
Under review as a conference paper at ICLR 2024

SUPPLEMENTARY MATERIALS FOR
RESOURCE EFFICIENT TEST-TIME TRAINING WITH
SLIMMABLE NETWORK

Anonymous authors
Paper under double-blind review

APPENDIX

Here we include the complete visualization and experiment of multi-view (§ 1), implementation de-
tails (§ 2), general algorithm (§ 3) and specific running cost analysis (§ 4) of our method, sensitivity
of the trade-off parameters λs, λd, λa in total loss (§ 5). In § 6, we conduct additional evaluation
of SlimTTT, including additional ablation study (§ 6.1), evaluation in different levels of corruption
tasks (§ 6.2), convergence rate comparison (§ 6.3), comparison of hard labels and soft labels for
Logits Consistency Regularization (§ 6.4). Finally, we present the detailed results of SlimTTT on
ImageNet-C, CIFAR10-C and CIFAR100-C (§ 7) and the extension in terms of network depth in
future work (§ 8).

1 MULTI-VIEW COMPLETE VISUALIZATION AND EXPERIMENT

Figure 1 is our visualization results, which illustrate that subnetworks of varying widths focus on
different views of the images, providing evidence for our assertion that subnetworks with different
widths can capture diverse aspects of the same input data. Taking the first row in the figure as an
example, networks with widths of 1.0× and 0.25× focus on the left and right parts of the chestnut
shell, while networks with widths of 0.75× and 0.5× focus on the area surrounding the fur of the
chestnut. This clearly demonstrates that different networks attend to different regions of the image,
providing us with strong visual evidence.

Original 1.0× width 0.75× width 0.5× width 0.25× width

Figure 1: The complete visualization of sub-networks with different widths.

1



Under review as a conference paper at ICLR 2024

Figure 2 is our empirical observation suggest that the data views captured by different width of sub-
networks are complementary to those generated by random data augmentation techniques Cubuk
et al. (2020) that are commonly employed in contemporary TTT methods. As illustrated in Figure 2,
similar improvements over baseline can be achieved by using multi-view consistency learning with
one of the multi-view generation strategy alone, while higher result is obtained when utilizing both.
This phenomenon has motivated us to develop Width-enhanced Contrastive Learning (WCL) and
Logit Consistency Regularization (LCR) method that can more effectively leverage these features.

Baseline
Multi-Aug

Multi-Width
Width+Aug

0

2

4

6

8

10

12

14

Er
ro

r R
at

e 
(%

)

Figure 2: Comparison of multi-view consistency learn-
ing in TTT with different data view generation strate-
gies. Baseline refers to the model trained without
multi-view consistency learning during test-time train-
ing. Multi-Aug denotes the usage of multiple data
views created by data augmentation, which is a widely
used strategy in TTT/TTA methods for consistency
learning. Multi-Width refers to the views captured by
varying the width of the network, which is orthogonal
to the Multi-Aug strategy. Width+Aug refers to the
combination of data views created by both Multi-Aug
and Multi-Width strategies.

2 IMPLEMENTATION DETAILS

Cifar10/Cifar100 Pretrain. We conduct a two-stage pretraining of the slimmable network using
ResNet50 (He et al., 2016) as the backbone from scratch on Cifar10/Cifar100. During the first stage,
we optimize the feature encoder and classifier of the slimmable network by SGD optimizer for 500
epochs, we use Batch Size 256 and Learning Rate 0.02. In the second stage, we fine-tune the feature
encoder and classifier with the self-supervised branch jointly also by SGD optimizer for 500 epochs,
using Batch Size 256 and Learning Rate 1.0, and finally obtain the pretrained slimmable model.

Cifar10-C/Cifar100-C/Cifar10.1 Test-Time Training. We optimize the feature encoder f(·) and
the self-supervised head h(·) by SGD optimizer, using Batch Size 256 and Learning Rate 0.001,
0.0001, 0.001 respectively. The trade-off parameters λs, λd, λa are set to 1.3, 1.0 and 0.5.

ImageNet Pretrain. We use the pretrained slimmable network with four widths released by Yu et
al. (Yu et al., 2018) and we jointly train the main branch and the self-supervised branch by SGD
optimizer for 10 epochs using Batch Size 128 and Learning Rate 0.0001.

ImageNet-C Test-Time Training. We optimize the feature encoder f(·) and the self-supervised
head h(·) by SGD optimizer, using Batch Size 128 and Learning Rate 0.0001. The trade-off param-
eters λs, λd, λa are set to 1.0, 1.0 and 0.5.

MobileNet and ViT Pretrain. For MobileNetV1 and MobileNetV2, we followed the approach
of (Yu et al., 2018) to convert them into slimmable forms. We performed pretraining from scratch
and self-supervised branch fine-tuning on the CIFAR10 dataset for 100 epochs each. As for ViT
backbone, we take ViT-Tiny as an example, we refined its patch embedding, block, attention, and
mlp modules separately. We also transformed ViT-Tiny into a slimmable form with 4 width of sub-
networks, and we set the patch size to 4×4 and the input size to 32×32. We conducted pretraining
from scratch and self-supervised branch fine-tuning on the CIFAR10 dataset for 300 epochs each.

NVIDIA Jetson TX2 system. The NVIDIA Jetson TX2 system includes an NVIDIA Pascal GPU
with 256 CUDA capable cores, 8 GB of RAM, and 32 GB of ROM. The CPU complex consists of
two ARM v8 64-bit CPU clusters.

2



Under review as a conference paper at ICLR 2024

3 ALGORITHM

We summarize the test-time training and inference algorithm for the SlimTTT in Alg. 1. In test-time
training stage, firstly, the projections of two augmented views of each width of network are com-
bined with the biggest network’s projections to encourage the consistency between both multiple
augmented views and multiple width views, calculating Width-enhanced Contrastive loss Ls. Sec-
ondly, the weak augmented version is sent to the biggest network to obtain a pseudo label, which
supervises the predictions of each width of the sub-networks, computing Logits Consistency Regu-
larization loss Ld. Thirdly, Calculating the Global Feature Alignment loss La. In test-time inference
stage, we ensemble outputs of different width within the slimmable network based on the resource
constraints to obtain the final output.

Algorithm 1 Algorithm of SlimTTT

Require: BatchSize N , Network width list K = {1, 2, ...,K}; WCL loss Ls; LCR loss Ld; GFA loss La.
1: Load the slimmable network’s feature encoder, classifier and self-supervised head g(k)(·), π(k)

m (·) and
π
(k)
s (·) pretrained from training-time training phase;

2: for i = 1, ..., niters do
3: Get next mini-batch of test data x.
4: Clear gradients of weights, optimizer.zero grad().
5: for k ∈ K do
6: Create a augmented view xA,i and a weak augmented view xα,i.
7: Obtain the augmented projection h

(k)
i .

8: Calculate WCL loss Ls;
9: Obtain the pesudo label ŷi of weak augmented image.

10: Compute LCR loss Ld;
11: Calculate GFA loss La;
12: Compute total loss L;
13: Calculate gradients by L.backward().
14: end for
15: Update weights, optimizer.step().
16: end for
17: for k ∈ K do
18: Compute the ensemble outputs p(k)ens of the kth sub-network as the final output.
19: end for

4 RUNNING COST ANALYSIS

We will explain three important indicators regarding the running cost of our slimTTT in NVIDIA
RTX 3090 and provide a comprehensive overview of our running costs compared to other TTT
methods, including GPU memory, FLOPs, training/inference time per batch and peak memory usage
during test-time training and inference on the actual NVIDIA Jetson TX2 system.

The first indicator is test-time training/inference GPU memory usage. Even during ensemble oper-
ations, our approach reduces GPU memory usage compared to TTAC method, which is crucial in
practical scenarios. The ensemble operations only inference different width of sub-network once a
time, so it won’t increase the GPU memory usage.

The second indicator is FLOPs (Floating Point Operations). Our partial sub-networks may have
increased FLOPs compared to conventional TTT methods. However, when there are FLOPs con-
straints in practical scenarios, we can use narrower sub-networks, as the results shown in the table,
our method not only have reduced FLOPs but also deliver comparable performance to prior TTT
methods.

The third indicator is the runtime. We focus on the inference time for different backbone net-
works (e.g., ResNet101/50/34/18) and different widths (e.g., 1.0, 0.75, 0.5, 0.25) of ResNet50 on
the CIFAR100-C dataset. The inference time per batch (256 images) was recorded for each con-
figuration as shown in Table 3. From the table, it can be observed that using an ensemble strategy
requires relatively more inference time compared to the non-ensemble strategy. However, as demon-
strated in the ablation experiment in the previous section, the performance improvement achieved

3



Under review as a conference paper at ICLR 2024

Table 1: The test-time training/inference GPU memory of TTAC and SlimTTT on CIFAR100-C.

Method Dataset Backbone GPU memory

TTAC

C10-C

R-50 19.80G/3.59G
SlimTTT R-50 16.86G/3.59G

TTAC R-34 8.96G/2.24G
SlimTTT R-50[0.75×] 12.24G/2.25G

TTAC R-18 6.58G/2.20G
SlimTTT R-50[0.5×] 7.91G/1.26G

SlimTTT R-50[0.25×] 3.89G/0.54G

Table 2: The FLOPs and error rate (%) of TTAC and SlimTTT during inference on ImageNet-C.

Method Dataset Backbone FLOPs Err Avg

TTAC

ImageNet-C

R-50 4.1G 45.71
SlimTTT (w/o ensemble) R-50 4.1G 44.65
SlimTTT (w/ ensemble) R-50 7.8G 43.98

TTAC R-34 3.7G 47.57
SlimTTT (w/o ensemble) R-50[0.75×] 2.3G 46.52
SlimTTT (w/ ensemble) R-50[0.75×] 3.7G 44.77

TTAC R-18 1.8G 51.34
SlimTTT (w/o ensemble) R-50[0.5×] 1.1G 48.11
SlimTTT (w/ ensemble) R-50[0.5×] 1.4G 47.05

by the ensemble strategy is evident. For different network widths, the comparison between using
and not using the ensemble strategy is as follows: 1.0 : 8.86% → 8.33%, 0.75 : 9.37% → 8.63%.
0.5 : 9.62% → 9.12%. 0.25 : 10.71% → 10.68%. It is evident that the performance gains obtained
by the ensemble strategy are significant, particularly for wider networks. Therefore, considering
the trade-off between performance improvement and inference time, we conclude that the benefits
outweigh the costs of using the ensemble strategy. Consequently, the ensemble strategy is employed
in the final proposed method of this paper.

Table 3: Inference time Comparison.

Backbone w/ ensemble w/o ensemble

R-101 - 0.1828s
R-50 0.1133s 0.0574s
R-50 - 0.0561s

R-50[0.75×] 0.0672s 0.0439s
R-34 - 0.0283s

R-50[0.5×] 0.0300s 0.0250s
R-18 - 0.0180s

R-50[0.25×] 0.0124s 0.0124s

In addition, we provide a comprehensive overview in Table 4 of our running costs compared to
other TTT methods (batch size=64 during inference and batch size=8 during training), including
GPU memory, FLOPs, training time, and peak memory usage. All results were tested on the actual
NVIDIA Jetson TX2 system.

4



Under review as a conference paper at ICLR 2024

Table 4: A comprehensive overview of our running costs compared to other TTT methods on the
actual NVIDIA Jetson TX2 system including test-time training and inference phase.

Mode Method Backbone GPU Memory (G) Time/Batch (s) FLOPs (G) Peak memory (G)

Inference

TTT++ R-50 0.78 0.61 4.1 4.4
TTAC R-50 0.78 0.61 4.1 4.4

SlimTTT (w/o en) R-50 0.74 0.61 4.1 4.4
SlimTTT (w/ en) R-50 0.74 1.05 7.8 4.4

TTT++ R-34 0.63 0.33 3.7 4.2
TTAC R-34 0.63 0.33 3.7 4.2

SlimTTT (w/o en) R-50[0.75×] 0.68 0.35 2.3 3.4
SlimTTT (w/ en) R-50[0.75×] 0.68 0.6 3.7 3.4

TTT++ R-18 0.50 0.24 2.3 3.8
TTAC R-18 0.50 0.24 2.3 3.8

SlimTTT (w/o en) R-50[0.5×] 0.60 0.24 1.1 2.8
SlimTTT (w/ en) R-50[0.5×] 0.60 0.29 1.4 2.8

Test-time training

TTT++ R-50 1.85 2.12 4.1 5.1
TTAC R-50 1.40 2.39 4.1 5.3

SlimTTT R-50 1.11 2.14 7.8 4.2

TTT++ R-34 0.95 1.19 3.7 4.3
TTAC R-34 0.84 1.21 3.7 4.5

SlimTTT R-50[0.75×] 1.04 1.74 3.7 3.6

TTT++ R-18 0.91 0.31 2.3 4.0
TTAC R-18 0.75 0.72 2.3 4.1

SlimTTT R-50[0.5×] 0.92 0.80 1.4 3.0

d

0.20.20.20.20.20.20.20.20.20.20.40.40.40.40.40.40.40.40.40.40.60.60.60.60.60.60.60.60.60.60.80.80.80.80.80.80.80.80.80.81.01.01.01.01.01.01.01.01.01.01.21.21.21.21.21.21.21.21.21.21.41.41.41.41.41.41.41.41.41.41.61.61.61.61.61.61.61.61.61.61.81.81.81.81.81.81.81.81.81.82.02.02.02.02.02.02.02.02.02.0

s

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8
2.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8
2.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8
2.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8
2.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8
2.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8
2.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8
2.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8
2.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8
2.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8
2.0

Er
r. 

(%
)

0

2

4

6

8

10

7.4
7.5
7.6
7.7
7.8
7.9
8.0
8.1

Figure 3: Parameter Sensitivity

5 PARAMETER SENSITIVITY

We conduct an experiment to analyze the sensitivity of the balance parameters λs, λd, λa of the
three loss functions Ls, Ld, La. Given the large number of possible parameter combinations, we
only present the results for different parameter combinations under the snow corruption type. Fur-
thermore, we fix the balance parameter λa of the La loss function to 0.5 and varied only the values
of the other two balance parameters. The results depicted in Figure 3 demonstrate that as the balance
parameters change, the outcomes remain stable and fluctuate within a narrow range, indicating that
our method exhibits high robustness and is insensitive to the balance parameters.

5



Under review as a conference paper at ICLR 2024

6 ADDITIONAL EVALUATION

6.1 ABLATION EXPERIMENTS USING DIFFERENT BACKBONES AND DATASETS WITH
SLIMTTT

We conduct ablation experiments using Slim-MobileNetV1 (Table5) and Slim-ResNet50 ((Table6))
as backbones on the CIFAR-10-C and CIFAR-100-C datasets to analyze the effects of our four
components. Through these experiments, we observe that the trends in the results align with the
ablation results reported in our paper, which demonstrates the effectiveness of our method.

Table 5: Ablation study for individual components on CIFAR10-C dataset with MobileNetV1 as
backbone.

Component SlimTTT

WCL - - ✓ ✓ ✓ - ✓
LCR - ✓ - ✓ - ✓ ✓
GFA ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ensemble - - - - ✓ ✓ ✓

Avg Err(1.0×) 21.19 20.33 19.96 17.02 17.34 17.33 16.34
Avg Err(0.75×) 22.54 21.60 21.27 18.34 18.87 18.76 17.87
Avg Err(0.5×) 26.22 24.57 24.63 21.52 21.74 21.46 20.62
Avg Err(0.25×) 31.37 29.07 29.48 26.17 27.40 27.07 26.13

Table 6: Ablation study for individual components on CIFAR100-C dataset with Res50 as back-
bone.

Component SlimTTT

WCL - - ✓ ✓ ✓ - ✓
LCR - ✓ - ✓ - ✓ ✓
GFA ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ensemble - - - - ✓ ✓ ✓

Avg Err(1.0×) 35.70 33.19 33.09 30.42 30.61 30.14 29.36
Avg Err(0.75×) 38.02 34.54 35.06 31.11 31.99 31.27 30.34
Avg Err(0.5×) 39.22 36.05 36.61 33.05 33.98 33.14 32.07
Avg Err(0.25×) 42.96 39.03 39.68 37.71 39.68 38.97 37.71

6.2 EVALUATION SLIMTTT WITH DIFFERENT LEVELS OF CORRUPTION TASKS

In Table 7, we evaluate our method under 1-5 levels of corruptions on CIFAR10-C. From the table,
we can observe that as the corruption severity increases, the performance of smaller networks dete-
riorates faster compared to larger networks. This indicates that as the corruption severity increases,
smaller networks struggle more in capturing semantic information of the images. How to further
improve knowledge interaction between networks of different widths is a promising research topic
for the future.

Table 7: The average error rate of each width of network on CIFAR10-C with different levels of
corruption tasks.

Level 1 2 3 4 5

SlimTTT

R-50[1.0×] 5.02 5.67 6.30 7.32 8.33
R-50[0.75×] 5.18 5.85 6.55 7.57 8.63
R-50[0.5×] 5.58 6.25 6.99 8.08 9.12
R-50[0.25×] 6.87 7.56 8.38 9.56 10.68

6



Under review as a conference paper at ICLR 2024

0 250 500 750 1000 1250 1500 1750 2000
Epochs

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

Accuracy Over Epochs
Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Epochs

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

Accuracy Over Epochs
Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Epochs

20

40

60

80

Ac
cu

ra
cy

Accuracy Over Epochs

Accuracy

Figure 4: The convergence rate comparison for various architecture including MobileNetV1 (left),
MobileNetV2 (middle) and ResNet50 (right).

0 10 20 30 40 50 60 70 80
Steps

0.40

0.45

0.50

0.55

0.60

0.65

Er
r

Err Over Steps
dynamic resources
constant resources

Figure 5: The convergence rate comparison for the performance of the supernet under dynamic
resources and constant resources during test-time training.

6.3 CONVERGENCE RATE COMPARISON FOR VARIOUS ARCHITECTURE AND THE
PERFORMANCE OF DYNAMIC RESOURCES AND CONSTANT RESOURCES DURING
TEST-TIME TRAINING

The convergence rate comaparisons for various architecture including MobileNetV1, MobileNetV2
and ResNet50 during training-time training are shown in Fig 4, we follow TTT++ (Liu et al., 2021)
and TTAC (Su et al., 2022), utilizing the model from approximately the 500th epoch, which is close
to convergence, for test-time training.

The Fig 5 shows that as training time increases, the average performance of networks under dynamic
resource conditions gradually converges with that under static resource conditions.

According to this observation, we conclude that the optimal performance achievable by networks
under dynamic resource conditions is not as high as that under static resource conditions. Addi-
tionally, the initial convergence rate of the networks under dynamic resource conditions is slower,
explaining the significant performance difference observed after 12 steps in our initial response,
which means the dynamic resources condition does have a certain impact on optimization of the
slimmable networks. However, with prolonged training, the performance gap diminishes, reaching
their respective optima. The results from longer training durations indicate that our approach does
not suffer from massive error accumulation that could lead to model crashes. Our intuitive explana-
tion for this phenomenon is that the consistency in multi-view at the feature and prediction space, as

7



Under review as a conference paper at ICLR 2024

proposed in our approach, assists the optimization objectives of each network to gradually become
more consistent as training progresses.

6.4 COMPARISON OF KLDLOSS AND CROSSENTROPYLOSS FOR LOGITS CONSISTENCY
REGULARIZATION

We compare the use of CrossEntropyLoss and KLDLoss for Logits Consistency Regularization in
Table 8. The key difference between these two approaches lies in the form of labels used. When
using CrossEntropyLoss, the labels are in the form of one-hot encoding, also known as hard labels.
On the other hand, when using KLDLoss, the labels are in the form of soft labels, where all the
classes have values assigned to them. Through the experiments conducted in this paper, it was found
that the use of hard labels, in the form of pseudo-labeling, resulted in better supervision compared
to using soft labels. Upon analysis, the reason for this observation may be that hard labels force the
model to learn completely accurate knowledge, whereas the benefits of soft labels can be achieved
through the resource-aware ensemble strategy employed in the inference stage. Therefore, during
the training phase with test-time training, the use of hard labels yields better results.

Table 8: Comparison of KLDLoss and CrossEntropyLoss for Logits Consistency Regularization.

Method Backbone Brit Contr Defoc Elast Fog Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom Avg

Hard Label

R-50[1.0×] 4.55 4.69 6.61 11.36 6.82 8.10 10.41 13.52 11.92 9.83 7.39 7.56 9.53 7.38 5.34 8.33
R-50[0.75×] 4.70 5.00 6.85 11.79 7.02 8.41 11.04 13.95 12.10 10.04 7.59 7.81 10.02 7.69 5.47 8.63
R-50[0.5×] 5.10 5.33 7.12 12.17 7.30 8.86 11.80 14.68 12.79 10.82 7.86 8.16 10.76 8.12 5.99 9.12
R-50[0.25×] 6.27 6.37 8.42 13.95 8.61 10.23 13.96 16.22 14.58 12.79 9.00 9.54 13.15 9.78 7.33 10.68

Soft Label

R-50[1.0×] 4.91 5.17 7.01 11.80 7.51 8.36 11.18 14.03 12.32 9.96 8.01 7.62 10.25 8.10 5.52 8.78
R-50[0.75×] 5.24 5.57 7.39 12.18 7.97 9.01 11.78 14.79 12.80 10.48 8.35 7.86 10.83 8.61 5.91 9.25
R-50[0.5×] 5.63 6.04 7.81 12.93 8.52 9.70 13.03 15.61 13.76 11.09 9.14 8.73 12.16 9.06 6.55 9.98
R-50[0.25×] 7.46 7.56 9.52 15.00 10.28 11.89 15.04 17.68 16.56 13.51 10.68 10.22 13.80 11.02 8.42 11.91

7 DETAILED RESULTS

In Table 10 and Table 11, we present the detailed results of different network widths on CIFAR10-C
and CIFAR100-C, using a network width of 1.0 as the largest network size. Furthermore, Table 12
and Table 13 display the detailed results when employing a range of network widths as the largest
network during the test-time training phase. Our proposed method, SlimTTT, consistently outper-
forms other TTT or TTA methods across all datasets, while utilizing comparable backbones. No-
tably, on CIFAR100-C, SlimTTT demonstrates superior performance compared to other TTT/TTA
methods across all corruption tasks. These findings highlight the effectiveness of our approach in
improving robustness and generalization capabilities.

Table 9: Detailed comparison between our method taking 1.0× width of network as the biggest
network and different TTT/TTA methods on ImageNet-C dataset.

Method Backbone Birt Contr Defoc Elast Fog Frost Guass Glass Impul Jpeg Motn Pixel Shot Snow Zoom Avg
TEST R-50 38.82 89.55 82.23 87.13 64.84 76.83 97.34 90.50 97.76 68.31 83.60 80.37 82.22 82.22 74.31 80.70

BN (Ioffe & Szegedy, 2015) R-50 32.33 50.93 81.28 52.98 42.21 64.13 83.25 83.64 82.52 59.18 66.23 49.45 62.34 62.34 52.51 63.04
Tent (Wang et al., 2020) R-50 31.39 40.27 75.68 42.03 35.38 64.32 84.92 84.96 81.43 46.84 49.48 39.77 49.23 49.23 43.49 56.89
Shot (Liang et al., 2020) R-50 30.69 37.69 61.97 41.30 34.74 54.19 76.33 71.94 74.24 46.50 47.98 38.88 46.09 46.09 40.74 51.59
TTT++ (Liu et al., 2021) R-50 33.67 34.50 70.81 46.09 39.16 54.28 70.18 69.08 68.48 45.78 56.26 46.93 68.67 50.53 50.62 53.67
TTAC (Su et al., 2022) R-50 30.07 31.25 55.80 37.89 33.56 48.72 62.49 63.52 60.75 43.43 41.00 37.05 59.28 42.53 38.26 45.71

SlimTTT R-50[1.0×] 30.73 32.76 54.26 37.43 32.93 46.43 56.92 59.89 55.81 42.36 40.30 38.20 54.65 39.07 37.96 43.98
TTT++ (Liu et al., 2021) R-34 33.50 34.68 69.50 46.55 40.40 54.96 71.54 70.28 69.66 46.33 57.33 47.59 69.64 51.44 51.86 54.35
TTAC (Su et al., 2022) R-34 32.62 33.86 57.42 40.49 36.34 51.44 62.48 64.09 61.90 45.05 43.87 38.98 58.92 45.41 40.69 47.57

SlimTTT R-50[0.75×] 31.98 33.59 54.76 38.22 33.74 47.29 57.72 60.35 56.30 43.33 41.06 39.22 55.34 40.07 38.62 44.77
TTT++ (Liu et al., 2021) R-18 39.39 38.84 72.20 50.28 45.20 59.23 74.35 74.13 73.43 49.83 59.60 50.65 72.61 55.60 54.44 57.99
TTAC (Su et al., 2022) R-18 36.49 37.37 60.14 44.17 39.97 55.84 66.12 67.42 65.44 48.73 47.48 43.31 63.10 50.09 44.39 51.34

SlimTTT R-50[0.5×] 34.67 35.93 56.39 40.68 36.01 49.90 59.74 62.28 58.42 45.61 43.33 41.64 57.36 43.04 40.68 47.05
SlimTTT R-50[0.25×] 41.28 42.67 61.98 47.01 42.76 58.08 65.57 68.03 64.78 51.78 50.30 48.53 63.37 50.56 47.23 53.60

8 EXPLORATION ON SLIMTTT IN DEPTH OF THE NETWORK STRUCTURE.

We attempt to incorporate depth refinement on top of SlimTTT to diversify the selection of sub-
networks. We add an exit network at the exit of each slimmable ResNet block module (e.g.,
ResNet50, resulting in a total of 4 exit networks) to allow us to simultaneously have 4×4=16 sub-
networks. During the pretraining and fine-tuning stages on CIFAR-100, we train both our original

8



Under review as a conference paper at ICLR 2024

Table 10: Detailed comparison between our method taking 1.0× width of network as the biggest
network and different TTT/TTA methods on CIFAR10-C dataset.

Method Backbone Brit Contr Defoc Elast Fog Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom Avg
Tent (Wang et al., 2020) R-50 8.36 9.72 8.63 14.16 12.35 11.32 17.86 17.68 22.44 15.01 10.24 8.99 13.88 11.38 6.91 12.60
Shot (Liang et al., 2020) R-50 10.11 11.32 9.30 16.04 13.98 12.83 19.25 19.27 29.94 17.44 12.32 9.84 17.99 13.53 7.41 14.70
TTT++ (Liu et al., 2021) R-50 5.75 5.95 8.19 13.74 8.76 8.90 12.96 15.61 11.49 10.40 9.60 9.48 10.92 8.94 6.31 9.80
TTAC (Su et al., 2022) R-50 5.14 5.27 7.11 11.68 7.15 8.27 10.72 13.66 11.13 9.88 7.69 7.51 9.67 7.52 5.42 8.52

SlimTTT R-50[1.0×] 4.55 4.69 6.61 11.36 6.82 8.10 10.41 13.52 11.92 9.83 7.39 7.56 9.53 7.38 5.34 8.33
Tent (Wang et al., 2020) R-34 6.62 6.39 7.43 16.14 13.60 9.78 13.59 19.66 22.61 12.73 10.43 8.49 12.70 11.74 6.28 11.88
Shot (Liang et al., 2020) R-34 6.30 5.93 6.81 14.74 9.95 8.90 12.45 17.72 19.53 11.80 9.19 7.99 11.66 9.78 5.75 10.57
TTT++ (Liu et al., 2021) R-34 4.82 5.62 7.73 13.42 7.71 9.52 13.38 16.73 11.04 11.95 8.94 8.69 11.90 9.10 6.85 9.83
TTAC (Su et al., 2022) R-34 4.92 5.04 6.91 11.38 6.79 8.35 11.72 14.25 10.25 10.29 7.61 7.84 10.71 8.39 5.96 8.69

SlimTTT R-50[0.75×] 4.70 5.00 6.85 11.79 7.02 8.41 11.04 13.95 12.10 10.04 7.59 7.81 10.02 7.69 5.47 8.63
Tent (Wang et al., 2020) R-18 7.62 7.39 8.43 16.14 13.60 9.78 15.59 19.66 22.61 12.73 11.43 9.49 13.70 11.74 8.08 12.53
Shot (Liang et al., 2020) R-18 6.65 6.41 7.47 15.38 10.15 9.94 13.38 18.65 20.70 12.39 10.18 8.78 12.20 10.34 6.41 11.27
TTT++ (Liu et al., 2021) R-18 5.96 6.06 9.02 14.37 8.23 10.31 14.30 17.79 12.53 12.30 9.88 9.61 13.45 9.93 7.25 10.73
TTAC (Su et al., 2022) R-18 5.62 5.65 8.13 12.84 8.22 9.64 12.53 15.56 10.84 11.19 8.99 8.56 11.71 9.16 7.10 9.72

SlimTTT R-50[0.5×] 5.10 5.33 7.12 12.17 7.30 8.86 11.80 14.68 12.79 10.82 7.86 8.16 10.76 8.12 5.99 9.12
SlimTTT R-50[0.25×] 6.27 6.37 8.42 13.95 8.61 10.23 13.96 16.22 14.58 12.79 9.00 9.54 13.15 9.78 7.33 10.68

Table 11: Detailed comparison between our method taking 1.0× width of network as the biggest
network and different TTT/TTA methods on CIFAR100-C dataset.

Method Backbone Brit Contr Defoc Elast Fog Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom Avg
Tent (Wang et al., 2020) R-50 28.26 28.75 30.34 39.90 39.46 37.31 40.39 47.16 47.34 34.87 33.29 32.57 37.94 39.32 27.58 36.30
Shot (Liang et al., 2020) R-50 30.26 30.42 31.83 42.46 43.53 38.11 42.04 48.63 50.18 35.85 35.61 33.40 40.23 40.36 28.56 38.10
TTT++ (Liu et al., 2021) R-50 26.89 27.29 29.51 37.77 35.95 35.26 38.66 43.48 44.18 33.39 31.56 31.05 35.31 34.71 26.45 34.10
TTAC (Su et al., 2022) R-50 23.53 24.67 26.88 34.66 29.56 30.45 35.12 37.87 38.13 31.92 30.27 27.91 33.07 30.65 23.82 30.57

SlimTTT R-50[1.0×] 22.67 22.45 25.79 33.01 28.65 29.76 33.78 37.25 37.12 30.81 27.15 26.85 32.48 29.44 23.23 29.36
Tent (Wang et al., 2020) R-34 28.51 28.71 30.09 42.35 37.64 35.34 41.62 46.24 50.76 37.42 33.63 32.82 40.01 37.72 27.91 36.72
Shot (Liang et al., 2020) R-34 30.32 30.92 31.28 42.89 43.93 38.81 42.59 48.98 51.45 36.26 35.74 33.89 41.15 40.60 28.96 38.52
TTT++ (Liu et al., 2021) R-34 27.52 28.17 30.31 39.28 35.43 35.11 39.68 43.60 44.98 35.31 32.97 31.70 36.72 33.65 27.51 34.80
TTAC (Su et al., 2022) R-34 24.76 25.56 28.07 36.35 30.74 31.55 36.31 39.22 39.03 33.26 29.15 29.35 34.51 30.61 25.08 31.57

SlimTTT R-50[0.75×] 23.50 23.44 26.57 33.88 30.13 31.15 34.53 38.26 38.03 31.56 27.94 27.97 33.57 30.50 24.13 30.34
Tent (Wang et al., 2020) R-18 28.92 28.90 30.84 42.10 37.10 36.05 41.74 46.99 51.83 38.71 34.52 33.08 41.08 39.05 28.19 37.27
Shot (Liang et al., 2020) R-18 31.34 30.54 32.80 43.33 43.10 38.90 43.52 48.37 53.36 39.95 36.71 34.78 43.09 41.93 29.79 39.43
TTT++ (Liu et al., 2021) R-18 28.97 29.64 32.21 39.81 34.00 35.72 40.51 43.87 43.70 37.95 33.95 33.32 38.77 35.85 28.91 35.81
TTAC (Su et al., 2022) R-18 26.97 27.17 30.12 38.08 32.17 33.50 38.55 41.52 42.28 35.71 31.46 31.30 37.25 33.69 26.42 33.75

SlimTTT R-50[0.5×] 23.50 23.44 26.57 33.88 30.13 31.15 34.53 38.26 38.03 31.56 27.94 27.97 33.57 30.50 24.13 30.34
SlimTTT R-50[0.25×] 31.23 30.62 33.85 40.83 37.32 38.11 42.96 44.65 47.20 38.80 35.30 35.17 40.88 38.06 30.64 37.71

Table 12: ImageNet-C detailed results.

Method Backbone Brit Contr Defoc Elast Fog Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom Avg

SlimTTT

1.0—max(1.0) 30.73 32.76 54.26 37.43 32.93 46.43 56.92 59.89 55.81 42.36 40.30 38.20 54.65 39.07 37.96 43.98
0.75—max(1.0) 31.98 33.59 54.76 38.22 33.74 47.29 57.72 60.35 56.30 43.33 41.06 39.22 55.34 40.07 38.62 44.77
0.75—max(0.75) 31.90 32.90 55.18 38.90 33.82 48.19 59.58 60.26 58.19 43.92 41.41 39.84 57.11 40.77 39.21 45.41
0.5—max(1.0) 34.67 35.93 56.39 40.68 36.01 49.90 59.74 62.28 58.42 45.61 43.33 41.64 57.36 43.04 40.68 47.05
0.5—max(0.75) 34.31 35.18 56.62 40.93 36.23 50.36 61.36 62.19 59.85 45.77 43.72 42.22 58.77 43.05 41.35 47.46
0.5—max(0.5) 34.97 35.87 58.54 42.07 37.13 52.39 63.22 63.82 61.08 46.77 44.88 42.82 60.13 44.73 42.53 48.73

0.25—max(1.0) 41.28 42.67 61.98 47.01 42.76 58.08 65.57 68.03 64.78 51.78 50.30 48.53 63.37 50.56 47.23 53.60
0.25—max(0.75) 40.58 41.96 62.05 46.81 42.92 57.89 66.75 67.84 65.64 51.59 50.02 48.59 64.33 49.93 47.89 53.65
0.25—max(0.5) 41.52 41.95 62.86 47.68 43.50 58.94 67.80 68.51 65.73 52.41 50.40 48.92 64.52 51.04 48.50 54.29
0.25—max(0.25) 42.23 43.94 68.36 50.10 45.86 64.10 73.61 73.86 72.58 53.79 54.58 51.34 70.61 55.03 51.27 58.08

Table 13: CIFAR100-C detailed results.

Method Backbone Brit Contr Defoc Elast Fog Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom Avg

SlimTTT

1.0—max(1.0) 22.67 22.45 25.79 33.01 28.65 29.76 33.78 37.25 37.12 30.81 27.15 26.85 32.48 29.44 23.23 29.36
0.75—max(1.0) 23.50 23.44 26.57 33.88 30.13 31.15 34.53 38.26 38.03 31.56 27.94 27.97 33.57 30.50 24.13 30.34
0.75—max(0.75) 24.11 24.16 27.58 35.13 31.96 32.51 34.74 39.44 39.27 31.70 28.77 28.87 33.85 32.60 24.86 31.30
0.5—max(1.0) 25.28 25.19 27.89 35.39 31.69 32.58 36.59 40.04 40.05 33.57 29.59 29.80 35.57 32.25 25.57 32.07
0.5—max(0.75) 25.58 26.09 29.01 36.71 33.18 34.02 36.80 40.85 40.84 34.02 30.25 30.61 35.93 34.04 26.43 32.96
0.5—max(0.5) 26.27 26.73 29.35 36.97 34.05 34.70 37.57 41.81 40.98 34.37 31.49 31.13 36.46 34.90 26.84 33.57

0.25—max(1.0) 31.23 30.62 33.85 40.83 37.32 38.11 42.96 44.65 47.20 38.80 35.30 35.17 40.88 38.06 30.64 37.71
0.25—max(0.75) 31.41 31.61 34.49 41.93 38.10 39.48 43.01 45.43 47.90 39.47 35.75 35.86 41.61 39.69 31.29 38.47
0.25—max(0.5) 31.76 32.09 34.62 42.12 38.88 39.70 43.98 46.39 47.80 40.03 36.26 36.06 41.13 40.20 31.89 38.86
0.25—max(0.25) 32.48 32.59 35.11 42.85 40.25 40.57 44.68 46.57 49.81 40.47 37.50 36.51 42.56 40.71 32.23 39.66

9



Under review as a conference paper at ICLR 2024

slimmable networks of different widths and their corresponding exit networks for 200 epochs each.
Then, we employ our method for test-time training on CIFAR-100-C. During the test-time training
for the exit networks, we use the predictions of the largest network on images with weak augmen-
tations for supervision. The preliminary results are shown in Table 14 taking the first and final exit
network as example, which indicate the effectiveness of this combined approach. We will further
explore and implement more comprehensive results in future works. We hope that future work can
delve deeper into mining components within networks to construct additional sub-networks, thereby
leveraging the multi-view capabilities offered by these sub-networks to better address a wider range
of resource-efficient challenges.

Table 14: Extension in terms of network depth.

Method 1.0 (1/1) 1.0 (1/4) 0.75 (1/1) 0.75 (1/4) 0.5 (1/1) 0.5 (1/4) 0.25 (1/1) 0.25 (1/4)

slimmable with width 34.39 35.07 34.88 34.99 36.03 36.52 38.66 39.42
only slimmable (SlimTTT) 29.36 - 30.34 - 32.07 - 37.71 -

REFERENCES

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In CVPR Workshops, pp. 702–703, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In ICML, pp. 6028–6039, 2020.

Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexan-
dre Alahi. Ttt++: When does self-supervised test-time training fail or thrive? In NeurIPS, pp.
21808–21820, 2021.

Yongyi Su, Xun Xu, and Kui Jia. Revisiting realistic test-time training: Sequential inference and
adaptation by anchored clustering. In NeurIPS, 2022.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In ICLR, 2020.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
In ICLR, 2018.

10


	Multi-view complete visualization and experiment
	Implementation Details
	Algorithm
	Running Cost analysis
	Parameter Sensitivity
	Additional Evaluation
	Ablation experiments using different backbones and datasets with slimTTT
	Evaluation SlimTTT with different levels of corruption tasks
	Convergence rate comparison for various architecture and the performance of dynamic resources and constant resources during test-time training
	Comparison of KLDLoss and CrossEntropyLoss for Logits Consistency Regularization

	Detailed Results
	Exploration on SlimTTT in depth of the network structure.

