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Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070, 2020. ISSN
0027-8424.

Mikhail Belkin, Daniel J. Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116:15849 – 15854, 2019.

Yoshua Bengio and Yves Grandvalet. No unbiased estimator of the variance of k-fold cross-
validation. J. Mach. Learn. Res., 5:1089–1105, December 2004. ISSN 1532-4435.
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A OMITTED PROOFS

We list all the omitted proofs in the following section.

A.1 PROOF OF THEOREM 3.2

Theorem 3.2. Consider a kernel K : Rd×Rd −→ R and the associated objective with regularization
parameter λ > 0 under mean squared loss. DefineA = K (K + λ1n)

−1. Then it holds that

LLOO
(
QERM
λ

)
=

1

n

n∑
i=1

K∑
k=1

(
∆λ
ik

)2
, ALOO

(
QERM
λ

)
=

1

n

n∑
i=1

1{
(yi−∆i•)

∗=y∗i

}
where the residuals ∆λ

ik ∈ R for i = 1, . . . , n, k = 1, . . . ,K is given by ∆λ
ik =

Yik−f̂λk (xi)
1−Aii .

Proof. Recall that f̂λS solves the optimization problem

f̂λS = argminf∈F L
λ
S(f) := argminf∈F

{ n∑
i=1

K∑
k=1

(fk(xi)− Yik)
2

+ λ||f ||2H
}

and predicting on the training data takes the form f̂S(X) = AY for some A ∈ Rn×n. Now
consider the model f−iλ := f̂λS−i obtained from training on S−i. W.L.O.G. assume that i = n. We

want to understand the quantity f̂−nλ,k (xn), i.e. the k-th component of the prediction on xi. To that
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end, consider the dataset Z := S−n ∪
{(
xn, f̂

−n
λ (xn)

)}
. Notice that for any f ∈ F , it holds

LλZ(f̂−nλ ) =

K∑
k=1

{ n−1∑
i=1

(
f̂−nλ,k (xi)− Yik

)2

+
(
f̂−nλ,k (xn)− f̂−nλ,k (xn)

)2 }
+ λ||f̂−nλ ||

2
H

=

K∑
k=1

n−1∑
i=1

(
f̂−nλ,k (xi)− Yik

)2

+ λ||f̂−nλ ||
2
H

= LλS−n

(
f̂−nλ

)
≤ LλS−n(f)

≤ LλS−n(f) +

K∑
k=1

(
fk(xn)− f̂−nλ,k (xn)

)2

= LλZ(f)

where the first inequality follows because f̂−n minimizes LλS−n by definition. Thus f̂−nλ also mini-
mizes LλZ and hence also takes the form

f̂−nλ (X) = AỸ

where Ỹ ∈ Rn×K such that Ỹik =

{
Yik if i 6= n

f̂−nλ,k (xn) else
. Now we care about the n-th prediction

which is

f̂−nλ,k (xn) =

n∑
j=1

Anj Ỹjk =

n−1∑
j=1

AnjYjk +Annf̂
−n
λ,k (xn)

=

n∑
j=1

AnjYjk −AnnYnk +Annf̂
−n
λ,k (xn)

= f̂λS,k(xn)−AnnYnk +Annf̂
−n
λ,k (xn)

Solving for f̂−nλ,k (xn) gives

f̂−nλ,k (xn) =
f̂λS,k(xn)−AnnYnk

1−Ann
(3)

Then, subtracting Ynk leads to

Ynk − f̂−nλ,k (xn) = Ynk −
f̂λS,k(xn)−AnnYnk

1−Ann
=
Ynk − YnkAnn − f̂λS,k(xn) +AnnYnk

1−Ann
=
Ynk − f̂λS,k(xn)

1−Ann
Squaring and summing the expression over n and k results in the formula.

For the accuracy, we know that we correctly predict if the maximal coordinate of f̂−nλ (xn) agrees
with the maximal coordinate of yn, i.e.

argmaxk f̂
−n
λ,k (xn) = argmaxk Ynk

From equation 3, we notice that

argmaxk f̂
−n
λ,k (xn) = argmaxk

f̂λS,k(xn)−AnnYnk
1−Ann

= argmaxk
f̂λS,k(xn)− Ynk + Ynk −AnnYnk

1−Ann
= argmaxk −∆λ

nk + Ynk

= (yn −∆n•)
∗

We thus have to check the indicator 1{(yn−∆n•)
∗=y∗n} and sum it over n to obtain the result.

14



Under review as a conference paper at ICLR 2022

A.2 BINARY CLASSIFICATION

Here we state the corresponding results in the case of binary classification. The formulation for the
accuracy changes slightly as now the sign of the classifier serves as the prediction.
Proposition A.1. Consider a kernel K : Rd × Rd −→ R and the associated objective with regular-
ization parameter λ > 0 under mean squared loss. Define A = K (K + λ1n)

−1. Then it holds
that

LLOO
(
QERM
λ

)
=

1

n

n∑
i=1

(
∆λ
i

)2
, ALOO

(
QERM
λ

)
=

1

n

n∑
i=1

1{yi∆λ
i <1}

where the residuals ∆λ
i ∈ R for i = 1, . . . , n is given by ∆λ

i = yi−f̂λ(xi)
1−Aii .

Proof. Notice that the result for LLOO is analogous to the proof for Theorem 3.2 by setting K = 1.
For binary classification we use the sign of the classifier as a decision rule, i.e. the classifier predicts
correctly if yf̂λ(x) > 0. We can thus calculate that

ynf̂
−n
λ (xn) =

ynf̂
λ
S (xn)−Anny2

n

1−Ann
=
ynf̂

λ
S (xn)− y2

n + y2
n − y2

nAnn
1−Ann

= y2
n − yn

yn − f̂λS (xn)

1−Ann

= 1− yn
yn − f̂λS (xn)

1−Ann
= 1− yn∆λ

n

Thus, the n-th sample is correctly classified if and only if

1− yn∆λ
n > 0 ⇐⇒ yn∆λ

n < 1

We now just count the correct predictions for the accuracy, i.e.

ALOO
(
QERM
λ

)
=

1

n

n∑
i=1

1{yi∆λ
i <1}

A.3 PROOF OF COROLLARY 3.3

Corollary 3.3. Consider the eigendecompositionK = V diag(ω)V T for V ∈ O(n) and ω ∈ Rn.
Denote its rank by r = rank(K). Then it holds that the residuals ∆λ

ik ∈ R can be expressed as

∆λ
ik(r) =

n∑
l=1

Ylk

∑n
k=r+1 VikVlk +

∑r
k=1

λ
λ+ωk

VikVlk∑n
k=r+1 V

2
ik +

∑r
k=1

λ
λ+ωk

V 2
ik

Moreover for zero regularization, i.e. λ −→ 0, it holds that

∆λ
ik(r) −→ ∆ik(r) =



n∑
l=1

Ylk

∑n
j=r+1 VijVlj∑n
j=r+1 V

2
ij

if r < n

n∑
l=1

Ylk

∑n
j=1

1
ωj
VijVlj∑n

j=1
1
ωj
V 2
ij

if r = n

Proof. Define A = K (K + λ1n)
−1 ∈ Rn×n. Recall that f̂λS (X) = Ay and thus f̂λk (xi) =∑n

j=1AijYjk. Let us first simplifyA:

A = K (K + λ1n)
−1

= V diag (ω)V T
(
V diag (ω)V T + λ1n

)−1

= V diag

(
ω

ω + λ

)
V T

15



Under review as a conference paper at ICLR 2022

We can characterize the off-diagonal elements for i 6= j as follows:

Aij =

n∑
k=1

Vik
ωi

ωi + λ
Vjk =

r∑
k=1

VikVjk
ωi

ωi + λ
=

r∑
k=1

VikVjk −
r∑

k=1

λ

ωk + λ
VikVjk

= −
n∑

k=r+1

VikVjk −
r∑

k=1

λ

ωk + λ
VikVjk

where we made use of the fact that Vi• ⊥ Vj•. The diagonal elements i = j on the other hand can
be written as

Aii =

n∑
k=1

V 2
ik

ωi
ωi + λ

=

r∑
k=1

V 2
ik

ωk
ωk + λ

=

r∑
k=1

V 2
ik −

r∑
k=1

V 2
ik

λ

ωk + λ

= 1−
n∑

k=r+1

V 2
ik −

r∑
k=1

V 2
ik

λ

ωk + λ

where we have made use of the fact that Vi• is a unit vector. Plugging-in the quantities into LLOO
results in

∆λ
ik =

Yik − f̂λk (xi)

1−Aii
=
Yik −

∑n
l=1AilYlk

1−Aii
=
Yik −Aiiyi −

∑n
l 6=iAilYlk

1−Aii

=
Yik

(∑n
j=r+1 V

2
ij +

∑r
k=1 V

2
ij

λ
ωj+λ

)
+
∑n
l 6=i Ylk

(∑n
j=r+1 VijVlj +

∑r
j=1

λ
ωj+λ

VijVlj

)
∑n
j=r+1 V

2
ij +

∑r
j=1 V

2
ij

λ
ωl+λ

=

∑n
l=1 Ylk

(∑n
j=r+1 VijVlj +

∑r
j=1

λ
ωj+λ

VijVlj

)
∑n
j=r+1 V

2
ij +

∑r
j=1 V

2
ij

λ
ωk+λ

Now crucially, in the full rank case r = n, we have empty sums, i.e.
∑n
l=r+1 =

∑n
l=n+1 = 0 and

we obtain

∆λ
ik =

∑n
l=1 Ylk

∑r
j=1

λ
ωj+λ

VijVlj∑r
j=1 V

2
ij

λ
ωj+λ

=

∑n
l=1 Ylk

∑r
j=1

1
ωj+λ

VijVlj∑r
j=1 V

2
ij

1
ωj+λ

λ−→0−−−→
n∑
l=1

Ylk

∑r
j=1

1
ωj
VijVlj∑r

j=1
1
ωj
V 2
ij

On the other hand, in the rank deficient case r < n we can cancel the regularization term:

∆λ
ik

λ−→0−−−→
n∑
l=1

Ylk

∑n
j=r+1 VijVlj∑n
j=r+1 V

2
ij

Plugging this into the formulas for LλLOO and AλLOO concludes the proof.

A.4 PROOF OF PROPOSITION 4.1

Proposition 4.1. Consider a kernel with spectral decomposition K = V diag(ω)V T for V ∈
Rn×n orthogonal and ω ∈ Rn. Assume that rank(K) = n. Then it holds that the leave-one-out
error LLOO(Ỹ ;Y ) for a model trained on S̃ = {(xi, ỹi)}ni=1 but evaluated on S = {(xi,yi)}ni=1
is given by

LLOO(Ỹ ;Y ) =
1

n

n∑
i=1

K∑
k=1

(
∆̃ik + Yik − Ỹik

)2

, ALOO(Ỹ ;Y ) =
1

n

n∑
i=1

1{
(ỹi−∆̃i•)

∗
=y∗i

}
where ∆̃ik = ∆ik(Ỹ ) ∈ R is defined as in Corollary 3.3.
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Proof. Denote by S̃−i the dataset {(xj , ỹj)}nj 6=i. Denote by f̃−iλ the model trained on S̃−i. Recall
from the proof of Theorem 3.2 that

f̃−nλ,k (xn) =
f̃λk (xn)−AnnỸnk

1−Ann
Instead of subtracting the same label Ỹnk, we now subtract the evaluation label Ynk:

Ynk − f̃−nλ,k (xn) =
Ynk −AnnYnk − f̃λk (xn) +AnnỸnk

1−Ann
=

(1−Ann)(Ynk − Ỹnk) + Ỹnk − f̃λk (xn)

1−Ann

= (Ynk − Ỹnk) +
Ỹnk − f̃λk (xn)

1−Ann
= (Ynk − Ỹnk) + ∆̃λ

ik

The second term ∆̃λ
ik is now the summand of the standard leave-one-out error where we evaluate on

Ỹ . We can hence re-use Theorem 3.3 to decompose it. Squaring and summing over n concludes the
LOO loss result. For the accuracy, we notice that a similar derivation as for Theorem 3.2 applies:

argmaxk f̃
−n
λ,k (xn) = argmaxk

f̃λk (xn)−AnnỸnk
1−Ann

= argmaxk
f̂λk (xn)− Ỹnk + Ỹnk −AnnỸnk

1−Ann
= argmaxk −∆̃λ

nk + Ỹnk

=
(
ỹn − ∆̃n•

)∗
We thus have to check the indicator against the true label yn, i.e. 1{(ỹn−∆̃n•)

∗
=y∗n}

and sum it over
n to obtain the result.

A.5 PROOF OF THEOREM 4.3

Theorem 4.3. For large enough n ∈ N, we can estimate as

LnLOO(m∗) ' 2nA

where A ∼ Γ( 1
2 , 1) is independent of n. LnLOO(m∗) hence diverges a.s. with n −→∞.

Proof. First we notice that for m = m∗, by definition it holds that r = n − 1, which simplifies the
LOO expression to

LnLOO(m∗)
λ−→0−−−→ 1

n

(
n∑
i=1

1

V 2
in

)(
n∑
i=1

yiVin

)2

For notational convenience, we will introduce v ∈ Rn such that vi := Vin. We will now bound the
both factors one-by-one. The first part is a simple application of Proposition B.1 and Proposition
B.5:

LnLOO(m∗) =
1

n

(
n∑
i=1

vi

)2 n∑
i=1

1

v2
i

≥ n2 1

n

(
n∑
i=1

vi

)2
(d)
= n2B

Now for large enough n, we can use Lemma B.6 to make the following approximation in distribu-
tion:

nB ≈ 2
n− 1

2
B

(d)−−→ 2A

where A ∼ Γ( 1
2 , 1). Thus for large enough n, it holds that

LnLOO(m∗) ' 2nA

As the approximation becomes exact for larger and larger n, we conclude that

LnLOO(m∗)
n−→∞−−−−→∞ a.s.
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B ADDITIONAL LEMMAS

In this section we present the additional technical Lemmas needed for the proofs of the main claims
in A.

Lemma B.1. Consider a unit vector v ∈ Sn−1. Then it holds that
n∑
i=1

1

v2
i

≥ n2

Proof. Let’s parametrize each vi as

vi =
zi√∑n
i=1 z

2
i

for i = 1, . . . , n and z ∈ Rn. One can easily check that ||v||2 = 1 and hence v ∈ Sn−1. Plugging
this in, we arrive at

n∑
i=1

1

v2
i

=

n∑
i=1

∑n
j=1 z

2
j

z2
i

=

n∑
i=1

n∑
j=1

z2
j

z2
i

= n+

n∑
i=1

n∑
j 6=i

z2
j

z2
i

We can re-arrange the sum into pairs

z2
j

z2
i

+
z2
i

z2
j

= a2 +
1

a2
≥ 2

for a2 =
z2j
z2i
> 0 and using the fact that x+ 1

x ≥ 2 for x ≥ 0. We can find n(n−1)
2 such summands,

and thus
n∑
i=1

1

v2
i

≥ n+ 2
n(n− 1)

2
= n2

Lemma B.2. Consider v ∼ U
(
Sn−1

)
and any fixed orthogonal matrix U ∈ O(n). Then it holds

that

Uv
(d)
= v

Proof. This is a standard result and can for instance be found in Vershynin (2018).

Lemma B.3. Consider w ∼ N (0,1n). Then it holds that

v =
w

||w||2
∼ U

(
Sn−1

)
Proof. This is a standard result and can for instance be found in Vershynin (2018).

Lemma B.4. Consider two independent Gamma variables X ∼ Gamma(α, ν) and Y ∼
Gamma(β, ν). Then it holds that

X

X + Y
∼ Beta (α, β)

Proof. This is a standard result and can for instance be found in Bowman et al. (1998).

Lemma B.5. Consider v ∼ U
(
Sn−1

)
. Then it holds that

1

n

(
n∑
i=1

yivi

)2

∼ Beta

(
1

2
,
n− 1

2

)
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Proof. First realize that we can write

1√
n

n∑
i=1

yivi = 1̃Tn (v � y)
(d)
= 1̃Tnv

where 1̃n =
(

1√
n
, . . . , 1√

n

)
with ||1̃n||2 = 1 and the fact that v � y (d)

= v for fixed y ∈ {−1, 1}n.

The idea is now to chooseU ∈ O(n) such thatUT 1̃n = e1 = (1, 0, . . . , 0). Then by using Lemma
B.2, it holds

1̃Tnv
(d)
= 1̃TnUv

(d)
=
(
U 1̃n

)T
v

(d)
= eT1 v

(d)
= v1

Thus, surprisingly, it suffices to understand the distribution of v1. By Lemma B.3, we know that

v1
(d)
=

z1√
z2

1 + · · ·+ z2
n

where z ∼ N (0,1n). We are interested in the square of this expression,

1

n

(
n∑
i=1

vi

)2
(d)
= v2

1

(d)
=

z2
1

z2
1 + · · ·+ z2

n

(d)
=

z2
1

z2
1 + w

where we define w =
∑n
i=2 z

2
i , clearly independent of z2

1 . Moreover, it holds that z2
1 ∼

Gamma
(

1
2 ,

1
2

)
and w ∼ Gamma

(
n−1

2 , 1
2

)
. Thus, by Lemma B.4 we can conclude that

1

n

(
n∑
i=1

vi

)2

∼ Beta

(
1

2
,
n− 1

2

)

Lemma B.6. Consider the sequence of Beta distributions Xn ∼ Beta(k, n). Then it holds that

nXn
(d)−−→ Gamma(k, 1)

Proof. This is a standard result and can for instance be found in Walck (1996).

C FURTHER EXPERIMENTS

In this section we present additional experimental results on the leave-one-out error.

C.1 LOO AS FUNCTION OF DEPTH L

We study how the depth L of the NTK kernel Θ(L) affects the performance of LOO loss and ac-
curacy. We use the datasets MNIST and CIFAR10 with n = 5000 and evaluate NTK models with
depth ranging from 3 to 20. We present our findings in Figure 4. Again we see a very close match
between LOO and the corresponding test quantity for CIFAR10. Interestingly the performance is
slightly worse for very shallow models. For MNIST we see a gap between LOO loss and test loss,
which is due to the very zoomed-in nature of the plot (the gap is actually only 0.015) as the loss
values are very small in general. Indeed we observe an excellent match between the test and LOO
accuracy.

(a) Loss (b) Accuracy (c) LLOO, CIFAR10 (d) ALOO, CIFAR10

Figure 4: Test and LOO losses (a, c) and accuracies (b, d) as a function of depth L. We use fully-
connected NTK model on MNIST and CIFAR10.
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(a) Loss (b) Accuracy

Figure 5: Test and LOO losses (a) and accuracies (b) as a function of sample width m. We use a
random feature model on binary MNIST with random labels.

C.2 DOUBLE DESCENT WITH RANDOM LABELS

Here we demonstrate how the spike in double descent is a very universal phenomenon as demon-
strated by Theorem 4.3. We consider a random feature model of varying width m on binary MNIST
with n = 2000, where the labels are fully randomized (p = 1), destroying thus any relationship
between the inputs and targets. Of course, there will be no double descent behaviour in the test ac-
curacy as the network has to perform random guessing at any width. We display this in Figure 5. We
observe that indeed the model is randomly guessing throughout all the regimes of overparametriza-
tion. Both the test and LOO loss however, exhibit a strong spike around the interpolation threshold.
This underlines the universal nature of the phenomenon, connecting with the fact that Theorem 4.3
does not need any assumptions on the targets.
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