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A GENERALIZED ADDITIVE MODELS: EXTENDED RELATED WORK

As with many families of machine learning algorithms, the differences among GAM algorithms lie in
(a) the functional form of the shape functions fi, (b) the learning algorithm used for their estimation
and (c) regularity assumptions and regularization. Two important properties that all GAMs share are
(1) the ability to learn non-linear transformations for each feature and (2) additively combining these
shape functions (prior to applying the link function) to create modularity that aids interpretability by
allowing users to examine shape functions one-at-a-time.

Typically, GAMs have relied on splines and backfitting algorithms for estimation (Hastie and Tibshi-
rani, 1987), with subsequent works focusing on improving efficiency and stability through penalized
regression splines (Wood, 2003) and fast, stable fitting algorithms (Wood, 2001). Spline-based
GAMs are typically fitted using the backfitting algorithm, an iterative procedure that starts with
initial estimates of the smooth functions for each predictor variable. The algorithm then repeatedly
updates each function by fitting a weighted additive model to the residuals of the other functions until
convergence is achieved. The weights are determined by the current estimates of the other functions
and the link function in the case of generalized additive models.

Modern approaches leverage machine learning advances. Explainable Boosting Machines (EBMs)
(Lou et al., 2012; 2013; Caruana et al., 2015) model the shape functions using decision trees, which
are fitted using a variant of gradient boosting called cyclic gradient boosting. The model iteratively
learns the contribution of each feature and interaction term in a round-robin fashion, using a low
learning rate to ensure that the order of features does not affect the final model. This cyclic training
procedure helps mitigate the effects of colinearity among predictors by providing opportunity for
data-driven credit attribution among the features while preventing multiple counting of evidence.
EBMs are also popular because they can accurately capture steps in the shape functions, which is
important for modeling discontinuities in data, such as treatment effects in medical data.

More recently, Neural Additive Models (NAMs) (Agarwal et al., 2021) and follow up works (Chang
et al., 2021; Dubey et al., 2022; Radenovic et al., 2022; Xu et al., 2022; Enouen and Liu, 2022;
Bouchiat et al., 2024) use multilayer perceptrons (MLPs), as non-linear transformations, to model
the shape functions fi. As a result, NAMs can be optimized using variants of gradient descent by
leveraging automatic differentiation frameworks.

Finally, GAMs have also found applications in time-series forecasting, with models such as
Prophet (Taylor and Letham, 2018) and NeuralProphet (Triebe et al., 2021). Interestingly, the
1-layer versions of the recently proposed Kolmogorov-Arnold Networks (KANs) (Liu et al., 2024)
may be viewed as GAMs with spline based shape functions.

B DATASET DETAILS

In this section, we provide details on the datasets used in our empirical evaluations of GAMformer
and other baselines in Section 4 of the main paper.

B.1 TABPFN TEST DATASETS

As test dataset, we used the 30 datasets used in Hollmann et al. (2023) which were obtained from
OpenML (Vanschoren et al., 2014). These were chosen because they contain up to 2000 samples,
100 features and 10 classes, show in Table 1.

B.2 BINARY CLASSIFICATION

Churn dataset. The Telco Customer Churn Dataset is a binary classification dataset for predicting
potential subscription churners in a telecom company, containing customer information and churn-
related features.

Adult dataset. The Adult dataset Dua and Graff (2017), also known as the “Census Income”
dataset, is a widely-used benchmark for binary classification, predicting whether an individual’s
annual income exceeds $50,000 based on 14 attributes from the 1994 United States Census Bureau
data.
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Table 1: Test dataset names and properties, taken from Hollmann et al. (2023). Here did is the
OpenML Dataset ID, d the number of features, n the number of instances, and k the number of classes
in each dataset.

did name d n k

11 balance-scale 5 625 3
14 mfeat-fourier 77 2000 10
15 breast-w 10 699 2
16 mfeat-karhunen 65 2000 10
18 mfeat-morphological 7 2000 10
22 mfeat-zernike 48 2000 10
23 cmc 10 1473 3
29 credit-approval 16 690 2
31 credit-g 21 1000 2
37 diabetes 9 768 2
50 tic-tac-toe 10 958 2
54 vehicle 19 846 4

188 eucalyptus 20 736 5
458 analcatdata_authorship 71 841 4
469 analcatdata_dmft 5 797 6

did name d n k

1049 pc4 38 1458 2
1050 pc3 38 1563 2
1063 kc2 22 522 2
1068 pc1 22 1109 2
1462 banknote-authentication 5 1372 2
1464 blood-transfusion-. . . 5 748 2
1480 ilpd 11 583 2
1494 qsar-biodeg 42 1055 2
1510 wdbc 31 569 2
6332 cylinder-bands 40 540 2

23381 dresses-sales 13 500 2
40966 MiceProtein 82 1080 8
40975 car 7 1728 4
40982 steel-plates-fault 28 1941 7
40994 climate-model-. . . 21 540 2

Table 2: Comparison of GAMformer with other GAM variants and full complexity models on
various datasets. We report ROC-AUC (%) (higher is better) and the standard error over 10 fold
cross-validation. We also report results by pyGAM (Servén and Brummitt, 2018).

GAMs Full Complexity

GAMformer (ours) EBM (Main effects) Logistic Regression pyGAM (Main effects) EBM XGBoost Random Forest

Churn 81.69 ± 0.1 83.59 ± 0.1 81.66 ± 0.1 82.03 ± 0.0 83.68 ± 0.1 83.53 ± 0.0 82.07 ± 0.0

Support2 80.84 ± 0.1 82.36 ± 0.0 81.1 ± 0.0 81.74 ± 0.2 83.51 ± 0.0 84.03 ± 0.0 83.93 ± 0.0

Adult 90.05 ± 0.0 93.05 ± 0.0 90.73 ± 0.0 91.55 ± 0.0 93.07 ± 0.0 93.16 ± 0.0 91.8 ± 0.0

MIMIC-2 82.22 ± 0.0 85.15 ± 0.0 81.62 ± 0.0 83.89 ± 0.1 86.36 ± 0.1 87.29 ± 0.0 87.31 ± 0.0

MIMIC-3 74.41 ± 0.1 81.14 ± 0.0 78.05 ± 0.0 79.95 ± 0.1 82.52 ± 0.1 83.32 ± 0.0 81.28 ± 0.1

MIMIC-II dataset. The MIMIC-II dataset Lee et al. (2011b) is a publicly-available database of
clinical data from diverse ICU patients, integrating demographics, vital signs, lab results, medications,
procedures, notes, and imaging reports, along with mortality outcomes.

MIMIC-III dataset. The MIMIC-III dataset Johnson et al. (2016) expands on MIMIC-II, with a
larger patient cohort, more recent records, enhanced data granularity, and the inclusion of free-text
imaging report interpretations.

SUPPORT2 dataset. The SUPPORT2 dataset Connors Jr et al. (1996) contains medical infor-
mation from critically ill hospitalized adults, compiled to study the relationships between medical
decision-making, patient preferences, and treatment outcomes, with variables spanning demographics,
physiology, diagnostics, treatments, and survival/quality of life outcomes.

C PROPERTIES OF GAMFORMER

C.1 DATA SCALING

To assess GAMformer’s ability to generalize to datasets containing more datapoints than it saw during
training, i.e. larger context sizes, we conducted an experiment that varied the number of training
data points and evaluated the impact on ROC-AUC performance using a consistent validation split.
To ensure the robustness of our findings, we sampled training datasets three times with replacement
for each training size. The results in Figure 8 demonstrate that GAMformer’s ROC-AUC improves
across datasets when the number of training examples is up to twice the number of training examples
seen during training. For comparison, we also evaluated the performance of EBMs under the same
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(a) MIMIC-II (b) MIMIC-III (c) Adult (d) Support 2 ———————

Figure 8: Demonstration of the ability of GAMformer to scale beyond the datapoints seen during
training while leveraging the additional data points to increase its performance. The dashed vertical
line denotes the number of in-context examples seen during training (500).

(a) Imbalanced Data (b) Noisy Labels —————

Figure 9: Comparison of GAMformer and EBMs in terms of (a) performance on class imbalanced
data and (b) robustness to noisy labels. The shaded areas represent the 5% and 95% confidence
intervals estimated using 1000 bootstrap samples.

conditions. While EBMs also exhibited improvements in ROC-AUC with increased training data,
they achieved higher accuracy when provided with a larger number of examples. This observation
highlights a limitation of GAMformer in its ability to fully leverage additional training samples.

C.2 CLASS IMBALANCE

To compare GAMformer’s sensitivity to class imbalance with that of EBMs, we conduct the following
analysis. First, we sample 300 data points from two centroids in a 20-dimensional feature space,
creating a binary classification problem. We then vary the ratio of the two classes to introduce
increasing levels of imbalance in the sampled data. Next, we split the data into train and test sets
using a 75% to 25% split and evaluate the performance using the AUC-ROC metric. We repeat the
experiment 10 times for each data ratio. Our results are shown in Figure 9a, the shaded area are the
5%, 95% confidence intervals estimated using 1000 bootstrap samples. We see that GAMformer
performs on average better than EBMs in this setting and shows no inherent sensitivity to class
imbalance.

C.3 NOISE ROBUSTNESS

To gain a deeper understanding of GAMformers’ sensitivity to noisy or incorrect labels, we conducted
an experiment similar to the one described in Appendix C.2. We generated 300 data points and
randomly perturbed the labels in the train split with increasing probability (75%, 25% train/test split),
repeating each experiment 10 times. Figure 9b illustrates our findings. Once again, we observed that
GAMformer exhibits a sensitivity to noisy labels comparable to that of EBMs.

D SYNTHETIC DATA PRIORS

We use the same synthetic data generation process proposed in Prior-Data-Fitted Networks
(PFNs) (Hollmann et al., 2023; Müller et al., 2022) and provide a brief summary of the process.

TabPFN is trained on two synthetic data priors, which are mixed during training.TabPFN introduced
a synthetic data prior based on Structural Causal Models (SCMs). SCMs are particularly suitable for
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modeling tabular data as they capture causal relationships between columns, a strong prior in human
reasoning. An SCM comprises a set of structural assignments (mechanisms) where each mechanism
is defined by a deterministic function and a noise variable, structured within a Directed Acyclic Graph
(DAG). The causal relationships are represented by directed edges from causes to effects, facilitating
the modeling of complex dependencies within the data. To instantiate a PFN prior based on SCMs,
one defines a sampling procedure to create supervised learning tasks. Each dataset is generated from
a randomly sampled SCM, including its DAG structure and deterministic functions. Nodes in the
causal graph are selected to represent features and targets, and samples are generated by propagating
noise variables through the graph. This process results in features and targets that are conditionally
dependent through the DAG structure, capturing both forward and backward causation (Hollmann
et al., 2023). This allows for the generation of diverse datasets.

The second prior samples of synthetic data using Gaussian Processes (GPs) (Rasmussen and Williams,
2006) with a constant mean function and a radial basis function (RBF) kernel to define the covariance
structure. Hyperparameters such as noise level, output scale, and length scale are sampled from
predefined distributions to introduce variability. Depending on the configuration, input data points
can be sampled uniformly, normally, or as equidistant points and the target column is generated
by passing the input data through the GP. This prior gives the model the ability to learn smoother
functions.

For multi-class prediction, scalar labels are transformed into discrete class labels by partitioning the
scalar values into intervals corresponding to different classes, ensuring the synthetic data is suitable
for imbalanced multi-class classification tasks.

Finally, both priors are combined by sampling batches of data from each prior with different prob-
abilities during training. In all of our experiments we sampled from the SCM and GP prior with
probability 0.96 and 0.04, respectively.

E TRAINING DETAILS

In GAMformer, we used a transformer model with 12 hidden layers, 512 embedding size and 4 heads
per attention. To bin the shape functions and all features we used 64 bins. For training, we use the
AdamW (Loshchilov and Hutter, 2019) optimizer (ω1 = 0.9) and cosine learning rate schedule with
initial learning rate of 3e-5, 20 warm up epochs and minimum learning rate of 1e-8 for 25 days on
a A100 GPU with 80Gb of memory. We used mixed precision training. Each epoch (arbitrarily)
consists of 65536 synthetic datasets; the model trained for 1800 epochs, meaning it saw over 100M
synthetic datasets. We used a batch size of 8, that we doubled at epoch 20, 50, 200 and 1000. Each
synthetic dataset consisted of 500 samples that were split into training and test portions using using a
uniform sampling of the training fraction, and used a number of features drawn uniformly between 1
and 10.

F HIGHER-ORDER EFFECTS

To handle higher-order effects, we compute the best pairs with the FAST algorithm (Lou et al., 2013)
and evaluate GAMformer on the top pairs using the following ratios of features:

P = [0.01p, 0.05p, 0.1p, 0.2p, 0.4p, 0.8p, 0.9p]

where we recall that p denotes the number of features. We round off each ratio to determine the
number of target pair features, evaluate performance on hold-out validation data from the training set,
and select the number of pairs with the best validation performance. The model is then fitted on the
entire training dataset. This involves doing |P|+ 1 forward passes, which is unproblematic as doing
one forward pass is very fast, even on a CPU. One could also vectorialize all computations which we
do not do given the low fitting time.
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G SHAPE FUNCTIONS

In this section, we show complementary results on the shape functions estimates from GAMformer
and EBM (main effects only) on the MIMIC-II (Lee et al., 2011a) (complementary to the plots in
Figure 7) and on the MIMIC-III datasets.

G.1 MIMIC-II DATASET

Figure 10: The remaining shape functions derived from GAMformer and EBMs on the MIMIC-II

dataset for critical clinical variables. The plot above each figure shows the data density. There are
interesting differences between the EBM and GAMformer shape plots for several of the categorical
variables. Although different GAM algorithms do not usually learn identical functions, we are
investigating to better understand these differences.

G.2 MIMIC-III DATASET
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Figure 11: The shape functions derived from GAMformer and EBMs on the MIMIC-III dataset for
critical clinical variables. The plot above each figure shows the data density. The results are based
on 30 models for both GAMformer and EBMs, each fitted on 10,000 randomly selected data points.
There are interesting differences between the EBM and GAMformer shape plots for several of the
categorical variables. Although different GAM algorithms do not usually learn identical functions,
we are investigating to better understand these differences.
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Figure 12: The remaining shape functions derived from GAMformer and EBMs applied to the
MIMIC-III dataset for critical clinical variables. The plot above each figure shows the data density
in the training set. The results are based on 30 models for both GAMformer and EBMs, each fitted
on 10,000 randomly selected data points.
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