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A ADDITIONAL RELATED WORKS

A.1 CONNECTION OF FLATTER MINIMA WITH GENERALIZATION GAP

There have been numerous studies (Foret et al., 2020; Izmailov et al., 2018; Cha et al., 2021; Norton & Royset,
2021; Wu et al., 2020) which account for the worst-case empirical risks within neighborhoods in parameter
space. Diametrical Risk Minimization (DRM) was first proposed by (Norton & Royset, 2021) and they asserted
that the practical and theoretical performance of Empirical Risk Minimization (ERM) tends to suffer when
dealing with loss functions that exhibit poor behavior characterized by large Lipschitz moduli and spurious
sharp minimizers. They tackled this concern by employing DRM, which offers generalization bounds that are
unaffected by Lipschitz moduli, applicable to both convex and non-convex problems. Another algorithm that
improves generalization is Sharpness Aware Minimization (SAM) (Foret et al., 2020) which performs gradient
descent while regularizing for the highest loss in the neighborhood of radius p of the parameter space. (Izmailov
et al., 2018) proposed Stochastic Weight Averaging (SWA) that performs averaging of weights with a cyclical
or constant learning rate which leads to better generalization than conventional training. They also prove that
the optima chosen by the single model is in fact a flatter minima than the SGD solution. Further, (Cha et al.,
2021) argues that simply performing the Empirical Risk Minimization (ERM) is not enough to achieve at a
good generalization, in particular, domain generalization. Hence, they introduce SWAD which seeks for flatter
optima and hence, will generalize well across domain shifts.

A.2 DIRECT SINGLE-QUERY ATTACKS

There are many variants of Direct Single-query attacks (DSQ) based on the approach of the attack and below
we describe the ones used in our experiments:

NN-based attack (Shokri et al., 2017; Tang et al., 2022; Nasr et al., 2018) This is the first M1 attack
proposed by Shokri et al. (2017) where they use a binary classifier to distinguish between the training members
and the non-members using the victim model’s behavior on these data points. The adversary can utilize the
prediction vectors from the target model and incorporate them along with the one-hot encoded ground truth
labels as inputs. Then, they can construct a neural network (I ) called attack model.

Confidence-based attack (Yeom et al., 2020; Salem et al., 2018; Song & Mittal, 2021) If the
highest prediction confidence of an input record exceeds a predetermined threshold, the adversary considers
it a member; otherwise, it is inferred as a non-member. This approach is based on the understanding that
the target model is trained to minimize prediction loss using its training data, implying that the maximum
confidence score of a prediction vector for a training member should be near 1. The attack .o ¢ () is defined
as follows:

Loonsp(ylz) = T(max p(y|x) > 7) @)

Here, 1(.) is an indicator function which returns 1 if the predicate inside it holds True else the function evaluates
to 0.

Correctness-based attack (Yeom et al., 2020; 2018) If an input record, denoted as x, is accurately
predicted by the target model, the adversary concludes that it belongs to the member category. Otherwise,
if the prediction is incorrect, the adversary infers that x is a non-member. This inference is guided by the
understanding that the target model is primarily trained to achieve accurate predictions on its training data,
which might not necessarily translate into reliable generalization when applied to test data. The attack Icorr ()
is defined as follows:

Teorr (B(ylz), y) = 1(argmax p(y|z) = y) ()

Entropy-based attack (Nasr et al., 2019; Song & Mittal, 2021; Tang et al., 2022) When the pre-
diction entropy of an input record falls below a predetermined threshold, the adversary considers it a member.
Conversely, if the prediction entropy exceeds the threshold, the adversary infers that the record is a non-member.
This inference is based on the observation that there are notable disparities in the prediction entropy distribu-
tions between training and test data. Typically, the target model exhibits higher prediction entropy on its test
data compared to its training data. The entropy of a prediction vector p(g|z) is defined as follows:

H(p(glz)) = - Z(pilog(pi)) )

where p; is the confidence score in p(gu) Then, the attack /e, is given as:

Lenir (P(ylw),y) = L(H (p(g|2)) < 7) (10)
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Modified entropy-based attack (Song & Mittal, 2021) Song et al.[15] introduced an enhanced pre-
diction entropy metric that integrates both the entropy metric and the ground truth labels. The modified entropy
metric tends to yield lower values for training samples compared to testing samples. To infer membership,
either a class-dependent threshold 7, or a class-independent threshold Tat¢qcr is applied.

Intener ((ylz),y) = L(Mentr(p(glz)) < 7y) (an

where Mentr(p(g|x)) for (x,y) data sample is given by combination of entropy information and ground truth
label as:

Mentr(p(j|2)) = —((1 = p(glx)y)log(p(gla)y) = > (p(gla)ilog(1 — p(g|x)s))) (12)
iy

A.3 LABEL-ONLY ATTACKS (MULTI-QUERY ATTACKS)

Also known as the *multi-query attacks’ because unlike the single query attack, the attacker can query multiple
samples which are indirectly related to the target sample « and use the predictions on these multiple queries to
infer the membership of the sample « (Hu et al., 2022; Li & Zhang, 2021; Long et al., 2018; Zhang et al., 2022).
These multiple queries can extract additional information as a training sample influences the model prediction
both on itself and other samples in its neighborhood. The main intuition behind the label-only attacks is that
the model’s accuracy and confidence in classifying samples near the member data should surpass its accuracy
in classifying samples near the non-member data. In other words, members are expected to demonstrate greater
robustness to any perturbation compared to non-members (Hu et al., 2022). Below we describe the multi-query
attack setups used in our experiments, adopted from (Tang et al., 2022):

Data augmentation attacks This attack was proposed by (Choquette-Choo et al., 2021) where the at-
tacker generates additional data records by using augmentation methods like rotation, translation, adding noise
etc. to the target image and query using these set of images, the membership is decided based on the correct-
ness/confidence of the victim model on the set of these images. During the training process, we initially apply
image padding and cropping, followed by horizontal flipping with a probability of 0.5, in order to augment
the training set. Further, an attacker will query all potential augmented results of a target image sample. For
instance, if the padding size for the left and right sides is 4 and the padding size for the top and bottom is
also 4, and the size of the cropped image remains the same as the original image, there are (4 + 4 + 1) possible
choices for left/right after cropping. Similarly, there are (4 + 4 + 1) possible choices for up/down after cropping.
Additionally, considering horizontal flipping, there are 2 possible choices. Consequently, the total number of
queries for a target image is 9x9x2 = 162. Given that the target model demonstrates a higher likelihood of
correctly classifying the augmented samples of members compared to non-members, then, the target samples
with a sufficient number of correctly classified queries will be recognized as members.

Boundary estimation attacks Boundary estimation attacks (Li & Zhang, 2021; Choquette-Choo et al.,
2021) is another type of label-only attack where the attacker can either introduce noise to identify adversarial
examples that induce the smallest perturbation while altering the predicted label or utilize techniques for find-
ing adversarial examples under the black-box assumption (Brendel et al., 2017; Chen et al., 2020). We use this
attack as the label-only attack for our binary feature datasets - Purchase100 and Texas100. We introduce noise
into the target sample by randomly flipping a specified number of features (Tang et al., 2022; Choquette-Choo
etal., 2021; Li & Zhang, 2021). By setting a threshold on the number of flipped features, we generate numerous
noisy samples per target sample for model querying. Subsequently, we conduct an attack by evaluating the per-
centage of correct predictions on the noisy samples to estimate the boundary. The intuition is that the samples
located farther from the classification boundary are more likely to be correctly classified. Thus, the correctness
percentage metric on the noisy samples can be employed to approximate the distance to the boundary.

A.4 MI DEFENSES

There are many defenses which are explicitly designed to defend against MI attacks (Tang et al., 2022; Zheng
etal., 2021; Nasr et al., 2018; Shejwalkar & Houmansadr, 2021; Huang et al., 2021; Jia et al., 2019) while other
algorithms implicitly introduce privacy against MI attacks like dropout , early stopping, label smoothening
(Szegedy et al., 2016), Maximum Mean Discrepancy (Li & Zhang, 2021) and have been studied as defenses.
Differential Privacy (Abadi et al., 2016) was studied in the context of Deep Learning for SGD optimization and
is the only existing theoretical defense against all types of privacy attacks. The fundamental concept behind
DP-SGD is to enhance privacy protection during model training by employing techniques such as clipping and
adding noise to high gradients. This process helps to obfuscate the training data. There are some methods
that perform confidence score masking to hide the true confidence scores of the target model. (Jia et al., 2019)
proposes MemGuard which introduces a meticulously designed noise vector to the prediction vector and alters
it to create an adversarial example for the attack model. On the other hand, (Nasr et al., 2018) utilized a
min-max privacy game between the defense mechanism and the inference attack, to achieve privacy for the
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defense model. Recently, some studies have focused their attention on knowledge distillation (Tang et al.,
2022; Zheng et al., 2021; Shejwalkar & Houmansadr, 2021) to achieve significant privacy against MI attacks.
(Tang et al., 2022) introduced SELENA which employs self-distillation to train a student model from multiple
teacher models that were trained on different subsets of the data.

B DATASETS

Here we introduce the four benchmark datasets used in the experiments and they have been widely used in prior
works on MI attacks:

CIFAR-10 3 This is a benchmark dataset for image classification task. The dataset consists of 60,000 color
images of 32x32 size. There are 6,000 images from 10 classes where 5,000 images per class belong to the
training dataset and 1,000 images per class belong to the test dataset.

CIFAR-100 © The dataset is designed to be more challenging than CIFAR-10 as it contains a greater number
of classes and more fine-grained distinctions between objects. There are a total of 60,000 images from 100
classes. Each subclass consists of 600 images, and within each subclass, there are 500 training images and 100
testing images. This distribution ensures a balanced representation of each class in both the training and testing
sets.

Purchase-100 7 This a 100 class classification task with 197,324 data samples and consists of 600 binary
feature; each dimension corresponds to a product and its value states if corresponding customer purchased the
product; the corresponding label represents the shopping habit of the customer. We use the pre-processed and
simplified version provided by (Shokri et al., 2017) and used by (Tang et al., 2022).

Texas-100 ® This dataset is based on the Hospital Discharge Data public files with information about inpa-
tients stays in several health facilities released by the Texas Department of State Health Services from 2006
to 2009. We used a prepossessed and simplified version of this dataset provided by (Shokri et al., 2017) and
used by (Tang et al., 2022) which is composed of 67,330 data samples with 6,170 binary features. Each feature
represents a patient’s medical attribute like the external causes of injury, the diagnosis and other generic infor-
mation.The classification task is to classify patients into 100 output classes which represent the main procedure
that was performed on the patient.

C EXPERIMENTAL SETUP

C.1 Z.,: EXPERIMENT

Here we discuss how test data points were grouped into 5 buckets according to different Z.,+ levels. Bucket 5
contains highest Z.,.; level, and is composed of test points where all 500 training points have 0 influence score.
This means that the prediction output for that test point does not change had the model been trained without any
one particular training data point. Because influence scores for all training points are equal, these test points
have highest Z.,.: °. Figure 6(a) displays distribution of Z,,; for remaining test data points. We group those
above 6.1 into bucket 4. For the rest of the points, we calculate the mean and standard deviation and use them
for grouping. We group points below —0.40 from the mean into bucket 1, points between —0.40 and 0.40 into
bucket 2, and points above 0.4¢ into bucket 3. Final number of test points in each buckets are [Bucket 1: 1924,
Bucket 2: 2996, Bucket 3: 2392, Bucket 4: 535, Bucket 5: 2153].

C.2 ATTACK SETUP & SIZE OF DATA SPLITS

We adopt the attack setting from (Tang et al., 2022; Nasr et al., 2018) to determine the partition between
training data and test data and to determine the subset of the training and test data that constitutes attacker’s
prior knowledge for CIFAR-100, Purchase-100 and Texas-100 datasets. We use similar strategy to determine
the data split for CIFAR-10. Specifically, the attacker’s knowledge corresponds to half of the training and test
data, and the MIA success is evaluated over the remaining half. We report highest attack accuracy for multiple
attack models in the main paper. Comprehensive results are discussed in D.

Shttps://www.cs.toronto.edu/ kriz/cifar.html

®https://www.cs.toronto.edu/ kriz/cifar.html

"https://www.kaggle.com/c/acquire-valued-shoppers-challenge

8https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm.

When actually calculating Z.,,+ with our formula (3), this evaluates to 0 due to normalization to probabil-
ities, but represents highest value
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Figure 6: (a): Z,; distribution excluding bucket 5

C.3 ATTACK ACCURACY

We delve into further detail on how we calculate the attack accuracy. Prior to training the attack model, we have
already completed the training of the victim model V, which will be the target of the attack conducted by the
attack model. During the training of model V, the dataset consists of two subsets, namely D¢rqin and Dies:. In
these subsets, the input feature corresponds to the image, while the label represents its true class.

While training the attack model, we further split Dtrqir into two equal halves, referred to as D,em /train and
Dinemtest- Similarly, we split the Dyest into two parts, denoted as Dyon—mem/train a0d Dyon_mem /test-
The term "Mem" represents membership, indicating that the data was part of the training dataset for the victim
model. Conversely, "Non-mem" denotes non-membership, signifying that the data was not included in the
training dataset for the victim model. In these datasets, the feature set comprises of the image, its true class,
and the output prediction vector obtained from model V. The associated label y is a binary variable that indicates
whether this particular data was part of the training data for model V. Now we define D¢, and D¢, which
are training and testing dataset for the attack model. Denoting one data point as d in equation (13),

Datr = {d|d € Dmem/train vd S Dnon—vnem/train} (13)
Datc = {d|d S Dmem/test vde Dnonfmem/test} (14)

Attack model learns a classifier from Dg+, and makes prediction for it data point in Dgte,

i = arg m;xxp(y\xi),y e{0,1} (15)

The attack accuracy is then calculated as the percentage of correctly labeled input in Dgte. More formally,

"1(9; = v
Agee = W7Where |Dat6| =n (16)

C.4 COST FUNCTION AND HYPERPARAMETERS

In this section, we discuss simplification of our proposed cost function and describe the hyperparameters used
to train the target models on each of the datasets.

C.4.1 SIMPLIFYING OUR LOSS FUNCTION

Here, we note that our loss function (5) can be simplified to the following

min L(w) — mBa(X) L(w +€) (17)
w €€ P
where ﬂ = ﬁ (18)

The simplified loss allows us to use two hyperparameters (p,3) as opposed to three. For our chosen hy-
perparameter values for CIFAR-100 (p = 0.01,A = 1.5, = 0.3), we can have equivalent loss with
(p = 0.01,8 = 0.6818). The loss function with three hyperparameters, however, allows for more intuitive
understanding when fine-tuning the hyperparameters.

C.4.2 BALL OF RADIUS p

For SAM loss, sharp minima loss, and our proposed loss, we approximate the maximum loss in the ball of
radius p around the minima. Norton & Royset (2021) have found that the type of norm that is used for defining
the ball has large impact along with actual p value. For all our experiments, we use L2 norm for our ball of
radius p.

16



Under review as a conference paper at ICLR 2024

Table 3: Attack accuracy of different types of Direct Single-query attacks on SGD, SAM and our
proposed method

Dataset Algo NN Confidence Correctness Entropy Modified entropy
CIFAR-100 SGD 76.86% 59.71% 77.04% 76.70% 76.97%
SAM 78.73% 58.62% 79.1% 78.66% 79.25%
SharpReg  57.62% 58.42% 59.69% 57.88% 59.69%
CIFAR-10 SGD 50.17% 51.91% 58.95% 58.87% 58.99%
SAM 50.01% 61.12% 51.64% 61.10 61.81%
SharpReg  50.22% 52.10% 52.86% 52.47% 52.78%
Purchase-100 SGD 66.00% 66.76% 57.72% 64.78% 67.13%
SAM 66.62% 67.30% 57.53% 65.35% 67.54%
SharpReg  59.58% 60.96% 58.00% 58.04% 61.16%
Texas-100 SGD 59.81% 65.20% 63.30% 55.74% 65.13%
SAM 59.56% 66.59% 64.60% 57.14% 65.42%
SharpReg 51.11 % 59.89% 57.15% 53.46% 59.36%

C.4.3 HYPERPARAMETER TUNING FOR CIFAR-10 & CIFAR-100

We trained each model for 200 epochs and chose the model with highest validation accuracy on a held-out
validation set. We used initial learning rate of 0.1 with learning rate decay of 0.2 at 60th, 120th, and 160th
epoch with batch size of 128. We trained the models with weight decay 0.0005 and Nesterov momentum of
0.9. For SWA on CIFAR-100, we trained first 150 epoch with vanilla SGD and used weight averaging for the
rest of the epochs.

We briefly discuss hyperparameter tuning. We fine-tuned hyperparameters more extensively for CIFAR-100
and adjusted similar values for other datasets. We first fine-tuned hyperparameters for sharp minima loss (4)
in the order of p then A. With these values, we then fine-tuned £ for our proposed loss. For p, we tested values
in [0.001, 0.005, 0.01, 0.05, 0.5, 1.0, 3.0]. We found that for sharp minima loss, small value of p gives good
tradeoff and chose 0.01 as our hyperparameter. For A, we tested values in [0.01, 0.5, 1.0, 1.5, 2.0, 3.0]. We
found that training breaks (training/test accuracy does not increase) for large value of A. This may be because
the sharpness term dominates the training objective. We chose 1.5 as a good A value for p = 0.01. Finally, we
fine-tuned £ with [0.1, 0.3, 0.5, 0.7]. We do note that there is room for improvement with more hyperparameter
tuning, and we leave this to future work.

C.4.4 HYPERPARAMETER TUNING FOR TEXAS-100 & PURCHASE-100

We chose the best model as discussed before for CIFAR-10/100. We trained models with SAM, SGD, our
proposed loss with a learning rate of 0.1 with weight decay 0.0005 and Nesterov momentum of 0.9. We trained
the models on Purchase-100 for a total of 100 epochs and on Texas-100 for a total on 75 epochs. During training,
we employed a batch size of 512 for the Purchase-100 dataset and a batch size of 128 for the Texas-100 dataset.

D COMPREHENSIVE RESULTS FOR ALL ATTACKS

We report the test accuracy and MI attack accuracy values on all datasets and all methods for a single run in
Table 4. For direct single query attacks, we evaluate attack accuracy for multiple attack methods explained
above and report the highest attack accuracy.Additionally, direct single-query attack composes of multiple
different attacks. We report attack accuracy of each attack algorithm in Table 3 for a single run. In the case
of multi-query attacks, we conducted data augmentation attacks on computer vision datasets such as CIFAR-
10 and CIFAR-100. Conversely, for binary feature datasets like Purchase100 and Texas100, we performed
boundary estimation attacks and report their results in Table 4

E COMPARISON OF DIFFERENT ARCHITECTURES

To validate consistency across different model architectures, we report results in Table 5 using InceptionV4
10 and resnet18 ' for CIFAR-100 and CIFAR-10. We kept our p the same across all model architectures with

Ohttps://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/
https://github.com/inspire-group/MIAdefenseSELENA/tree/main
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Table 4: Comparison of membership privacy and accuracy on test/training set (A, p, &)

Dataset Defense Train acc Testacc Best Single Query Best Multi Query
SGD 99.98% 80.30% 77.04% 69.07%
SAM 99.98% 81.6% 79.25% 65.45%
CIFAR-100 MemGuard 99.98% 77.00%  68.70% 69.9%
AdvReg 89.39% 72.24%  58.39% 59.29%
SELENA 80.31% 76.92% 55.15% 53.68%
SharpReg(1.5,0.01,0.1) 96.39% 76.48%  62.15% 62.90%
SharpReg(1.5,0.01,0.3) 93.21% 76.14%  59.69% 60.44%
SharpReg(1.5,0.01,0.5) 89.56% 74.44%  58.42% 58.68%
SharpReg(1.5,0.01,0.7) 76.42% 67.04%  54.34% 54.55%
SGD 100.00% 96.00% 58.99% 56.36%
SAM 100.00% 96.48% 61.81% 54.01%
CIFAR-10 AdvReg 99.99% 95.66% 57.44% 56.32%
SELENA 95.75% 94.62%  55.49% 51.77%
SharpReg(1.5,0.01,0.1) 97.92% 93.34%  52.86% 53.48%
SGD 100.00% 85.50% 67.13% 65.59%
SAM 100.00% 85.54% 67.54% 66.06%
Purchase-100  MemGuard 99.98% 83.2% 58.7% 65.8%
AdvReg 94.80% 78.94%  59.07% 59.16%
SELENA 88.08% 81.24% 54.37% 54.39%
SharpReg(2.0,0.01,0.6) 98.78% 82.29% 61.16% 61.27%
SGD 78.28% 50.83% 65.20% 64.5%
SAM 81.17% 51.34%  66.59% 65.36%
Texas-100 MemGuard 79.3% 52.3% 63.0% 64.7%
AdvReg 73.60% 49.44%  63.45% 63.63%
SELENA 60.24% 52.40%  54.84% 54.86%
SharpReg(1.0,0.001,0.05) 64.65% 49.49%  59.89% 58.51%
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Table 5: Privacy vs Generalization tradeoff for SAM and SGD using InceptionV4 and Resnet18

Dataset Model Optimizer Test Acc  Single-query Acc  Multi-query Acc

CIFAR-100 Resnet18 SGD 78.42% 74.31% 71.51%
SAM 78.74% 77.45% 68.50%

InceptionV4 SGD 77.44% 77.22% 71.17%

SAM 79.60% 80.82% 67.73%

CIFAR-10 Resnet18 SGD 95.18% 57.90% 57.79%
SAM 96.16% 60.05% 55.37%

InceptionV4 SGD 94.26% 61.60% 58.24%

SAM 95.76% 64.41% 55.83%

value 0.1. The results are consistent with our findings that SAM tends to have higher test accuracy while having
higher membership attack accuracy at the same time. Overall best attack accuracy is higher for SAM for all the
cases although we find mixed findings for multi-query attack accuracy specifically.
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