x)

∑
S3x,y

Q(S)

D(S)
= pyx .

38



We have that

p̃xy
p̃yx

=
D(y) D̃(x)

D̃(y)

∑
S3x,y

Q(S)
D(S)

D(x)
∑
S3x,y

Q(S)
D(S)

=
D(y)/D̃(y)

D(x)/D̃(x)
.

The modified transition matrix (as in the k = 2 case) has an almost uniform stationary distribution.
Also, it has an absolute spectral gap of same order as the matrix P̃ that can be expressed as

P̃xy =
(1

2
+ εxy

) ∑
S3x,y

Q(S) , P̃yx =
(1

2
+ εyx

) ∑
S3x,y

Q(S) ,

and P̃xx = 1−
∑
y 6=x P̃xy . Hence, we get that

P̃ = I − 1

2
Q+Q ◦ [εxy] .

The expression of the modified transition matrix P̃ is exactly similar to the k = 2 case (see Equation
(5)). Spectral analysis as in Lemma 15 of this matrix will result to the following properties:

(i) The transition matrix P̃ has stationary distribution π̃0(x) = Θ(1/n) for all x ∈ [n], i.e., an
almost uniform probability measure.

(ii) The absolute spectral gap Γ(P̃ ) of P̃ and the minimum non-zero eigenvalue λ(Q) of the
Laplacian matrixQ satisfy Γ(P̃ ) = Ω(λ(Q)).

(iii) The mixing time of the transition matrix P̃ is Tmix(P̃ ; 1/4) = O(log(n)/λ(Q)), where
λ(Q) is the minimum non-zero eigenvalue of the Laplacian matrixQ.

G.4 CFTP Phase for Hypergraphs

The structure of the k-set algorithm remains similar to the k = 2 case, with the exception that the
drawn samples are now hyperedges. We continue with the modified Algorithm 7. Recall that, for
each drawn sample (S,v) ∼ Sampk(Q;D), the vector v ∈ {e1, ..., en} is the indicator vector of the
winning node of the set S ⊆

(
[n]
k

)
.

G.5 Conclusion

Let NLearn and NCFTP be the expected number of samples required for a single execution of the
learning algorithm for k-sets and of the parameterized CFTP algorithm respectively (see Algorithm 7).
Under Assumption 1 (for the distributionQ over hyperedges) and the modified version of Assumption
2, the expected sample complexity of the generalized algorithm for the k-set case is

NLearn(ε := 1/
√
n) + Θ(n) ·NCFTP = O

(
k log(n)

λ(Q)
+

n2k2

λ(Q)β(φ)2

)
+ Õ

(
n2

λ(Q)

)
.

Note that β(φ) is constant under Assumption 2. As explained in [SBB+16], it is natural to consider
the regime where k = O(1). In this regime, the learning bounds match the CFTP dependence on n
under Õ notation.
Corollary 21 (Exact Sampling from k-Set LSS). For any positive constant integer k > 2, under
Assumption 1 (for the distribution Q over k-sets) and Assumption 2, there exists an algorithm
(Algorithm 7) that draws an expected number of Õ

(
n2k2

λ(Q)

)
samples from a k-Set Local Sampling

Scheme Sampk(Q;D), and generates a sample distributed as in D.

39



Algorithm 7 Exact Sampling from k-set Local Sampling Schemes
1: procedure EXACTSAMPLER-k-SET(p) . Sample access to the LSS oracle Sampk(Q;D).
2: t← 0
3: F0(x)← x, for any x ∈ [n]
4: while Ft has not coalesced do . While no coalescence has occured.
5: t← t− 1
6: Draw (S,v) where S ∈ E and v = ei for some i ∈ [n]
7: y ← position where v[y] = 1 . Find the winning node y ∈ S.
8: for x = 1 . . . n do . In order to update state x.
9: if x /∈ S or x = y then Ft(x)← Ft+1(x)

10: else

Ft(x)←
{
Ft+1(w), with probability min{p(x)/p(w), 1}
Ft+1(x), otherwise

11: end
12: end
13: Draw C ∼ Be(p(Ft(1))) . Remove bias using rejection sampling.
14: if C = 1 then Output Ft(1) else Output ⊥ . Output the perfect sample or reject.
15: end procedure

16: procedure EXACTSAMPLER-k-SET-WITHLEARNING(δ) . The algorithm of Corollary 21.
17: D̃ ← LEARN(ε := 1/

√
n, δ) . Learn D in relative error as in Appendix G.2.

18: x←⊥
19: while x =⊥ repeat
20: x← EXACTSAMPLER-k-SET(D̃)
21: Output x
22: end procedure

40


