
A More numerical results

Decision-based attacks. In Table 7, we present results concerning a SOTA decision-based attack,
RamBo [45] (denoted as "RB"). As shown in the first two columns, compared to Square [5] (denoted
as SQ), RamBo could hardly impact the undefended DNN even after 2500 queries under a large
ℓ2 = 1.5 bound. Thus, it is reasonable for us to target at mitigating black-box SQAs in real cases.

ℓ2 attacks. Seeing the right four columns of Table 7, one could observe that when the attack bound
increases, both ℓ∞ and ℓ2 AT models are impacted much more significantly. Moreover, AAA’s
superiority is enhanced as the attack becomes stronger.

Table 7: The adversarial accuracy under RamBo (RB) [45] and Square (SQ) [5] (#query = 2500)
Bound None-RB None-SQ ℓ∞ AT [37]-SQ ℓ2 AT [23]-SQ RND-SQ AAA-SQ

ℓ2 = 0.5 94.78 18.75 78.97 85.64 66.18 92.63
ℓ2 = 1.0 94.74 02.22 66.79 76.34 59.09 90.01
ℓ2 = 1.5 94.10 00.31 50.97 61.64 46.52 82.38
ℓ2 = 2.0 69.50 00.02 36.24 45.22 33.35 72.99
ℓ2 = 2.5 10.38 00.01 25.19 28.56 20.47 63.46

Attack using different losses. Although attackers generally greedily update based on the margin
(of logits) loss [5, 41, 61], it is possible for them to choose other loss options such as minimizing the
probability margin and maximizing the cross-entropy loss. The results in Table. 8 show that despite
the choice of AAA to reverse the margin loss, it could prevent attacks using other loss types.

The plug-in advantage of AAA. AAA, as a plug-in post-processing defense, is embeddable
into any defense that increases the model’s robustness. As shown in Table 8, AAA dramatically
decreases the ECE of AT models without impacting the accuracy. Moreover, the already good defense
performance of AT models is further boosted by AAA.

Table 8: The defense performance under Square attack [5] (#query = 100/2500)
CIFAR-10 (ℓ∞ = 8/255) ImageNet (ℓ∞ = 4/255)

WideResNet34 [35] WideResNet50 [35]
Metric / Loss AT [23] AT-AAA-linear AT [63] AT-AAA-linear

ECE 18.96 5.93 5.03 2.64
Acc 91.47 91.47 66.30 66.30

logits-margin 83.22 / 69.67 84.68 / 82.92 59.20 / 51.12 60.83 / 59.73
probability-margin 82.90 / 69.38 84.41 / 82.67 59.21 / 50.59 60.33 / 57.88

cross-entropy 83.93 / 71.17 84.55 / 82.57 60.13 / 52.84 60.53 / 58.01

Figure 5: The adversarial accuracy under Square attack [5] when ℓ∞ = 8/255, indicating that AAA
outperforms alternatives in defending SQAs by a large margin with also the highest clean accuracy.

16

B More visual illustrations

Figure 6: The AAA-defended and undefended margin loss value when attacking the unde-
fended WideResNet-28 [35] in RobustBench [17] by Square attack [5] (ℓ∞ = 8/255) using the
1rd, 2nd, 5th, 7th, 8th CIFAR-10 test sample.

Figure 7: The AAA-defended and undefended margin loss value when attacking the undefended
WideResNet-50 [35] in RobustBench [17] by Square attack [5] (ℓ∞ = 4/255) using the 2nd, 7th

ImageNet test sample.

17

C Error analysis

Results of multiple runs. We run the main experiments in Table 2 for 5 times using different
random seeds for Square attack, and report the results in Table 9. Since AAA is a deterministic
method without randomness, its defense performance is very constant.

Average query times. Attackers generally use the average query times (AQ) to measure attacks,
which is reported in Table 9. Here we record the AQ of all query samples to reflect the real attack
cost. AAA hurdles the attack very much, seeing the large AQ and adversarial accuracy.

Computation. We report the FLOPs of each model in Table 2. Since the only calculation of AAA
is to post-process logits, the computational overhead is negligible (<0.01 GFLOPs). The total amount
of required calculation could be obtained by multiplying FLOPs with AQ using 10K samples.

Table 9: The defense performance under Square attack [5]
Dataset CIFAR-10 ImageNet ImageNet
Model WideResNet-28 [35] WideResNet-50 [35] ResNeXt-101 [68]

Acc (%) 94.84 77.17 78.32
ECE (%) 2.46 4.30 7.38

FLOPs (G) 5.24 11.43 16.48
Bound (ℓ∞) 8/255 4/255 4/255

AdvAcc-100 81.77± 0.24 63.77± 0.40 66.63± 0.48
AdvAcc-2500 81.00± 0.25 62.89± 0.27 66.13± 0.44

AQ-100 87.00± 0.26 84.71± 0.51 86.76± 0.52
AQ-2500 2138.12± 6.39 2050.67± 5.62 2121.86± 14.48

D Core code

We present the core part of AAA python code (PyTorch) below, where a_i stands for the attractor
interval τ in (4), reverse_step is α in (5), and calibration_loss_weight is β in (6).

1 l o g i t s = cnn (x _ c u r r)
2 l o g i t s _ o r i = l o g i t s . d e t a c h ()
3 p _ t a r g e t = F . so f tmax (l o g i t s _ o r i / t e m p e r a t u r e , dim = 1) . max (1) [0]
4

5 va lue , i n d e x _ o r i = t o r c h . t opk (l o g i t s _ o r i , k =2 , dim =1)
6 m a r g i n _ o r i = v a l u e [: , 0] − v a l u e [: , 1]
7 a t t r a c t o r = ((m a r g i n _ o r i / a _ i) . c e i l () − 0 . 5) * a _ i
8 l _ t a r g e t = a t t r a c t o r − r e v e r s e _ s t e p * (m a r g i n _ o r i − a t t r a c t o r)
9

10 mask1 = t o r c h . z e r o s (l o g i t s . shape , d e v i c e = d e v i c e)
11 mask1 [t o r c h . a r a n g e (l o g i t s . shape [0]) , i n d e x _ o r i [: , 0]] = 1
12 wi th t o r c h . e n a b l e _ g r a d () :
13 l o g i t s . r e q u i r e s _ g r a d = True
14 o p t i m i z e r = t o r c h . opt im . Adam ([l o g i t s] , l r = o p t i m i z e r _ l r)
15

16 f o r i i n r a n g e (n u m _ i t e r) :
17 prob = F . so f tmax (l o g i t s , dim =1)
18 l o s s _ c = ((prob * mask1) . max (1) [0] − p _ t a r g e t) . abs () . mean ()
19 va lue , i n d e x = t o r c h . t opk (l o g i t s , k =2 , dim =1)
20 margin = v a l u e [: , 0] − v a l u e [: , 1]
21 l o s s _ d = (margin − l _ t a r g e t) . abs () . mean ()
22 l o s s = l o s s _ d + l o s s _ c * c a l i b r a t i o n _ l o s s _ w e i g h t
23 o p t i m i z e r . z e r o _ g r a d () ; l o s s . backward () ; o p t i m i z e r . s t e p ()

18

E Detailed experimental settings

Table 10: The used models
Defense Dataset Architecture Source ID

None CIFAR-10 WideResNet-28 RobustBench Standard
PSSiLU (AT) CIFAR-10 WideResNet-28 RobustBench Dai2021Parameterizing

HAT (AT) CIFAR-10 WideResNet-34 RobustBench Rade2021Helper_extra
PNI (AT) CIFAR-10 ResNet-20 Official PNI-W (channel-wise)

TRS CIFAR-10 ResNet-20 Official /

None ImageNet WideResNet-50 TorchVision wide_resnet50_2
AT ImageNet WideResNet-50 RobustBench Salman2020Do_50_2

None ImageNet ResNeXt-101 TorchVision resnext101_32x8d
FD (AT) ImageNet ResNeXt-101 Official ResNeXt101_DenoiseAll

Defenses. The detailed information of all our used models is shown in Table 10. The official
repositories of PNI, TRS, and FD are https://github.com/elliothe/CVPR_2019_PNI, https:
//github.com/AI-secure/Transferability-Reduced-Smooth-Ensemble, and https://
github.com/facebookresearch/ImageNet-Adversarial-Training, respectively. AAA,
RND, and DENT are directly implemented on the undefended model. RND adds the random
noise with variance 0.02 to input samples as recommended in [14]. In DENT, we follow the original
work to optimize the model for 6 iterations using the tent loss and Adam optimizer (lr= 0.001). The
pre-trained AT/PNI model comes from RobustBench / official repository. We train the TRS model
(ensemble 3 models) using the default coeff, lambda, and scale in the official code.

Attacks. All the attacks are adapted from the official repositories with original hyper-
parameters. SimBA and Bandit are implemented from https://github.com/cg563/
simple-blackbox-attack and https://github.com/MadryLab/blackbox-bandits, re-
spectively. SignHunter and NES are both from https://github.com/ash-aldujaili/
blackbox-adv-examples-signhunter. Square and QueryNet are both from the implementation
in https://github.com/AllenChen1998/QueryNet. The detailed hyper-parameters of attacks
are outlined in Table 11.

Table 11: Hyper-parameters for other attacks
Method Hyperparameter CIFAR-10 ImageNet

SimBA [4]
d (dimensionality of 2D frequency space) 32 32
order (order of coordinate selection) random random
ϵ (step size per iteration) 0.2 0.2

SignHunter [41] δ (finite difference probe) 8 ([0,255]) 0.05 ([0,1])

NES [61]
δ (finite difference probe) 2.55 0.1
η (image lp learning rate) 2 0.02
q (# finite difference estimations / step) 20 100

Bandit [3]

δ (finite difference probe) 0.1 0.1
η (image lp learning rate) 0.01 0.01
τ (online convex optimization learning rate) 0.01 0.01
Tile size (data-dependent prior) 50 50
ζ (bandit exploration) 1.0 1.0

Square [5] p (initial probability to change coordinate) 0.05 0.05

QueryNet [66]
Number of batches (NAS training) 500 /
batch size (NAS training) 128 /
Number of layers (NAS surrogate models) 6, 8, 10 /

19

https://github.com/elliothe/CVPR_2019_PNI
https://github.com/AI-secure/Transferability-Reduced-Smooth-Ensemble
https://github.com/AI-secure/Transferability-Reduced-Smooth-Ensemble
https://github.com/facebookresearch/ImageNet-Adversarial-Training
https://github.com/facebookresearch/ImageNet-Adversarial-Training
https://github.com/cg563/simple-blackbox-attack
https://github.com/cg563/simple-blackbox-attack
https://github.com/MadryLab/blackbox-bandits
https://github.com/ash-aldujaili/blackbox-adv-examples-signhunter
https://github.com/ash-aldujaili/blackbox-adv-examples-signhunter
https://github.com/AllenChen1998/QueryNet

