
A Linguistic Phenomena in Word Formation

In the theory of linguistic morphology, morphemes are considered to be the smallest meaning-bearing
or grammatical units of a language.

In the word formation, common linguistic phenomena include inflection, derivation, and compound-
ing, as shown in Table 1 of our paper. (1) Inflection occurs when a word has different forms but
essentially the same meaning. For example, the underlying meanings of ‘cooks‘, ‘cooked‘, and
‘cooking‘ are all ‘cook‘, and there are only certain grammatical differences. (2) Derivation makes a
word with a different meaning, such as ‘possible‘ and ‘impossible‘. (3) Compounding occurs
when multiple words are combined to form a new word. For example, ‘policeman‘ is obtained
by compounding ‘police‘ and ‘man‘. Based on these common phenomena, there are common
connections between words due to shared morphemes, and morphologically similar words with some
of the same morphemes are often semantically related. Therefore, it makes sense to segment words
into morphemes to learn word representations in a more fine-grained way.

B The Example of Tensor Products

Typically, there exist two types of definitions for the tensor product. Here, we give an example for the
tensor product between two vectors, but it also holds for the tensor product between matrices.

Definition 1. a tensor product between an m-sized vector and an n-sized vector results in an m× n
matrix.

a⊗1 b =

[
a1

a2

]
⊗ [ b1 b2 b3 ]

=

[
a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

] (9)

Definition 2. a tensor product between an m-sized vector and an n-sized vector results in anmn-sized
vector.

a⊗2 b = [ a1 a2 ]⊗ [ b1 b2 b3 ]

=
[
a1 [ b1 b2 b3 ] a2 [ b1 b2 b3 ]

]
= [ a1b1 a1b2 a1b3 a2b1 a2b2 a2b3 ]

(10)

Note that Definition 1 increases the dimensions of the tensors while Definition 2 does not. As
formulated in Eq. 2 in our paper, we use Definition 2 without dimension increase if not specified.
The difference between Definition 1 and Definition 2 is that Definition 2 further reshapes the RHS
of Definition 1 (previously a two-dimensional tensor, i.e., a matrix) into a flattened vector. Since a
word embedding is a vector in neural networks, we make use of Definition 2 so that any resulted
embeddings for words are necessarily vectors.

As formulated in Eq. 2, a tensor product between a g-sized vector and h-sized vector results in a
gh-sized vector. Similarly, a cumulative tensor product of n q-size vectors will be a qn-sized vector.
We show a concrete example of cumulative tensor product with n = 3 and q = 2 as follow:

a⊗ b⊗ c

=
[
a1 a2

]
⊗

[
b1 b2

]
⊗

[
c1 c2

]
=

[
a1

[
b1 b2

]
a2

[
b1 b2

] ]
⊗

[
c1 c2

]
=

[
a1b1 a1b2 a2b1 a2b2

]
⊗

[
c1 c2

]
=

[
a1b1

[
c1 c2

]
a1b2

[
c1 c2

]
a2b1

[
c1 c2

]
a2b2

[
c1 c2

] ]
=

[
a1b1c1 a1b1c2 a1b2c1 a1b2c2 a2b1c1 a2b1c2 a2b2c1 a2b2c2

]
(11)
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Table 8: Parameter complexities for different word embedding methods. |V | and d are the word
vocabulary size and word embedding size, respectively. r and n are the rank and order. |M | is the
morpheme vocabulary size.

Method Parameter Method Parameter Method Parameter

Original |V |d Word2ket rn|V | n
√
d Word2ketXs rn n

√
|V | n

√
d

MorphTE |M | n
√
dr + |V |n Matrix Factor. r (|V |+ d) Tensor Train

(
(n− 2) r2 + 2r

)
n
√

|V | n
√
d

MorphSum (|V |+ |M |) d MorphLSTM |M |d+ 8d2

C Analysis of Parameter

In the experiments of the paper, we directly report the specific number of parameters for different
word embedding methods. To illustrate how these parameter numbers are calculated, we report the
parameter complexity and settings of different methods in Section C.1 and Section C.2, respectively.

C.1 Parameter Complexity of Embedding Methods

We summarize the parameter complexities of different embedding methods in Table 8. Suppose
the word vocabulary size is |V | and the word embedding size (dimensionality) is d. Suppose the
morpheme vocabulary size is |M |, which involves embedding methods utilizing morphology. Sup-
pose the rank is r and the order is n, which involves decomposition-based embedding compression
methods. Note that the rank and order have different meanings in different decomposition methods.
The value of the order is generally 2 to 4. The number of parameters of the decomposition method
is generally controlled by adjusting the rank, and the value of rank may vary greatly in different
methods. The detailed analysis of the parameter complexity is as follows:

• Original: The original word embedding layer has a word embedding matrix, each row of
which is the embedding (vector) of a word. The parameter number of the embedding matrix
is |V |d.

• MorphSum: MorphSum needs to specify a unique embedding for each morpheme and
word, resulting in the parameter number of (|V |+ |M |) d.

• MorphLSTM: MorphLSTM needs to specify a unique embedding for each morpheme,
resulting in the parameter number of |M |d. In addition, the LSTM network in MorphLSTM
requires 8d2 parameters. Therefore, the total parameter number is |M |d+ 8d2.

• Matrix Factor.: The low–rank matrix factorization method decomposes the original word
embedding matrix into the product of two small matrices of size |V | × r and r × d. r is
called the rank of this method. Therefore, the number of parameters required by this method
is r (|V |+ d).

• Word2ket: Referring to Eq. 4 in the paper, Word2ket represents the embedding of a word
as an entangled tensor of rank r and n. The number of parameters required by this method
is at least rn|V | n

√
d.

• Word2ketXs: Word2ketXs compresses both the vocabulary size (|V |) and the word embed-
ding size (d), while Word2ket only compresses the word embedding size (d) . The number
of parameters required by this method is at least rn n

√
|V | n

√
d.

• Tensor Train: Like word2ketXS, Tensor Train method compresses both the vocabulary
size (|V |) and the word embedding size (d). This method compresses the embedding matrix
into 2 tensors of sizes |V |1 × d1 × r and |V |n × dn × r, and n − 2 tensors with size of
|V |i × di × r2 (1 < i < n), where |V | =

∏n
k=1 |V |k, and d =

∏n
k=1 dk. To simplify

the calculation, let |V |1 = . . . = |V |n = n
√
|V | and d1 = . . . = dn = n

√
d, and then the

number of parameters of this method is
(
(n− 2) r2 + 2r

)
n
√

|V | n
√
d.

• MorphTE: Similar to Word2ket, the size of the morpheme vector is at least n
√
d. Referring to

Section 4, there are r morpheme embedding matrices of size |M | n
√
d, resulting in |M | n

√
dr

trainable parameters. In addition, storing the morpheme index matrix also requires additional
constant parameters of |V |n. Therefore, the total parameter number is |M | n

√
dr + |V |n.
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C.2 Settings of Embedding Methods

We show detailed settings of different embedding methods on translation tasks in Tables 9 and 10, and
these two tables correspond to Table 2 of the paper. We show detailed settings of different embedding
methods on WikiQA of question answering tasks and SNLI of natural language inference tasks in
Tables 11 and 12. These two tables correspond to Table 3 of the paper.

Table 9: Detailed settings of Original, Matrix Factor., and Tensor Train methods on translation
tasks, corresponding to Table 2. De-En and De-En mean the settings of the source language (De)
and target language (En), respectively. Since other datasets (e.g., En-It) use shared source-target
dictionaries, only one set of settings is reported. |V | is the size of the word vocabulary and d is the
size (dimensionality) of a word embedding. #Emb is the parameter number of the word embedding
layer. n and r are the order and rank of decomposition methods, respectively. ∆|V | and ∆d are
the decomposition of the word vocabulary size (|V |) and word embedding dimensionality (d) by
the decomposition method, respectively. For example, in Wordket, ∆d is (8, 8, 8), because a word
embedding is constructed from three (n = 3) 8-size vectors.

Dataset
Original Matrix Factor. Tensor Train

|V | d #Emb 20× 40×
n ∆|V | ∆d

20× 40×
r #Emb r #Emb r #Emb r #Emb

De-En 8848 512 4.53M 25 0.23M 12 0.11M 3 (18,20,25) (8,8,8) 34 0.20M 23 0.09M
De-En 6632 512 3.40M 25 0.19M 12 0.09M 3 (14,20,25) (8,8,8) 34 0.19M 23 0.09M
En-It 41280 512 21.14M 25 1.04M 12 0.50M 3 (30,35,40) (8,8,8) 59 1.01M 41 0.49M
En-Es 41336 512 21.16M 25 1.05M 12 0.50M 3 (30,35,40) (8,8,8) 59 1.01M 41 0.49M
En-Ru 42000 512 21.50M 25 1.06M 12 0.51M 3 (30,35,40) (8,8,8) 59 1.01M 43 0.54M

Table 10: Detailed settings of Word2ketXs, Word2ket, and MorphTE methods on translation tasks,
corresponding to Table 2. |M | is the size of the morpheme vocabulary. Refer to Table 9 for the
meaning of other fields.

Dataset
Word2ketXs Word2ket MorphTE

n ∆|V | ∆d
20× 40×

n ∆d
20× |M | n ∆d

20× 40×
r #Emb r #Emb r #Emb r #Emb r #Emb

De-En 2 (95,95) (16,32) 44 0.20M 22 0.10M 3 (8,8,8) 1 0.21M 3013 3 (8,8,8) 7 0.20M 3 0.10M
De-En 2 (82,82) (16,32) 44 0.17M 22 0.09M 3 (8,8,8) 1 0.16M 2744 3 (8,8,8) 7 0.17M 3 0.08M
En-It 2 (205,205) (16,32) 104 1.02M 50 0.49M 3 (8,8,8) 1 0.99M 10818 3 (8,8,8) 10 0.99M 4 0.45M
En-Es 2 (205,205) (16,32) 104 1.02M 50 0.49M 3 (8,8,8) 1 0.99M 11377 3 (8,8,8) 10 1.03M 4 0.49M
En-Ru 2 (205,205) (16,32) 104 1.02M 53 0.52M 3 (8,8,8) 1 1.01M 12423 3 (8,8,8) 9 1.02M 4 0.52M

Table 11: Detailed settings of Original, Matrix Factor., and Tensor Train methods on WikiQA and
SNLI tasks, corresponding to Table 3. Refer to Table 9 for the meaning of the fields in this table.

Dataset Original Matrix Factor. Tensor Train
|V | d #Emb r #Emb n ∆|V | ∆d r #Emb

WikiQA 12333 512 6.314M 6 0.077M 3 (20,25,26) (8,8,8) 19 0.079M
SNLI 16936 512 8.671M 13 0.227M 3 (25,25,32) (8,8,8) 33 0.233M

Table 12: Detailed settings of Word2ketXs, Word2ket, and MorphTE methods on WikiQA and SNLI
tasks, corresponding to Table 3. |M | is the size of the morpheme vocabulary. Refer to Table 9 for the
meaning of the fields in this table.

Dataset Word2ketXs Word2ket MorphTE
n ∆|V| ∆d r #Emb n ∆d r #Emb |M | n ∆d r #Emb

WikiQA 3 (24,24,24) (8,8,8) 137 0.079M 3 (8,8,8) 1 0.296M 5152 3 (8,8,8) 1 0.078M
SNLI 3 (8,29,73) (8,8,8) 260 0.229M 3 (8,8,8) 1 0.406M 5572 3 (8,8,8) 4 0.229M
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D Implementation and Training Details

In this section, we report the hyperparameter details of the experiments in our paper. The hyperparam-
eter details of implementation and training on machine translation tasks are shown in Table 13. The
hyperparameter details of implementation and training on question answering and natural language
inference tasks are shown in Table 14.

Table 13: Hyperparameter details of imple-
mentation and training on translation tasks.
IWSLT’14 means the De-En dataset, and
OPUS-100 means the En-It, En-Es, and En-
Ru datasets.

Hyperparameter IWSLT’14 OPUS-100
num encoder layers 6 6
num decoder layers 6 6
embedding size 512 512
feed-forward size 1024 2048
attention heads 4 8
learning rate 5e-4 7e-4
label smoothing 0.1 0.1
max tokens per batch 4096 36864
dropout 0.3 0.25
Adam-betas (0.9, 0.98) (0.9, 0.98)
warmup steps 20000 20000
weight decay 0.0001 0.0
beam size 5 5

Table 14: Hyperparameter details of implemen-
tation and training on question answering and
natural language inference tasks. QA means the
question answering task of the WikiQA dataset,
and NLI means the natural language inference
task of the SNLI dataset.

Hyperparameter QA NLI
num encoder blocks 2 3
num convolutional encoders 3 2
kernel size 3 3
embedding size 512 512
hidden size 200 150
learning rate 1e-3 2e-3
batch size 400 512
dropout 0.1 0.1
Adam-betas (0.9, 0.999) (0.9, 0.999)
weight decay 0.0 0.0
lr decay rate 1.0 0.94

E Morpheme Statistics on IWSLT’14 De-En

We performed a statistical analysis of morphemes on the IWSLT’14 De-En dataset. The statistical
results are shown in Table 15. The mor∞ means the segmentation that does not limit the number
of morphemes for a word. As can be seen from the row of Table 15 where mor∞ is located, the
number of words in German containing 1, 2, and 3 morphemes is 1728, 3623, and 2627, respectively.
These words make up 91% of the total number of words (8848) in the corpus of German. In terms of
English, the numbers of these three types of words are 1724, 2977, and 1632 respectively, accounting
for a higher proportion (95%). Since most words contain no more than 3 morphemes, we tend to
choose the segmentation that restricts the number of morphemes to a maximum of 3, and the order of
MorphTE is set to 3.

Table 15: Statistics of morpheme segmentation results on IWSLT’14 De-En. The column of segmen-
tation means different morphological segmentation schemes, mor∞ means the segmentation that
does not limit the number of morphemes for a word, and mori means the segmentation that restricts
the number of morphemes to a maximum of i, referring to Eq. 6 in our paper. N = n represents the
number of words containing n morphemes. |M | indicates the size of the morpheme vocabulary after
the morpheme segmentation.

Language segmentation N = 1 N = 2 N = 3 N = 4 N > 4 |M|
mor∞ 1728 3623 2627 716 154 2531
mor4 1728 3623 2627 870 0 2643

De (German) mor3 1728 3623 3497 0 0 3013
mor2 1728 7120 0 0 0 4302
mor1 8848 0 0 0 0 8848

mor∞ 1724 2977 1632 260 39 2584
mor4 1724 2977 1632 299 0 2614

En (English) mor3 1724 2977 1931 0 0 2744
mor2 1724 4908 0 0 0 3352
mor1 6632 0 0 0 0 6632
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F Effect of Morpheme Segmenters on MorphTE

In previous experiments, our MorphTE utilized the morfessor [40] to segment words. It is a widely
used morpheme segmentation tool [3, 31, 12]. In this section, we study how the morpheme segmenter
affects the performance of MorphTE. We hypothesize that high-quality morpheme segmentation could
improve the performance of MorphTE, while unreasonable segmentation could be counterproductive.
To illustrate this, we add a comparative experiment on morpheme segmentation methods. Instead
of using a morpheme segmenter, we design a random segmentation method called randomSeg. The
randomseg does not segment words with a length of no more than three. For words with more than
three characters, randomSeg randomly selects two gaps from the inside of the word to divide the
word into 3 parts. Obviously, randomSeg makes little use of morpheme knowledge.

Table 16: Experimental results of different morpheme segmenters on translation tasks. Original
dictates the original word embeddings without compression. MorphTE w/ morfessor dictates the
MorphTE we use in the paper. MorphTE w/ randomSeg indicates the MorphTE using randomSeg for
morpheme segmentation.

Method De-En En-It En-Es En-Ru

Original 34.5 32.9 39.1 31.6
MorphTE w/ morfessor 34.9 32.9 39.1 31.9

MorphTE w/ randomSeg 33.8 31.7 38.6 30.4

As shown in Table 16, the performance of MorphTE w/ randomSeg is inferior to the original
word embedding method and MorphTE w/ morfessor on four translation datasets. This shows
that morpheme segmentation can affect the effectiveness of MorphTE, and improving morpheme
segmentation may further enhance MorphTE.

G Memory and Time Analysis

G.1 Memory Analysis

Table 17: Experimental results of the memory cost for different embedding methods. #Emb represents
the memory/parameter cost of the word embedding layer, and #Stuc represents the memory/parameter
cost of other parts of the model except the word embedding layer. P represents the proportion of the
memory/parameter cost of the word embedding layer to the total cost of the model.

Method Parameter Memory

#Stuc/ M #Emb / M P / % #Stuc / MiB #Emb / MiB P / %
Original 3.8 6.3 62 14.6 24.1 62

Matrix Factor. 3.8 0.08 2 14.6 0.3 2
Tensor Train 3.8 0.08 2 14.6 0.3 2
Word2ketXS 3.8 0.08 2 14.6 0.3 2

Word2ket 3.8 0.3 7 14.6 1.1 7
MorphTE 3.8 0.08 2 14.6 0.3 2

Through MorphTE or other compression methods, the parameters of the word embedding layer can
be greatly reduced. In this section, We further experimentally test the memory cost of different
word embedding methods on the WikiQA task. The experimental setup is consistent with the main
experiment in our paper. As shown in Table 17, the memory reduction of different word embedding
compression methods is consistent with their parameter reduction. MorphTE could reduce the
proportion of the original word embedding parameters/memory to the total model parameters/memory
from about 62% to 2%.
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G.2 Time Analysis

Table 18: Experimental results of the time cost for different embedding methods. #Emb represents
the time cost of the word embedding layer, and #Stuc represents the time cost of other parts of the
model except the word embedding layer. P represents the proportion of the time cost of the word
embedding layer to the total time cost of the model.

Method GPU CPU

#Stuc / ms #Emb / ms P / % #Stuc / ms #Emb / ms P / %
Original 10.6 0.1 0.9 92.0 0.1 0.1

Matrix Factor. 10.6 0.2 1.9 92.0 1.0 1.1
Tensor Train 10.6 0.5 4.5 92.0 45.0 33
Word2ketXS 10.6 0.6 5.4 92.0 49.0 35

Word2ket 10.6 0.5 4.5 92.0 2.0 2.1
MorphTE 10.6 0.6 5.4 92.0 3.0 3.2

The original word embedding method can directly index the word vector from the word embedding
matrix, and this process has almost no computational overhead. Almost all word embedding com-
pression methods, including our method, require certain pre-operations to generate word embeddings,
which introduces a certain computational overhead. To this end, we test the time cost of different
word embedding methods on the WikiQA task. The experimental setup is also consistent with the
main experiment in our paper. We test the time cost of different word embedding methods on Intel
E5-2698 CPU and Tesla V100 GPU. Specifically, we repeat the test 100 times on an input sample,
and average the time.

As shown in Table 18, although word embedding compression methods increase the time cost of
word embeddings, most of them only account for a small fraction of the total time cost. The time
cost of our MorphTE accounts for 5.4% and 3.2% of the model on GPU and CPU, respectively.
Compared with the significant parameter/memory reduction, this slight computational overhead is
tolerable. In addition, we also found that the time cost of word2ketxs and tensor train methods
increased significantly on CPU devices. This may be related to the fact that these two methods have
more computational operations under the condition of the same number of parameters.
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