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1 VISUALIZATION

In this section, we present three graphs of the Office-31 and Office-Home datasets: the local visual
graph, enhanced local graph, and global graph. Figure 1 displays these graphs, with the upper line
representing the results of the Office-Home dataset and the bottom line representing the Office-31
dataset. The first column displays the local visual graph, the second column displays the enhanced
local graph, and the right column displays the global graph. In these graphs, thicker edges indicate
stronger relations, while node size is fixed. To avoid clutter caused by too many edges, we show the
top-150 edges in the Office-Home dataset and top-70 edges in the Office-31 dataset. Additionally,
we have highlighted two nodes in each graph to demonstrate the differences between the three
graphs.

In the Office-Home dataset, the Scissors node in the global graph is positioned near two types of
concepts: tools and stationery. The typical tools include Knives, Hammer, and Screwdriver, while
the stationery items include Eraser, Pencil, and Pen. In the local visual graph, Scissors is related
to the typical tools category due to their similar metallic appearance. In the enhanced local graph,
Scissors has features from both the semantic and visual graphs. Specifically, it has some thick
edges with Knives and Screwdriver, as well as a thin edge with Pen. Another interesting node
is Mop, which is related to Toothbrush, Bucket, Curtains, and other objects in the visual graph.
However, in the semantic graph, it is only related to Toothbrush, Bucket, and Sink. As a result, in the
enhanced visual graph, Mop is positioned closer to the semantic graph with three edges connecting
it to Toothbrush, Bucket, and Bottle.

In the Office-31 dataset, the mouse node has no edges connecting it to other nodes in the local visual
graph due to its different appearance. However, it has many neighbors, including keyboard, laptop
computer, and others in global graph. In the enhanced local graph, mouse begins to maintain some
edges with other nodes, which confirms the guidance of the global graph. For ruler, it holds an
edge with pen in the local visual graph, while it does not have an edge in the global graph. In the
enhanced local graph, it still has an edge with pen, which demonstrates that visual information is
preserved in the enhanced local graph.

2 ABLATION STUDIES

We conduct ablation studies in the context of universal domain adaptation using the Office-31
dataset, as presented in Table 1. These experiments involve varying values of σ in Eq. 6 and
Eq. 7 to investigate the sparsity of the adjacency matrix.

As we increased σ to 0.1, we observe a marginal decline in the overall results, approximately around
1%. Further increments in the value of σ seem to introduce confusion in the model’s ability to learn
precise relationships.

Additionally, we delve into the impact of various loss functions. For adjacency matrix loss denoted
as La in Eq. 11, we substitute it with L1 and L2 distance losses, labeling them as UAN + EGLayer
w/ L1 and UAN + EGLayer w/ L2, respectively. The corresponding formulations are expressed as
follows:

L1(A,As′) =
1

n2

n∑
i=1

n∑
j=1

(
aij − as′ij

)
, (1)
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Figure 1: Visualization of three graphs.

L2(A,As′) =
1

n2

n∑
i=1

n∑
j=1

(
aij − as′ij

)2
. (2)

We have also employed L1 regularization to replace L2 regularization in Eq. 12, and we refer to this
as UAN + EGLayer w/ Lreg1:

Lreg1(S) = ∥
〈
S,ST

〉
∥1 = ∥C∥1 =

n∑
i=1

n∑
j=1

|cij |. (3)

Moreover, we introduce three versions for ablation studies: UAN + EGLayer w/o La, UAN +
EGLayer w/o Lreg , and UAN + EGLayer w/o Lg . In the context of these experiments, UAN +
EGLayer w/o Lg indicates that the experiment lacks both La and Lreg.

As indicated in Table 1, UAN + EGLayer w/ L1 demonstrates a performance improvement when
compared to UAN + EGLayer w/o La. Conversely, UAN + EGLayer w/ L2 shows a performance
degradation. Both of these settings underperform in comparison to UAN + EGLayer. Notably, the
L1 regularization version exhibits a significant performance decrease. This phenomenon could be
attributed to regularization causing node embeddings to become too distinct, thereby hindering the
model’s ability to learn relationships.

Comparing UAN + EGLayer w/o La, UAN + EGLayer w/o Lreg, and UAN + EGLayer w/o Lg , it’s
evident that both Lreg and La play distinct roles in boosting performance. When these two losses
are not utilized, there is an average performance reduction of 1.06%. Moreover, the versions with
only Lreg and La both outperform UAN + EGLayer w/o Lg . Finally, UAN + EGLayer demonstrates
a clear advantage when compared with UAN + EGLayer w/o La and UAN + EGLayer w/o Lreg .

Furthermore, we conduct experiments involving 2 GCN layers, with the first layer adapting the
features to the same dimension, and the second layer aligning the features to the global graph di-
mension. This configuration is referred to as UAN + EGLayer + 2 layer GCN. Another setup involve
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inserting the EGLayer after the feature extractor and before the standard linear classifier as an inter-
mediary layer, without dimensionality transfer. Given that our proposed EGLayer can theoretically
be inserted after any layer, we label this experiment as UAN + middle EGLayer.

When compared to the final version, both of these settings exhibit an average performance decrease
of 3.63% and 0.26%, underscoring the simplicity and effectiveness of the final EGLayer version.
It’s worth noting that UAN + middle EGLayer demonstrates a 0.61% and 0.94% improvements in
A→W and W→D domain adaptation, hinting at potential for further exploration when inserting the
EGLayer after different layers. Consequently, we remain committed to exploring relevant solutions
in this regard.

Table 1: Ablation study for universal domain adaptation experiments on Office-31 dataset
Methods A→W D→W W→D A→D D→A W→A Average

UAN + EGLayer + σ 0.1 83.47 93.47 93.67 86.11 86.09 85.71 88.09
UAN + EGLayer + σ 0.5 15.35 28.74 24.48 20.85 21.58 11.30 20.38

UAN + EGLayer 83.51 94.23 94.34 86.11 87.88 88.26 89.06

UAN + EGLayer w/ L1 83.89 93.58 93.57 85.69 87.38 87.24 88.56
UAN + EGLayer w/ L2 83.92 93.86 93.74 85.69 84.28 85.79 87.88

UAN + EGLayer w/o La 83.89 93.06 92.94 85.69 86.87 87.05 88.25
UAN + EGLayer w/ Lreg1 48.23 29.86 72.45 85.71 83.56 44.84 60.78
UAN + EGLayer w/o Lreg 84.59 94.07 94.03 83.63 88.59 88.28 88.87
UAN + EGLayer w/o Lg 84.20 93.69 93.72 84.82 85.41 86.18 88.00

UAN + EGLayer 83.51 94.23 94.34 86.11 87.88 88.26 89.06

UAN + EGLayer + 2 layer GCN 82.79 88.71 92.79 84.31 81.72 82.27 85.43
UAN + middle EGLayer 84.12 93.12 95.28 85.69 87.10 87.46 88.80

UAN + EGLayer 83.51 94.23 94.34 86.11 87.88 88.26 89.06

3 CORRELATION LOSS STUDY

We conduct experiments to determine the optimal values for α1 and α2 in Eq. 13. The results on
the validation set from art to clipart, with 6,000 iterations, are depicted in Figure 2. In the left chart,
we keep α2 fixed and train the model with α1 values of 0.01, 0.05, 0.1, 0.5, 1, 5, and 10. In the right
chart, we keep α1 fixed and train the model with α2 values of 0.001, 0.005, 0.01, 0.05, 0.1, and 0.5.

We observe that all experimental settings reach their peak performance between 3,000 and 4,500
iterations. For α1, excessively large values (α1 = 10) result in significantly poorer performance.
The performance of the other weights are similar, peaking at around 66%. Notably, the validation set
result with a weight of 1.0 significantly outperforms other settings, leading us to choose α1 = 1.0.

Regarding α2, we notice that even α2 = 0.5 lead to performance degradation, indicating that ex-
cessive regularization could impede the model’s learning ability. The experimental performance of
the other settings are relatively close, with only the 0.01 version exceeding 66%. Consequently, we
select α2 as 0.01.

4 IMPLEMENTATION DETAILS OF FEW-SHOT LEARNING

Our methods are evaluated based on the Matching Networks Vinyals et al. (2016), Prototypical
Networks Snell et al. (2017), Classifier-Baseline Chen et al. (2021), and Meta-Baseline Chen et al.
(2021).

Matching Networks defines a support set DS = {(xi,yi)} and the query images x′ for training.
The final prediction is calculated as:

P (y′ | x′,DS) =

k∑
i=1

α (x′,xi)yi, (4)

where α is attention mechanism.
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Figure 2: The results of the comparison are presented under varying values of α1 and α2. The
validation results demonstrate that α1 = 1.0 and α2 = 0.01 yields the best performance as compared
to higher and lower values of α1 and α2.

Prototypical Networks defines prototype wc for training by average the embeddings of support set
and exploits cosine similarity to calculate the final logits:

wc =
1

|DS
c |

∑
x∈DS

c

fθ(x), (5)

P (y′ = c | x′,DS) = softmax(⟨fθ(x′), wc⟩). (6)

Classifier-Baseline and Meta-Baseline first utilize the whole label-set for training on all base classes
with cross-entropy loss. For validation, classifier is removed and feature extractor fθ is used to
computes the average embedding wc of each class c in support set DS as Prototypical Networks.

Then, for a query sample x′, cosine similarity is computed between the extracted features of x and
average embedding wc for the final prediction with softmax function:

P (y′ = c | x′) =
exp (τ · ⟨fθ(x′), wc⟩)∑
c′ exp (τ · ⟨fθ(x′), wc′⟩)

, (7)

where the Meta-Baseline trains a learnable scalar τ through a meta learning way and the Classifier-
Baseline fixes the τ as 1.0.

5 TRANSFER LEARNING

We have evaluated the transfer learning ability of our method by exchanging the models trained
on miniImageNet and tieredImageNet in both Classifier-Baseline and Meta-Baseline settings.
We name the model trained on miniImageNet for few-shot learning on tieredImageNet as mini-
ImageNet→tieredImageNet, and vice versa. As shown in Table 2, Meta-Baseline + EGLayer
achieves the best performance for both 1-shot (67.98%) and 5-shot (81.27%) in miniIma-
geNet→tieredImageNet setting.

In the tieredImageNet→miniImageNet setting, Classifier-Baseline + EGLayer outperforms
Classifier-Baseline and Classifier-Baseline + LPLayer, improving the performance by 1.04%/0.61%
and 0.73%/0.88%, respectively. For Meta-Baseline, Meta-Baseline + EGLayer still have
1.74%/1.24% and 0.29%/0.36% improvements over Meta-Baseline and Meta-Baseline + LPLayer.
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In general, our method demonstrates an overall advantage in transfer learning tasks, validating the
generalization and reliability of the learned features.

Table 2: Transfer experiments on miniImageNet and tieredImageNet
dataset Methods Backbone 1-shot 5-shot

miniImageNet→tieredImageNet

Classifier-Baseline ResNet-12 64.15 ± 0.54 79.81 ± 0.42
Classifier-Baseline + LPLayer ResNet-12 64.51 ± 0.33 79.83 ± 0.44
Classifier-Baseline + EGLayer ResNet-12 64.89 ± 0.56 80.03 ± 0.43

Meta-Baseline ResNet-12 67.63 ± 0.49 80.99 ± 0.42
Meta-Baseline + LPLayer ResNet-12 67.61 ± 0.58 80.88 ± 0.43
Meta-Baseline + EGLayer ResNet-12 67.98 ± 0.59 81.27 ± 0.43

tieredImageNet→miniImageNet

Classifier-Baseline ResNet-12 76.35 ± 0.22 90.50 ± 0.12
Classifier-Baseline + LPLayer ResNet-12 76.66 ± 0.24 90.23 ± 0.12
Classifier-Baseline + EGLayer ResNet-12 77.39 ± 0.28 91.11 ± 0.14

Meta-Baseline ResNet-12 76.79 ± 0.24 89.53 ± 0.13
Meta-Baseline + LPLayer ResNet-12 78.24 ± 0.29 90.41 ± 0.22
Meta-Baseline + EGLayer ResNet-12 78.53 ± 0.31 90.77 ± 0.13

6 ZERO-SHOT LEARNING

Table 3: Zero-shot experiments on miniImageNet and tieredImageNet
dataset Methods 0-shot

miniImageNet Classifier-Baseline + EGLayer 48.34 ± 0.20
tieredImageNet Classifier-Baseline + EGLayer 48.50 ± 0.25

We conduct zero-shot experiments to evaluate whether our proposed method could align extracted
features more closely with the semantic space by leveraging external knowledge. In these experi-
ments, we employed graph node embeddings instead of one-shot image features. The results pre-
sented in Table 3 indicate that EGLayer achieved an accuracy of approximately 50% in zero-shot
tasks. This result confirms the ability of EGLayer to align features with the semantic space effec-
tively.
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