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ABSTRACT
Audio-Visual Event (AVE) Localization aims to identify and clas-
sify video segments that are both audible and visible, a field that
has seen substantial progress in recent years. Existing methods
operate under a closed-set assumption and struggle to recognize
unknown events in open-world scenarios. To better adapt to real-
life applications, we introduce the Open Set Audio-Visual Event
Localization task and propose a novel and effective network called
OpenAVE based on evidential deep learning. To the best of our
knowledge, this is the first effort to address this challenge. Our ap-
proach encompasses deep evidential AVE classification and event-
relevant prediction, targeting the nuanced demands of open-set
environments. Our approach includes deep evidential AVE classi-
fication and event-relevant prediction. The deep evidential AVE
classificationmanages event classification uncertainty by extracting
class evidence from segment-specific representations enriched with
multi-scale context. To effectively distinguish between unknown
events and background segments, event-relevant prediction uti-
lizes positive-unlabeled learning. Futhermore, a learnable Gaussian-
prior prediction branch is adopted to enhance the performance of
event-relevant prediction. Experimental results demonstrate that
OpenAVE significantly outperforms state-of-the-art models on the
Audio-Visual Event dataset, confirming the effectiveness of our
proposed method.

CCS CONCEPTS
• Computing methodologies→Hierarchical representations;
Artificial intelligence; Computer vision; Computer vision representa-
tions.

KEYWORDS
Audio-visual event localization, Open set recognition, Cross-modality
representation, Evidential deep learning

1 INTRODUCTION
Audio-Visual Event (AVE) Localization task [32] is one of hot top-
ics in the fields of visual-audio scene understanding, which aims
at simultaneously determining the presence of an event that is
both audible and visible in a video segment from the arbitrarily
untrimmed video, and classifying it into a certain event category.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Figure 1: Illustration of closed set AVE and open set AVE.
Different from closed set AVE task, open set AVE could not
only correctly recognize known events (e.g. Male Speech)
in an untrimmed video but effectively reject the positive
foreground event segment (e.g. Baby Cry) as the unknown in
an open-world.

It has attracted significant attention from the research community
owing to its extensive application potentials, such as video summa-
rization [42], action recognition [14], egocentric object detection
[19], indoor navigation [6] and so on. In recent years, a plethora of
audio-visual event localization approaches [22, 26, 36, 37, 44] have
been proposed and have demonstrated remarkable performance.
Despite their success, previous work mainly handle AVE task un-
der the closed set assumption, which classify each event segment
into one of the classes encountered during training. This closed set
condition limits their application in real-world scenarios, since an
input video whose classes are beyond the range of the training set
will be misclassified as one of the known categories. Therefore, to
tackle this problem, we consider a more challenging and practical
AVE setting in this work, termed asOpen Set Audio-Visual Event
Localization (OSAVE).

OSAVE aims to not only recognize known audio-visual events
in each video segment but also to reject the unknown ones. As il-
lustrated in Figure 1, given an untrimmed testing video containing
a unknown event (e.g., Baby Cry), traditional AVE methods fails
to identify this unknown audio-visual event segment and tends to
assign its label to a known class (e.g., Male Speech). Therefore, cate-
gories of both known and unknown video segments are expected to
be predicted in OSAVE task. Compared with traditional AVE prob-
lem, OSAVE is more challenging in two aspects: (1) The temporal
nature of videos might result in the diversity and complexity of
audio-visual events. Thus, an OSAVE model is required to learn
more discriminative event representations of closed set categories
but also be aware of what it does not belongs to a known class when
the unknown event appears in an open-world scenario. (2) Previous
AVE works [37, 38] could rely on segment-level label to correctly
predict foreground events and the background. However, due to the
lack of unknown event annotations in the open set setting, these
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existing models fail to effectively differentiate unknown events and
pure background from the mixture video segments in the inference
stage.

In this paper, we propose a novel and effective framework (Ope-
nAVE) for open set audio-visual event localization task. To tackle
the first challenge, we design a multi-scale context perception mod-
ule in the deep evidential AVE classification network to obtain more
discriminative segment-specific features by taking advantage of
richer temporal context, which is not only greatly help for known
classification but also provides abundant and distinct information
to estimate category uncertainty. To enable the model to know the
unknown in the OSVAE task, we formulates it as an uncertainty
estimation problem by leveraging evidential deep learning (EDL).
EDL could directly use deep neural networks to predict a Dirichlet
distribution of event class probabilities, which is informative to
quantify the predictive uncertainty of audio-visual events so that
the model could discover those high-uncertainty unknown ones.

To address the second challenge, we introduce an event-relevant
prediction network designed to distinguish between unknown fore-
ground events and background segments. Since the unknown fore-
ground events without annotations are mixed with background
segments, learning from labeled known audio-visual events and
the mixture can be considered as a semi-supervised OSR problem.
Therefore, we apply the positive-unlabeled learning (PU learning)
algorithm by training a binary foreground-background classifier
to discover potential foreground segments (known and unknown
events) in the testing video. Besides, a learnable Gaussian-prior
event-relevant branch leveraging local context is proposed to im-
prove the smoothness of learning-based event-relevant scores, thus
providing more reliable positive and negative samples for PU learn-
ing. Benefiting from evidential deep learning theory and PU learn-
ing, our proposed OpenAVE is not only practically flexible to im-
plement but also more effective in distinguishing between known
and unknown events. Based on the existing audio-visual event lo-
calization dataset (AVE dataset), we construct a new benchmark
to evaluate our model and all baselines for OSAVE task. Extensive
experiments show that our method outperforms state-of-the-art
methods in realistic open-world scenarios. In summary, our main
contributions are as follows:

• We propose an Open Set Audio-Visual Event localization
network to identify unknown events within a video. To the
best of our knowledge, this is the first work to address the
Open Set Audio-Visual Event Localization task (OSAVE),
a highly challenging yet significant task for open-world
scenarios.

• To address the unique challenges of OSAVE, we propose a
deep evidential AVE classification network to handle clas-
sification uncertainty effectively. This network leverages
event class evidence from segment-specific features with
rich temporal contexts. Additionally, an event-relevant pre-
diction network is developed to facilitate the Positive and
Unlabeled learning (PU learning), distinguishing unknown
events from background segments efficiently.

• We conduct extensive experiments on a popular AVE bench-
mark, Audio-Visual Event dataset (AVE dataset), and com-
pare our approach against various baselines. The experi-
mental results clearly demonstrate that our proposedmethod

substantially outperforms these baselines, indicating a sig-
nificant advancement in the field.

2 RELATEDWORK
2.1 Audio-Visual Event Localization
Audio-visual event (AVE) localization aims to match audible
and visible segments in untrimmed videos for identifying the simul-
taneous event of interest by relying on segment-level annotations
during training. Tian et al. [32] first proposed an audio-visual event
localization task and designed a dual multi-modal residual network
to aggregate information over the auditory and visual modalities
to handle cross-modality localization. Afterwards, to avoid the con-
tent of the two modalities being misaligned temporally, Wu et al.
[35] proposed a dual attention matching module, which could bet-
ter align visual and acoustic features of each segment while also
capturing local temporal cues via the global cross-check mecha-
nism. Xuan et al. [38] developed a novel cross-modal interaction
framework comprising spatial, sequential, and cross-modal adaptive
attention modules to comprehensively capture most event-related
information. Xu et al. [37] introduced the relation-aware network
that relied on cross-modality relation attention to establish useful
intra-modality and inter-modality relationships. Besides, the posi-
tive sample propagation (PSP) method was proposed by Zhou et al.
[44] to discover strong relevant audio-visual pairs and reduce back-
ground noise from weak related or negative pairs. Yan et al. [36]
employed a temporal cross-modal background suppression scheme
for the AVE task, effectively mitigating asynchronous audio-visual
background noise while encouraging the model to learn closely
related cross-modal information in the temporal dimension. De-
spite numerous explorations in audio-visual event localization, all
these works were developed under the closed-set assumption. This
assumption implies that testing videos only include a predefined
set of known events. However, in the dynamically changing real
world, where unknown classes are bound to emerge in untrimmed
videos, this assumption becomes invalid. To overcome the con-
straints of the closed-set condition, we have specifically defined a
novel task called open set audio-visual event localization (OSAVE).
Additionally, we have devised a new framework for OSAVE based
on evidential deep learning (EDL) and positive-unlabeled learning
(PU learning). This framework is designed to address the more
complex challenges associated with open-set AVE.

2.2 Open Set Recognition
Open set recognition (OSR) describes such a scenario where
unknown classes not present in the training data appear in the in-
ference stage. It requires the classifiers to accurately classify known
categories in their training set and effectively reject samples that
do not belong to any of the known ones. Scheirer et al. [27] first for-
malized the OSR problem and introduced a novel “1-vs-set machine”
algorithm based on a binary SVM to identify unknown classes. With
the tremendous progress of deep learning in the field of computer
vision, Bendale et al. [3] proposed the first deep learning OSR ap-
proach, OpenMax, which predicts an unknown class by adapting
statistical extreme value theory (EVT) to the 𝐾-class softmax clas-
sifier in the network. Recently, generative methods have also been
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Figure 2: The architecture of the proposed OpenAVE for Open Set Audio-Visual Event Localization (OSAVE) task. It contains
audio and visual feature extraction, event-relevant prediction network and deep evidential AVE classification network. The
deep evidential AVE classification network based on EDL and multi-scale context is used for the known/unknown judgment.
The event-relevant prediction network mainly applies the positive-unlabeled learning (PU learning) for distinguish unlabeled
unknown events from the background. In the inference stage, we leverage the uncertainty and event-relevant scores, video
segments from the known and unknown classes, as well as background frames can be effectively distinguished in the OSAVE
setting.

explored to handle the OSR problem. For example, Neal et al. [24] in-
troduced a counterfactual image generation method that leverages
generated data close to training samples but not belonging to known
classes to train an open set classifier. Other generative model-based
works [25, 30, 39] borrowed the idea of feature reconstruction by uti-
lizing the reconstruction error associated with the generator as an
open set indicator to reject unknown ones. Prototype-based learn-
ing approaches [7, 9] aim to identify the unknown by calculating
the maximum distance between the input example and the learned
known class prototypes. Furthermore, probabilistic and evidential
deep learning methods [11, 13, 23, 34] that estimate prediction un-
certainty have emerged as potential approaches for improving OSR
performance. Additionally, some works have extended the research
field of evidential deep learning (EDL) from open set image recog-
nition (OSR) to open set action recognition [1, 5, 40, 43], open set
temporal action localization [2, 10, 18] and open set object detec-
tion/segmentation [12, 20, 21], yielding promising results. Unlike
image samples, audio-visual events entail cross-modal associations
and temporal dynamics. Therefore, our proposed Event-relevant
prediction mechanism enables the distinction between unknown
events and background segments from open-set setting.

3 THE PROPOSED METHOD
3.1 Notations and Preliminaries
Problem formulation of OSAVE. The Open Set Audio-Visual
Event (OSAVE) localization task aims to predict which temporal
segment of an input untrimmed video contains an audio-visual
event and to determine the known category to which the event
belongs, while also identifying and rejecting segments from novel
classes as unknown. Formally, we divide a given video sequences

V into 𝑇 non-overlapping audio and visual pairsV = (𝐴𝑡 ,𝑉𝑡 )𝑇𝑡=1,
where each segment is one second long. Here, 𝑉𝑡 represents the
visual content,𝐴𝑡 represents its synchronized audio counterpart for
the 𝑡-th segment. The ground-truth label for each video segment
is denoted as 𝑦𝑐𝑡 = {𝑦𝑐𝑡 |𝑦𝑐𝑡 ∈ {0, 1},∑𝐶+1

𝑐=1 𝑦
𝑐
𝑡 = 1} ∈ R𝐶+1, where

𝑦𝑐𝑡 ∈ {0, 1} indicates whether an event of category 𝑐 is present in the
𝑡-th segment.𝐶 is the total number of known event categories, and
𝐶 + 1 represents the background. 𝑦𝑐𝑡 = 1 indicates the presence of
an event of category 𝑐 in the 𝑡-th segment, while 𝑦𝑐𝑡 = 0 represents
its absence. The label for the entire video can be denoted as 𝑌 =

{𝑦𝑐1, 𝑦
𝑐
2, · · · , 𝑦

𝑐
𝑇
} ∈ R𝑇×𝐶+1. It is worthy noting that the model only

has access to the video data and the annotations of known events
during training while the annotations of unknown events are not
provided. During the inference phase, the learned model is required
to predict a set of the event labels {𝑦𝑐𝑡 }𝑁𝑡=1, where𝑁 is the number of
the input video segments in V̂ . Here, 𝑐 represents an event category,
where 𝑐 ∈ {1, 2, · · · ,𝐶 + 1,𝑈 }, and𝑈 denotes the unknown event
class. In summary, this task involves labeling video data with audio-
visual events, categorizing known events, and distinguishing them
from unknown events based on the trained model’s predictions.
Audio and visual representations. Following previous works
[32, 37, 38], we also utilize pre-trained CNNmodels to extract audio-
visual features {𝑓 𝑎𝑡 , 𝑓 𝑣𝑡 } for each segment (𝐴𝑡 ,𝑉𝑡 ) in the videoV ,
where 𝑡 ∈ {1, 2, 3, · · · ,𝑇 }. For the audio sequence input, we ex-
ploit the VGG-like network pre-trained on AudioSet to extract
audio features {𝑓 𝑎𝑡 }𝑇

𝑡=1 ∈ R𝑇×𝑑𝑎 , where 𝑑𝑎 denotes the dimen-
sion of audio feature vectors. Similarly, the visual representations
{𝑓 𝑣𝑡 }𝑇𝑡=1 ∈ R𝑇×𝑑𝑣×(𝐻∗𝑊 ) are extracted by the ResNet-151 or VGG-
19 model pre-trained on ImageNet, where 𝑑𝑣 denotes the visual
feature dimension, and 𝐻 and𝑊 are the height and width of the
feature map. To reduce the background noise, we apply AGVA

3
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Figure 3: The structure of the multi-scale context perception
module (MSCPM).

[32] to find visual regions that are relevant to the audio signals
in each video segment. Then, the visual and audio features after
AGVA are further input to two convolutional layers with ReLu to
project the features from two modalities into the same embedding
space. The processed audio and visual features are represented as
{𝑓 𝑎𝑡 }𝑇

𝑡=1 ∈ R𝑇×𝐷 and {𝑓 𝑣𝑡 }𝑇𝑡=1 ∈ R𝑇×𝐷 , respectively. Finally, the
average features of 𝑓 𝑎𝑡 and 𝑓 𝑣𝑡 are used as the joint multi-modality
representation 𝑓 𝑎𝑣𝑡 ∈ R1×𝐷 for labeling the video segment.

3.2 The Architecture
The architecture of our approach primarily consists of two main
components: a deep evidential AVE classification network and an
event-relevant prediction network. Given an untrimmed video, the
deep evidential AVE classification network is tasked with identi-
fying and classifying audio-visual events by leveraging evidential
deep learning to manage uncertainty and enhance reliability. This
network processes both audio and visual streams to extract fea-
tures that are combined to form a comprehensive multi-modal
understanding of each event segment. Concurrently, the event-
relevant prediction network focuses on determining the relevance
of each video segment to the detected events. This network employs
positive-unlabeled learning to distinguish between segments that
contain relevant events and those that do not, effectively filtering
out irrelevant or background segments. By integrating these two
networks, our approach not only accurately classifies known audio-
visual events but also adeptly identifies segments containing new
or previously unrecognized event types, enhancing the model’s
applicability in dynamic, real-world environments where unseen
events may occur.

As depicted in Figure 2, we first extract audio and visual features
{ ¯𝑓 𝑎𝑡 }𝑇

𝑡=1 and {𝑓
𝑣
𝑡 }𝑇𝑡=1, respectively, and then integrate them to gener-

ate multi-modality presentations {𝑓𝑎𝑣}𝑇𝑡=1. Next, the multi-modality
features {𝑓 𝑎𝑣𝑡 }𝑇

𝑡=1 are sent to deep evidential AVE classification net-
work and event-relevant prediction network respectively to jointly
determine known and unknown events in the inference stage. In
the deep evidential AVE classification network, we first apply a
multi-scale context perception module to enable individual segment
to integrate rich temporal contextual information from neighbor-
hood video segments. Then the evidence collector 𝑓 on top of the
multi-scale context perception module is used to predict class-wise
evidence, which formulates a Dirichlet distribution so that event
classification probabilities 𝑝 and the predictive uncertainty 𝑢 of
each video segment can be determined. To distinguish unknown
foreground events from the background, the event-relevant pre-
diction network is learned by the positive-unlabeled learning (PU
learning). To further enhance the event-relevant scores 𝑆𝑟𝑡 (predict-
ing the foreground event and background) to construct positive

and negative sets in PU learning, we add the Gaussian-prior event-
relevant prediction branch to improve the smoothness of predicted
video segments. Moreover, a consistency loss is utilized to reduce
the disagreement between the learning-based event-relevant scores
𝑠𝑟𝑡 and Gaussian-prior event-relevant scores 𝑔𝑟𝑡 . We now detail the
specifics of our model.

3.3 Deep Evidential AVE Classification
3.3.1 Multi-scale Context Perception. An untrimmed video might
involve several known or unknown events usually ranging across
multiple temporal scales in the open-world scenarios. Although
some previous AVE approaches [15, 29, 32, 37, 44] adopt Bi-LSTMs
[41] or Transformer [33] to establish temporal relationship in the
uni-modal or cross-modal for localizing short as well as long-scale
events, these model severely ignore the importance of local contex-
tual perception. In fact, neighboring video segments of an event
commonly contain more critical contextual cues related to it com-
pared to distant video segments. Moreover, due to an audio-visual
event may range diverse duration, sensing temporal contexts in
diverse ranges is very essential. Therefore, we argue that endowing
individual video segment with the ability of perceiving multi-scale
local temporal contexts from neighborhood video segment is very
crucial for AVE task.

To this end, a multi-scale context perception module (MSCPM) is
proposed to enhance each individual event representation by mak-
ing use of multi-scale temporal contextual cues, which is illustrated
in Figure 3. Specifically, we assign each video segment (𝐴𝑡 ,𝑉𝑡 ) with
a series of 𝑡-centered multi-scale video segments that provide dif-
ferent temporal context-aware features to extend segment-specific
perception ranges. Each 𝑡-centered multi-scale audio-visual seg-
ments are denoted as temporal sequence set 𝑍𝑡 = {(𝑠𝑚𝑡 , 𝑒𝑚𝑡 ) |𝑚 ∈
[1, 𝑀])}, where 𝑀 is the maximum of temporal extension range,
𝑠𝑚𝑡 = max(0, 𝑡 −𝑚) and 𝑒𝑚𝑡 = min(𝑡 +𝑚,𝑇 ) represents the starting
and ending points of the temporal boundary, respectively. After,
we extract the average features 𝑓𝑚𝑡 of every temporal sequence
(𝑠𝑚𝑡 , 𝑒𝑚𝑡 ) ∈ 𝑍𝑡 , which is defined as:

𝑓𝑚𝑡 =
1

𝑒𝑚𝑡 − 𝑠𝑚𝑡

∑︁
𝑠𝑚𝑡 ≤𝑖≤𝑒𝑚𝑡

𝑓 𝑎𝑣𝑡=𝑖 (1)

To extend the perception range of the audio-visual segment
(𝐴𝑡 ,𝑉𝑡 ), we apply feature enhancement to integrate its audio-visual
representation and each temporal context 𝑓𝑚𝑡 . In general, each
individual event gains useful contextual information mainly from
extended video segments that are highly relevant to it. To effectively
implement feature enhancement and reduce the interference of
irrelevant context, this study proposes a weighted feature fusion
mechanism. To be specific, we first measure the similarity between
the segment features 𝑓 𝑎𝑣𝑡 and each extended video sequence features
{𝑓𝑚𝑡 }𝑀

𝑚=1, and achieve the cosine similarities 𝜔𝑚𝑡 , which can be
given by:

𝜔𝑚𝑡 = cos(
𝑓 𝑎𝑣𝑡

|𝑓 𝑎𝑣𝑡 | ,
𝑓𝑚𝑡

|𝑓𝑚𝑡 | ) (2)

Then the 𝑓 𝑎𝑣𝑡 and average feature representations of each weighted
extended video segments are fused, and we obtain new audio-visual
features ¤𝑓 𝑎𝑣𝑡 with extended-range perception, which is formulated

4
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as:
¤𝑓 𝑎𝑣𝑡 = (1 − 𝛾𝑡 )𝜓1 (𝑓 𝑎𝑣𝑡 ) + 𝛾𝑡

∑︁
𝑚∈𝑀

𝛿 (𝜔𝑚𝑡 )𝜓2 (𝑓𝑚𝑡 ) (3)

Where 𝜓1 and 𝜓2 are two fully-connected layers for feature em-
bedding, respectively; 𝛿 represents the Softmax operation with a
temperature factor. 𝛾𝑡 ∈ [0, 1] is the fusion weight representing the
scaled average of the cosine similarities {𝜔𝑚𝑡 }𝑀

𝑚=1, which can be
calculated by:

𝛾𝑡 =
1

2|𝑀 |
∑︁
𝑚∈𝑀

(𝜔𝑚𝑡 + 1) (4)

3.3.2 Uncertainty-aware AVE Classification. In contrast to tradi-
tional closed-set audio-visual event localization, our model requires
estimation of classification uncertainty to determine unknown
events in the video. We mainly employ evidential deep learning
(EDL) to learn an open set event classifier with quantified classifica-
tion uncertainty. To achieve this, we build a Dirichlet distribution
𝐷𝑖𝑟 (𝑝 |𝛼) over class probabilities 𝑝 ∈ R𝐶 , where 𝛼 is the Dirich-
let strength. The goal of the EDL is to predict 𝛼 by deep neural
networks (DNN). Our model is optimized by minimizing the nega-
tive log-likelihood of each audio-visual pair {(𝐴𝑡 ,𝑉𝑡 ), 𝑦𝑐𝑡 }𝑇𝑡=1 in the
video, which can be given by:

L𝐸𝐷𝐿 =

𝐶∑︁
𝑗

𝑦
(𝑡 )
𝑐 (log(𝑆 (𝑡 ) ) − log(𝛼 (𝑡 )

𝑗
)) (5)

Where 𝑦 (𝑡 )𝑐 is an one-hot 𝐶-dimensional label for a video segment
(𝐴𝑡 ,𝑉𝑡 ) and 𝑆 (𝑡 ) =

∑𝐶
𝑗 𝛼 𝑗 is the total strength over 𝐶 event cate-

gories. Based on Subjective Logic theory (SL) and the evidence the-
ory,𝛼 𝑗 is linked to the learned evidence 𝑒 𝑗 by the equality𝛼 𝑗 = 𝑒 𝑗+1,
where 𝑒 𝑗 ∈ R𝐶+ can be represented as 𝑒 𝑗 = 𝑔(𝑓 ( ¤𝑓 𝑎𝑣𝑡 ;𝜃 )). Here, 𝑓
can be seen as an evidence collector, which represents the output of
a deep neural network (DNN) parameterized by 𝜃 . 𝑔 is the evidence
function, e.g., Exp, Softplus or ReLU, to keep the collected evidence
𝑒 𝑗 non-negative. In the testing, the expected classification proba-
bility of each event category is E[𝑝 𝑗 ] = 𝛼 𝑗/𝑆 and the classification
uncertainty 𝑢 is estimated by 𝑢 𝑗 = 𝐶/𝑆 . E[·] is to take the mean
loss values over the input samples. Note that the uncertainty 𝑢 is
inversely proportional to the total evidence of all known categories,
therefore it reflects the probability that a video segment belongs to
the unknown event.

3.4 Event-relevant Prediction
When a given video contains unknown events, the mixture of un-
known foreground segments and pure background makes it chal-
lenging for the model to distinguish between them solely through
uncertainty-aware classification. Therefore, predicting event-relevant
scores that indicates the likelihood of a video segment is the fore-
ground is crucial. We also notice the fact that samples from known
categories are positive while the mixture of ‘background’ includes
‘positive-unlabeled’ data. This intrinsically is a semi-supervised
learning problem referred to as positive and unlabelled learning
(PU learning) which relies on learned knowledge from positive data
to relabel unknown samples. To accurately identify the positive un-
known samples from the ‘background’, a simple but very effective
PU learning method is leveraged in this paper.

We utilize 𝑠𝑟𝑡 ∈ [0, 1] generating from the learning-based event-
relevant prediction to represent the predicted event-relevant score
of each audio-visual pair (𝐴𝑡 ,𝑉𝑡 ). Note that the learning-based
event-relevant prediction branch utilizes a simple binary classifier,
consisting of a 2-dimensional fully-connected layer with the sig-
moid function, to differentiate between foreground events and the
background. A binary cross-entropy (BCE) loss is exploited as the
training loss of event-relevant prediction network, which can be
denoted as:

L𝑟 = − 1
|P |

∑︁
𝑠𝑟𝑡 ∈P

log 𝑠𝑟𝑡 −
1
|N |

∑︁
𝑠𝑟𝑡 ∈N

log (1 − 𝑠𝑟𝑡 ) (6)

where P and N are the positive and negative sets in a training
batch. The positive set P = {𝑠𝑟𝑡 |𝑦𝑐𝑡 ≤ 𝐶} directly consists of the data
belong to known classes while the negative samples are difficult
to determine owing to unknown events appearing in unlabeled
data. To tackle this problem, we denote those samples {𝑠𝑟𝑡 |𝑦𝑐𝑡 =

𝐶 + 1} as the unlabeled background set U, and then sort the U
in ascending order. Finally, the top-𝑘 examples from the U are
selected to construct the most likely negative set N . This simple
loss of event-relevant prediction network will push the probably
pure background segments far away from positive audio-visual
event pairs.

Since the learning-based event-relevant score 𝑠𝑟𝑡 is typically de-
termined on a segment-level basis without leveraging contextual
information from neighboring video segments, we are considering
utilizing local context to enhance it. This approach aims to achieve
more reliable event-relevant prediction and further improve fore-
ground discrimination. The primary motivation behind using local
context is that the predicted event-relevant results should keep a
locally consistency. To implement this prior, we introduce the learn-
able Gaussian masks to generate event-relevant scores. We mainly
add a additional Gaussian-prior event-relevant prediction branch in
the event-relevant prediction network, which predicts Gaussian ker-
nels (𝜎𝑡 , 𝜇𝑡 )𝑇𝑡=1 to model event-relevant scores for each segment in
the video. We obtain a set of segment-specific local Gaussian masks
𝐺 = {𝐺 𝑗 }𝑇𝑡=1 by the predicted Gaussian parameters (𝜎𝑡 , 𝜇𝑡 )𝑇𝑡=1. The
Gaussian-prior event-relevant score 𝑔𝑟𝑡 is generated by choosing
the values from the 𝑡-th Gaussian mask 𝐺𝑡 , which is formalized as:

𝑔𝑟𝑡 = 𝐺𝑡 = exp(− 𝛽 ( 𝑗/𝑇 − 𝜇𝑡 )2

𝜎2
𝑡

)𝑇𝑗=1 (7)

Where 𝛽 represents the variance of the segment-specific local
Gaussian masks 𝐺 . Although Gaussian-prior event-relevant scores
{𝑔𝑟𝑡 }𝑇𝑡=1 can provide locally smooth results for predicted audio-
visual pairs, directly integrating themwith the learning-based event-
relevant scores {𝑠𝑟𝑡 }𝑇𝑡=1 will make the model worse. We assume that
this issue occurs due to the disagreement between these two event-
relevant scores on the same time step. To address this problem, an
event-relevant consistency loss L𝑐𝑜𝑛 is proposed, which is defined
as:

L𝑐𝑜𝑛 =
∑︁
𝑡

(𝑠𝑟𝑡 − 𝑔𝑟𝑡 )2 (8)

Under the help of the consistency loss, the learnable Gaussian-
prior event-relevant scores could be effectively complemented to
learning-based event-relevant scores to improve the smoothness
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Table 1: Experimental results on Audio-Visual Event dataset (AVE dataset) evaluated by the AUPOC, AUPR and FAR@95. The
closed set classification accuracy (ACC) is also presented for reference. All approaches are trained on three splits of the AVE
training set, and evaluated on the entire AVE test set containing known and unknown classes. Best results are shown in bold.

Methods
Audio-Visual Event

Split I Split II Split III
AUROC AUPR FAR@95(↓) ACC AUROC AUPR FAR@95(↓) ACC AUROC AUPR FAR@95(↓) ACC

SoftMax(VGG-19) 54.46 27.86 87.12 46.77 51.20 27.53 89.27 49.34 53.13 31.45 88.78 49.78
OpenMax(VGG-19) 54.21 33.64 85.24 42.52 48.36 30.28 89.91 46.52 51.33 32.44 88.29 47.28

RPL(VGG-19) 67.26 46.14 79.31 55.49 71.34 51.74 76.29 53.42 68.25 49.48 78.32 57.56
ARPL(VGG-19) 73.37 52.13 74.88 58.29 73.15 56.39 74.24 59.34 72.02 56.35 75.25 60.51
Ours(VGG-19) 76.68 57.34 71.39 70.40 79.89 67.61 55.82 68.87 85.62 70.24 54.46 71.40

SoftMax(ResNet-151) 59.76 32.90 81.32 53.17 56.70 32.87 84.23 56.53 56.24 32.21 84.78 50.30
OpenMax(ResNet-151) 56.62 36.43 83.34 45.46 54.56 34.89 86.72 48.20 54.60 35.24 86.26 52.56

RPL(ResNet-151) 70.46 49.54 75.21 58.48 73.54 54.68 72.59 55.29 71.89 51.56 71.54 60.01
ARPL(ResNet-151) 78.23 54.07 69.83 61.52 78.21 59.58 69.12 62.82 76.24 59.67 70.87 62.54
Ours(ResNet-151) 80.45 60.58 67.06 73.70 85.45 71.58 50.73 71.41 89.36 74.24 48.56 74.25

of predicted segments and provide more accurate foreground pre-
dictions. The average scores of 𝑠𝑟𝑡 and 𝑔𝑟𝑡 are fused to produce 𝑠𝑟𝑡 ,
which replaces original learning-based event-relevant score 𝑠𝑟𝑡 as
the new event-relevant score. This new event-relevant score is used
to construct positive and negative sets for PU learning. Finally, we
optimize the Event-relevant Prediction Network, as shown in
Figure 2, using the combined loss L𝐸𝑅 = L𝑐𝑜𝑛 + L𝑟 .

3.5 Learning and Inference
training. By combining all the optimization objectives defined
by Eqs.(5)(6)(8), the final weighted sum of multi-task training loss
L𝑡𝑜𝑡𝑎𝑙 is obtained as:

L𝑡𝑜𝑡𝑎𝑙 = 𝜆L𝐸𝐷𝐿 + L𝐸𝑅 (9)

Where 𝜆 is a hyperparameter to balance training loss.
Inference. For a given untrimmed video, each audio-visual segment
input is successively fed into the trained OpenAVE model, which
generates the classification labels 𝑦𝑡 = arg max𝑗∈[1,2,· · · ,𝐶 ] E[𝑝𝑡 𝑗 ],
the classification uncertainty 𝑢𝑡 and an event-relevant prediction
score 𝑠𝑟𝑡 . Relying on the obtained 𝑢𝑡 and 𝑠𝑟𝑡 , a positive foreground
audio-visual segment (𝑠𝑟𝑡 > 0.5) can be accepted as the known class
label 𝑦𝑡 if the 𝑢𝑡 < 𝜏 , else it is rejected as the unknown, where
𝜏 represents a pre-defined outlier threshold. The entire inference
procedure of our model is shown in Algorithm 1.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. We evaluate our method and all baseline models on
a public audio-visual event localization benchmark dataset: the
Audio-Visual Event (AVE) dataset. The AVE dataset is a subset of
the AudioSet [16], which contains 4,143 videos covering 28 event
categories, e.g., airplane flying, dog barking and church bell. Each
video lasts for 10 seconds and contains at least one 2-second audio-
visual event. The dataset is divided into 3,339 training videos, 402
validation videos, and 402 testing videos. To facilitate open set
evaluation, we randomly select 3/4 of the event categories from the
AVE training set as known data, while retaining all AVE validation
and testing data containing both known and unknown categories.

Algorithm 1 Inference Procedure

Require: Untrimmed test video V̂ .
Require: The trained OpenAVE model.
Require: Threshold 𝜏 obtained from training data.
Output: Prediction Set 𝑌 = {𝑦𝑐1, 𝑦

𝑐
2, 𝑦

𝑐
𝑡 , · · · , 𝑦𝑐𝑁 } in the video V̂ .

1: Video data pre-processing.
2: Predict the closed set prediction score 𝑝𝑡 𝑗 , event-relevant scores
𝑠𝑟𝑡 and classification uncertainty 𝑢𝑡 of each audio-visual pair
(𝐴𝑡 ,𝑉𝑡 )𝑁𝑡=1 in the video V̂ .

3: while {(𝐴𝑡 ,𝑉𝑡 )}𝑁𝑡=1 ∈ V̂ do
4: if 𝑠𝑟𝑡 < 0.5 then

the video segment (𝐴𝑡 ,𝑉𝑡 ) is a background and𝑦𝑐𝑡 = 𝐶+1;
continue.

5: end if
6: if 𝑢𝑡 < 𝜏 then

the video segment (𝐴𝑡 ,𝑉𝑡 ) is a known class by 𝑦𝑐𝑡 =

arg max𝑗 E(𝑝𝑡 𝑗 ), 𝑗 ∈ [1, · · · ,𝐶] .
7: else

the video segment (𝐴𝑡 ,𝑉𝑡 ) is the unknown and 𝑦𝑐𝑡 = 𝑈 .
8: end if
9: end while

This random selection process is repeated three times, resulting in
three different open set data splits. Detailed dataset information is
provided in our supplementary materials.
Evaluation metrics. In the experiment, the evaluation metrics
are divided into closed set and open set metrics. For closed set
evaluation metric, we follow previous works [32, 37] and utilize
the overall classification accuracy (ACC) to assess closed set AVE
performance. To adapt OSAVE evaluation, we introduce the Area
Under the Receiver Operating Characteristic (AUROC) curve and
the Area Under the Precision-Recall (AUPR) as open set evalua-
tion metrics. These metrics evaluate the performance of detecting
unknown events from known events. Additionally, we apply the
False Alarm Rate at True Positive Rate of 95% (FAR@95) to address
practical operational implications.
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Implementation details.We use the ResNet-151 [17] and VGG-
19 [28] pre-trained on ImageNet as the visual feature extractor,
respectively. For each one-second video segment, We sample 16
frames and extract their visual features respectively. Then, we use
the average feature maps of these frames to produce segment-level
visual feature maps, resulting in the visual dimension of 7×7×2048
or 7 × 7 × 512 for each segment. For audio representations, we
first process the raw audio into log-mel spectrograms. Then we
utilize the VGG-like network pre-trained on AudioSet to extract
128-dimensional audio features. The projected feature dimension
𝐷 is 512, and the evidence function 𝑔 is the Exp. We empirically set
the loss weight value 𝜆 to 2 and the number of negative samples
𝑘 to 40. The maximum value of pre-defined extended length𝑀 is
3. Similar to previous studies [1, 31], we determine the threshold
𝜏 of uncertainty 𝑢𝑡 in Algorithm 1 by ensuring that 95% training
data is recognized as known. Our model is trained for 30 epochs on
AVE dataset with a batch size of 16. We utilize the Adam optimizer
with an initial learning rate of 1𝑒 − 4 and a weight decay 1𝑒 − 5 for
model optimization. The overall experiments are conducted on an
RTX 3090 GPU. In our ablation studies, we use the ResNet-151 as
the visual feature extractor.

4.2 Comparisons with State-of-the-arts
To evaluate the performance of our proposed OpenAVE model,
we compare it with the following baselines: (1) SoftMax: A stan-
dard confidence-based method for open set recognition that utilizes
the softmax scores to identify the unknown. (2) OpenMax: This
approach extends the softmax classification scores by appending
unknown scores, as introduced by OpenMax [4], during testing. (3)
RPL [9]: A novel OSR method that primarily employs Reciprocal
Point Learning (RPL) to learn compact and discriminative repre-
sentations for effectively identifying unknown classes. (4) ARPL
[8]: Similar to RPL [9], this method uses Adversarial Reciprocal
Points Learning (ARPL) to classify known and unknown classes.
We separately train our method and all baselines on three different
splits of the AVE training set and evaluate their performance on
the testing dataset.

The experimental results on the AVE dataset are reported in Table
1. These results clearly demonstrate that our approach, OpenAVE,
consistently and significantly outperforms all comparative models
by large margins across both closed and open set AVE metrics. For
instance, using the VGG-19 backbone, our method achieves the
best AUROC score of 85.62% on AVE dataset split III, surpassing the
state-of-the-art ARPL score of 72.02%. Although OpenMax and RPL
are also considered recent state-of-the-art approaches for Open Set
Recognition (OSR), it is evident that their performances lag consid-
erably behind our method. Notably, the closed-set accuracy (ACC)
of OpenMax is dramatically lower compared to other models. This
is attributed to OpenMax’s strategy of modifying the activation
function before the softmax layer and introducing a novel unknown
class, which could adversely affect the predictions of known events.
When utilizing ResNet-151, our model shows even higher gains, im-
proving AUROC scores by 7.24% on AVE dataset split II compared
to ARPL. Despite variations in experimental outcomes across differ-
ent splits of the AVE dataset, these comparisons robustly highlight
the superior performance of OpenAVE in tackling the Open Set
Audio-Visual Event Localization (OSAVE) task.

Figure 4: Ablation study on the parameter 𝑀 in the multi-
scale contextual perception module.

Table 2: Ablation study on the components of our proposed
OpenAVE. MSCPM represents the multi-scale context per-
ception module, ERP denotes the event-relevant prediction
network that is learned by PU learning, and GP is a Gaussion-
prior event-relevant prediction branch in the event-relevant
prediction network. Best results are shown in bold.

MSCPM ERP GP AUROC AUPR FAR@95(↓) ACC
1 × ✓ ✓ 82.67 69.52 53.27 70.41
2 ✓ × × 75.93 57.53 72.31 61.67
3 ✓ ✓ × 86.58 71.26 50.21 72.03
4 ✓ ✓ ✓ 89.36 74.24 48.56 74.25

4.3 Ablation Study
4.3.1 The effectiveness of Components. In this section, we con-
ducted ablation studies on the AVE test set to validate the effec-
tiveness of different components in our OpenAVE, and the ablation
results are presented in Table 2. It is evident that all proposed
components significantly contribute to enhancing our model’s per-
formance. In particular, the multi-scale context perception module
(MSCPM) exhibits the highest impact on the AUROC metric, lead-
ing to a notable performance improvement of 6.69%. Note that
without MSCPM (row 1), we replace the fused multi-scale temporal
features ¤𝑓 𝑎𝑣𝑡 by the individual segment-level audio-visual features
𝑓 𝑎𝑣𝑡 . The event-relevant prediction network (ERP) contributes the
most to all metrics. This fully demonstrates ERP plays a very im-
portant role in our model, which mainly utilizes PU learning to
effectively discover potential unknown foreground events to help
the model well identify known class and unknown ones. Besides,
the Gaussion-prior event-relevant prediction branch (GP) further
bring the beneficial improvement on all metrics. In summary, these
results sufficiently demonstrate that our proposed components are
effective and indispensable for OSAVE task.
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Table 3: Ablation study on temporal baselines

Methods AUROC AUPR FAR@95(↓) ACC
Bi-LSTM 83.75 71.12 56.17 71.47

Transformer 81.45 70.23 58.68 73.76
Ours 89.36 74.24 48.56 74.25

4.3.2 The effectiveness of temporal contexts. In this part, we con-
duct an ablation experiment to explore the importance of multi-
scale temporal contextual perception. We primarily compare our
proposed multi-scale contextual perception module (MSCPM) with
Bi-LSTM [41] and Transformer [33] on the AVE testing set, and
the experimental results are demonstrated in Table 3. It is worth
mentioning that only the multi-scale context perception module
was replaced by Bi-LSTM and Transformer which contains two en-
coder layers, while the rest of the components remained consistent
throughout the experiment. It can be observed that our proposed
MSCPM achieves the best performance by taking advantage of
multi-scale temporal contexts. It outperforms both Bi-LSTM and
Transformer by a significant margin across all metrics. For instance,
our MSCPM achieves an AUROC score of 89.36%, markedly sur-
passing the Transformer’s score of 81.45%. However, it is worth
noting that open set evaluation metrics of the Transformer were
lower than those of Bi-LSTM. This discrepancy arises from the
Transformer’s strong global temporal modeling capability, which
could lead to overfitting to known categories. Despite the well-
implemented Bi-LSTM and Transformer in previous closed-set AVE
tasks, our experiment effectively illustrates how global temporal
information fails to provide sufficiently discriminative segment-
specific features to aid the uncertainty classifier in rejecting un-
known events. Furthermore, we analyzed the impact of different
temporal context scales on our model’s performance, as depicted
in Figure 4. The extension ranges, denoted by𝑀 , were varied from
one to nine based on the number of video segments. Our model
achieved optimal performance across all metrics when𝑀 was set to
3. However, as the extension ranges increased, the model’s perfor-
mance on metrics began to decline. This decline can be attributed
to the aggregation of more event-irrelevant contextual information
into the current video segment as the temporal extension scale
increases, thereby impeding the model’s ability to extract valuable
classification evidence to quantify event predictive uncertainty.

Table 4: Ablation study on the consistency loss in the event-
relevant prediction network

Method AUROC
OpenAVE w/o consistency loss 87.56
OpenAVE w. consistency loss 89.36

4.3.3 The effectiveness of the consistency loss. we further explore
the effectiveness of the proposed consistency loss in the event-
relevant prediction network. As shown in Table 4, we can see that
the performance declines by 1.80% on the AUROC metric without
the consistency loss. This further verifies our hypothesis that the
two different kinds of event relevant prediction scores require to
be aligned for the best performance.

4.3.4 Visualization Analysis of Event-Relevant Prediction and Un-
certainty Classification. To demonstrate the quality of the learned
event-relevant prediction and AVE uncertainty classification, we
visualized their density distributions on the AVE test set in Figure
5. It is evident from Figure 5.(a) that foreground events have high
event-relevant scores, while the background events are associated
with low prediction scores. The dominant modes depicted in Figure
5.(b) indicate that audio-visual events belonging to known classes
are assigned low uncertainty scores, whereas those of unknown
classes exhibit high uncertainty. These observations align well with
the expectations of our OpenAVE model.

Figure 5: Distributions of event-relevant prediction and un-
certainty classification. The two figures show significant sep-
aration between the foreground events and background seg-
ments by event-relevant prediction scores, as well as the
separation between the known and unknown audio-visual
events by uncertainty classification results.

5 CONCLUSION
In this paper, we investigate the Open Set Audio-Visual Event Lo-
calization (OSAVE) task for the first time, which involves recogniz-
ing known events while simultaneously rejecting unknown audio-
visual events in open-world scenarios. The OSAVE task presents
greater challenges than the traditional AVE task due to the pres-
ence of both background segments and unknown foreground events,
compounded by the inherent uncertainty of the events. To address
this, we propose a novel network for open set audio-visual event
localization, which comprises an event-relevant prediction network
and a deep evidential AVE classification network. In the proposed
OpenAVE, the deep evidential AVE classification network utilizes
Evidential Deep Learning (EDL) to manage event classification un-
certainty and employs a Multi-Scale Context Perception Module
(MSCPM) to derive segment-specific representations that provide
more discriminative evidence for the EDL classifier. The event-
relevant prediction network learns to distinguish unknown events
from the background using the Positive-Unlabeled learning algo-
rithm (PU learning). Futhermore, a learnable Gaussian-prior branch
is integrated into the event-relevant prediction network to enhance
the reliability of positive and negative samples for PU learning.
Extensive experiments on the Audio-Visual Event benchmark (AVE
dataset) demonstrate that our approach achieves state-of-the-art
performance in OSAVE.
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