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Abstract. Formal program specifications in the form of preconditions,
postconditions, and class invariants have several benefits for the con-
struction and maintenance of programs. They not only aid in program
understanding due to their unambiguous semantics but can also be en-
forced dynamically (or even statically when the language supports a
formal verifier). However, synthesizing high-quality specifications in an
underlying programming language is limited by the expressivity of the
specifications or the need to express them in a declarative manner. Prior
work has demonstrated the potential of large language models (LLMs)
for synthesizing high-quality method pre/postconditions for Python and
Java, but does not consider class invariants.

In this work, we describe ClassInvGen, a method for co-generating ex-
ecutable class invariants and test inputs to produce high-quality class
invariants for a mainstream language such as C++, leveraging LLMs’
ability to synthesize pure functions. We demonstrate that ClassInvGen
outperforms a pure LLM-based technique for generating specifications
(from code) as well as prior data-driven invariant inference techniques
such as Daikon. We contribute a benchmark of standard C++- data struc-
tures along with a harness that can help measure both the correctness
and completeness of generated specifications using tests and mutants.
We also demonstrate its applicability to real-world code by performing
a case study on several classes within a widely used and high-integrity
C-++ codebase.

Keywords: Program Synthesis - Large Language Models - Class Invari-
ants - Formal Verification

1 Introduction

Invariants are predicates that hold on the program state for all executions of the
program. Many invariants hold only at specific code locations. For sequential
imperative programs, it is useful to associate invariants with entry to a method
(preconditions), exit from a method (postconditions), and loop headers (loop
invariants). Further, for stateful classes, class invariants are facts that hold as



2 C. Sun et al.

both preconditions and postconditions of the public methods of the class, in
addition to serving as a postcondition for the class constructors for the class.

These program invariants help make explicit the assumptions on the rest of
the code, helping modular review, reasoning, and analysis. Program invariants
are useful for several aspects of software construction and maintenance during
the lifetime of a program. First, executable program invariants can be enforced
at runtime, where they provide an early indicator of state corruption, help with
root causing, and stopping a program instead of producing unexpected values.
Runtime invariants serve as additional test oracles to amplify testing efforts to
catch subtle bugs related to state corruption; this in turn helps with regression
testing as the program evolves to satisfy new requirements. The utility of pro-
gram invariants has led to design-by-contract in languages such as Eiffel [31], as
well as support in other languages such as Java (JML [4]) and .NET (Code Con-
tracts [I1]). Further, for languages that support static formal verification (e.g.,
Dafny [25], Verus [23], F* [39], Frama-C [19]), these invariants can serve as the
specification as well as help make formal verification scale by making verifica-
tion modular and scalable. Unfortunately, invariants are underutilized because
they require additional work and are sometimes difficult to write, so it would be
useful to find a way to generate them automatically.

We focus specifically on automating the creation of class invariants for main-
stream languages without first-class specification language support (e.g., C++)
for several reasons:

— Class invariants are crucial to maintain the integrity of data structures and
help point to state corruption that may manifest much later within the class
or in the clients. Documenting such implicit contracts can greatly aid the
understanding for maintainers of the class.

— Class invariants often form important parts of preconditions and postcon-
ditions for high-integrity data structures. Capturing such invariants in a
method and asserting them in preconditions and postconditions help reduce
bloat in the specifications.

— Class invariants are challenging for users to write as writing them requires
global reasoning across all the public methods for the class.

For example, consider the class for a doubly linked list as implemented in Z3
Satisfiability Modulo Theories (SMT) codeﬂ

We see that the invariant is repeated four times: as a precondition and post-
condition for the object instance this and for other. The invariant is also non-
trivial, requiring local variables and a loop.

Synthesizing program invariants has been an active line of research, with
both static and dynamic analysis-based approaches. Static analysis approaches
based on variants of abstract interpretation [6] and interpolation [I7] create in-
variants that are sound by construction. However, such techniques do not readily
apply to mainstream programming languages with complex language constructs
or require highly specialized methods that do not scale to large modules, since

4 https://github.com/Z3Prover/z3/blob/master/src/util/dlist.h
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void insert_before(T* other) { 17 bool invariant() const {
- 18 auto* e = this;
SASSERT (invariant()); 19 do {
SASSERT (other->invariant()); 20 if (e->m_next->m_prev
- 1= e)
T* prev = this->m_prev; 21 return false;
T* other_end = other->m_prev; 22 e = e->m_next;
prev->m_next = other; 23 }
other->m_prev = prev; 24 while (e != this);
other_end->m_next = static_cast<T*>( 25 return true;

this); 26 }
this->m_prev = other_end;

SASSERT (invariant ());
SASSERT (other->invariant());

Fig.1: An invariant in the doubly linked list class in Z3.

the invariants need to be additionally provably inductive to be retained. On the
other hand, Daikon [I0] and successors learn invariants dynamically by instan-
tiating a set of templates and retaining the predicates that hold on concrete
test cases. While applicable to any mainstream language, it is well known that
Daikon generated invariants overfit the test cases and are not sound for all test
cases [37]. Recent works have studied fine-tuning large language models (LLMs)
to learn program invariants [36] but these methods inherit the same limitation
from Daikon because their training data consists of Daikon generated invari-
ants. More importantly, the approach has not been evaluated on stateful classes
to construct class invariants.

Recent work on prompting LLMs such as GPT-4 to generate program in-
variants for mainstream languages [9] [I5] [29] has been used to generate precon-
ditions, postconditions, and loop invariants, but these methods do not readily
extend to generating class invariants. Further, these methods cannot construct
expressive invariants that require iterating over complex linked data structures
(such as in Figure [1)) other than simple arrays.

In this work, we introduce ClassInvGen, a novel method for generating high-
quality object invariants for C++ classes through co-generation of invariants
and test inputs using LLMs such as GPT-40. We leverage LLMs’ ability to
generate code to construct invariants that can express properties over complex
data structures. The ability to consume not only the code of a class but also the
surrounding comments and variable names helps establish relationships difficult
for purely symbolic methods. Since an LLM can generate incorrect invariants,
the method also generates test inputs to heuristically prune incorrect candidate
invariants.

We leverage the framework proposed by Endres et al. [9] to evaluate the
test-set correctness and completeness given a set of hidden validation tests and
mutants. We contribute a new benchmark comprising standard C+- data struc-
tures along with a harness that can help measure both the correctness and
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completeness of generated invariants (Section . We demonstrate that Class-
InvGen outperforms a pure LLM-based technique for generating program invari-
ants from code (Sections as well as prior data-driven invariant inference
techniques such as Daikon (Section . We also demonstrate its applicability
for real-world code by performing a case study on ema, dlist, heap, hashtable,
permutation, scoped_vector, and the most complex class, bdd_manager within the
73 SMT solver codebase; the developers of the codebase confirmed most of the
new invariants proposed by ClassInvGen for these modules (Section .
Our contributions are summarized below:

— Present new techniques of invariant-test co-generation by combining sim-
ple static analysis with LLM and implement an end-to-end prototype (Sec-
tion .

— Introduce a high-quality ClassInvGen-instrumented benchmark for evaluat-
ing object invariants (Section .

— Investigate LLM-assisted class invariant synthesis (Sections .

— Conduct a case study on Z3 bdd_manager module using ClassInvGen (Sec-

tion .

2 Running Example: AVL Tree

Throughout this paper, AvlTree [40} [§] from our benchmark (Section will
be used as a running example to illustrate the workflow. An AVL tree is a self-
balancing binary search tree (BST) where the difference in heights between the
left and right subtrees of any node (called the balance factor) is at most 1. This
ensures that the tree remains approximately balanced. In this implementation
shown in Figure [3]in Section [3.1] the AvlTree class contains several public meth-
ods: insert, remove, contains, clear, height, size, empty, in_order_traversal,
pre_order_traversal, post_order_traversal. AvlTree maintains several class in-
variants determined by the authors of this paper:

— BST Property: Left child values are less than the node’s value, and right
child values are greater.

— Balance Factor: For each node, the difference in the heights of the left and
right subtrees is between -1 and 1.

— Correct Heights: The height of each node is 1 plus the maximum height of
its children.

Each of these invariants should hold true before and after every public method
call, and be established after the constructor method. The task is to infer these
high-quality invariants from the source code.

3 Approach

An overview of the ClassInvGen framework is shown in Figure [2| It outlines an
automated pipeline for inferring class invariants from source code. ClassInvGen
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Fig. 2: Overview of ClassInvGen.

takes a complete source program as input and outputs invariant candidates it
has identified with high confidence (called filtered invariants). ClassInvGen starts
with a preprocessing step which performs static analysis on the program (Sec-
tion. Next, an LLM is used to generate candidate invariants and filtering test
suites (Section . Then, the code is instrumented to facilitate checking candi-
date invariants (Section . Finally, ClassInvGen uses generated tests to prune
invariant candidates (Section [3.2)), and a refinement loop is used to iteratively
improve the results (Section

3.1 Generation

Preprocessing As illustrated in Figure [2] the generation phase begins with
a static analysis of the source program. ClassInvGen uses a Tree-Sitter-based
parser for program preprocessing; Tree-Sitter [3] is a parser generator tool that
constructs a syntax tree from source files.

ClassInvGen parses the entire source program into an abstract syntax tree
(AST) to extract class members and their recursive dependencies. It then iden-
tifies the target class and gathers details (e.g., method declarations, field dec-
larations, and subclass definitions) relevant to forming correct class invariants.
ClassInvGen recursively analyzes all identified classes (i.e., the target class and
its subclasses) and performs a topological sort to prepare generation from the
leaf class upward as shown in Algorithm

Generation by LLM After building the source program AST, ClassInvGen
uses LLMs to analyze the class module and infers both invariants for the target
class and tests that exercise the class’s implementation as thoroughly as possible.
ClassInvGen uses a fixed system prompt that defines class invariants and outlines
two main tasks: (1) generating class invariants from the source code, and (2)
creating a test suite of valid API calls without specifying expected outputs (see
prompt details in Appendix). Next, ClassInvGen instantiates a user prompt
template with the actual target class.
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Algorithm 1: Function to generate invariants for target class AST

1 Function GENERATEINVARIANT(target class):
if target class.id € invariants dict then
L return invariants_ dictftarget _class.idf

dep classes <— GETCLASSRECURSIVELY (target class)
rev_topsorted classes <— REVERSETOPLOGICALSORT(dep classes)
foreach class € rev_topsorted_ classes do
class_code < GeTCopEFORCLASS(class, invariants_ dict)
foreach dep € GETCLASSDEPENDENCIES(class) do
// Invariant: dep has been generated invariants for
dep_code - GeTCobEFORCLASS(dep, invariants dict)
class _code < class_code + dep code

© W N oA W N

[
= o

[ary
N

invariants _dict|class.id| <~ GENERATEINVARIANTWITHLLM(class_code)
13 | return invariants_ dict[target_ class.id]

14 Function GeTrCopeForCLAss(class, invariants _ dict,
include_ method _bodies=False):

15 class_text < class.get declaration text() // Header

16 if class.id € invariants _dict and invariants dict[class.id] then

17 class_text « invariants dict[class.id] + class text // Get
generated invariants

18 if include_ method _bodies then

19 L // Add method bodies if context allows

20 return class_ text

From the source program AST, ClassInvGen identifies program dependencies
and populates the prompt template with the leaf struct/class. Starting from the
leaf nodes, ClassInvGen leverages previously generated invariants by including
them in the prompt for later classes. To accommodate the LLM’s context win-
dow limit, only the relevant child classes of the current target class are included
in the prompt, with method implementations and private fields/methods hidden
when necessary. An algorithm for this process is presented in Algorithm

Algorithm [I] presents the invariant generation process for a source program
AST. The main function GENERATEINVARIANT takes a target_class and leverages
a caching mechanism through invariants_dict to avoid redundant computations
(Line. The algorithm first collects dependent classes via GETCLASSRECURSIVELY
(Line {4)) and sorts them using REVERSETOPLOGICALSORT to ensure dependency-
aware processing (Line [5). For each class in the sorted order, it constructs
the necessary context by obtaining the class code through GETCoDEFORCLASS
(Line . For each dependency dep of the current class, it retrieves the dep_code
and concatenates it with class_code (Lines. The algorithm then generates
invariants using GENERATEINVARIANTWITHLLM and stores them in invariants_dict
(Line[12)). The helper function GETCopEFORCLASS constructs class representations
by combining the declaration text with any existing invariants from invariants_dict
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(Lines [15H17). It optionally includes method bodies based on context window
constraints. This approach ensures efficient invariant generation while maintain-
ing all necessary context and dependencies (Line . The algorithm concludes
by returning final_invariants for the target class, effectively managing the in-
variant generation process while respecting LLM context limitations.

ClassInvGen accommodates large codebases by dividing the source program
into smaller modules that fit within the LLM’s context window. It then itera-
tively generates invariants and test cases, starting from leaf classes and working
up towards the root class. At each step, ClassInvGen leverages previous invari-
ants generated for child classes to inform the invariants for parent classes.

For the AvlTree example, we begin by instantiating the prompt with Node for
annotation, followed by AvlTree, since Node is a subclass of AvlTree, as illustrated
in Figure[3] In this specific case, however, Algorithm[I]does not make a difference
due to the small size of the source program; the entire AvliTree code fits within
the LLM’s context window easily.

class AvlTree {
public:
AvlTree();
AvlTree(const AvlTree &t);
AvlTree &operator=(const AvliTree &t);
~AvlTree(Q);

void insert(const T &v);
void remove(const T &v);
bool contains(const T &v);
void clear();
int height(Q);
int size(Q);
bool empty(Q);
std: :vector<T> in_order_traversal() const;
std: :vector<T> pre_order_traversal() const;
std: :vector<T> post_order_traversal() const;
private:
struct Node {
T data;
std: :unique_ptr<Node> left;
std: :unique_ptr<Node> right;
int balance_factor();
hH
// rest of the file
}

Fig. 3: Header file of AvlTree.

In contrast, when working with the bdd_manager class in Z3 (around 1700 lines
of code), ClassInvGen begins generation with bdd, a subclass of bdd_manager.
Algorithm [1] enables ClassInvGen to partition bdd_manager class and outputs
meaningful class invariants (see Section [f]).

Instrumentation To check candidate invariants, each public method is auto-
matically instrumented with a check_invariant call at both the start and end
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of its implementation. This allows us to verify that invariants hold both before
and after method execution. Each invariant is implemented as a method call to
prevent conflicts with local variables.

When a specific invariant is being checked, its code is plugged into the
check_invariant function with assertions. This ensures that during pruning,
whenever a public API call is made, each invariant candidate is automatically
verified.

Additional examples of instrumentation and invariant checking are provided
in Appendix [C]

3.2 Heuristic Pruning

The LLM generates test suites that serve as filters for invariant candidates.
To select the most effective test suite, we use line coverage as a metric, as it
provides a straightforward proxy for test suite completeness. The test suite with
the highest coverage becomes our set of filtering tests.

When generating tests, ClassInvGen creates valid sequences of APT calls with-
out asserting expected behavior, since our goal is to filter invariant candidates
rather than test the source program directly. Among all generated test suites,
we compile and run each one with the source program, selecting the one with
the highest line coverage as the filtering tests.

ClassInvGen dynamically expands the filtering tests only if coverage falls
below a specified threshold (default 80%). In our experiments, each benchmark
task’s filtering tests includes 5 to 15 individual tests, with each test comprising
5 to 20 lines of code (see example in Appendix |C]).

If an invariant candidate successfully compiles and runs with the filtering
tests, it is designated a filtered invariant and included in the final output of
ClassInvGen.

3.3 Refinement

For invariants that fail during compilation or runtime, ClassInvGen implements
a feedback-driven refinement process. The system collects compiler output, error
messages, and test results, then feeds this information back to the LLM using a
dedicated prompt template.

This feedback loop allows ClassInvGen to repair failing invariants by provid-
ing the LLM with specific error information and the context in which the error
occurred. We set a default threshold of 3 refinement attempts per invariant,
balancing the cost of LLM calls with the benefit of repairs.

Refinement allows ClassInvGen to fix common issues such as type errors,
undefined references, and logical inconsistencies. More detailed examples of the
refinement process are provided in Appendix [C]
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Table 1: Characteristics of the benchmark data structures. # LoC represents
lines of code, # methods indicates the number of implemented methods, and #
dep. shows the number of dependent classes for each data structure.

avl  binary  hash_heap linked queue red black stack vector

tree search tree table list tree
# LoC 249 229 176 135 172 117 282 96 117
# methods 25 22 11 14 14 12 25 11 18
# dep. 1 1 0 0 0 0 1 0 0
4 Results

4.1 Benchmark

We use a C++ implementation of classical data structures for our micro-benchmarks [§],
which include 9 data structures with associated unit tests: AvlTree, BinarySearchTree,
HashTable, Heap, LinkedList, Queue, RedBlackTree, Stack, and Vector. Table
shows the statistics of these benchmark data structures. To ensure correctness,
we thoroughly examined each benchmark example and corrected a few implemen-
tation bugs, treating this refined benchmark as the ground truth. All subsequent
experiments are based on this benchmark setup.

In addition to textbook examples, we also conducted experiments on util-
ity classes [42] from Z3 [33], including ema, dlist, heap, hashtable, permutation,
scoped_vector, and the most complex class, bdd_manager. The latter will be dis-
cussed in detail as a case study, including an evaluation with one of the authors
of Z3.

4.2 Evaluation

In this section, we evaluate the quality of ClassInvGen invariants. Specifically,
we explore the following research questions:

1. How many of these invariants are correct (with respect to the user-provided
test cases) and do they capture essential properties of the source code (Sec-
tion 7

2. How complete are the invariants in their ability to distinguish the correct
program from buggy counterparts (Section ?

3. How does ClassInvGen compare to a state-of-the-art technique in invari-
ant generation (namely Daikon, the most widely adopted tool for dynamic
invariant synthesis) (Section [4.5)?

Our experiments were conducted on a machine with 24 CPU cores and 64 GB
of RAM. We implemented ClassInvGen using GPT-40 as the underlying LLM,
with its default temperature setting of 1.

4.3 Correctness
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ClassInvGen produces filtered invari-
ants, which we evaluate using an auto-
mated pipeline (Figure 4)) against our
benchmark (Section[d.1)). A filtered in-
variant is considered correct if it re- Fig. 4: Evaluation of ClassInvGen gener-
ports no errors for any tests that suc- 1.4 invariants

cessfully compile and run. Our man-

ual review confirmed that all vali-

dated filtered invariants are indeed

correct, capturing essential properties of the data structures.

Benefits of Co-Generation. When generating invariants in isolation, Class-
InvGen produces an average of 25 unique invariants per benchmark with a 77%
pass rate against unit tests. With test co-generation, ClassInvGen successfully
eliminates all incorrect invariants, achieving perfect accuracy.

Refinement Effectiveness. After refinement, the number of filtered invariants
grows from 17 to 22 per example, representing a 29% increase. This demonstrates
ClassInvGen’s ability to transform potentially buggy invariants into valid ones
through feedback-guided refinement.

Summary. ClassInvGen’s invariant-test co-generation approach improves cor-
rectness from 77% to 100%. The filtering tests effectively identify valid invariants,
while the refinement process successfully expands the set of correct invariants.

Example # inv. # compiles # pass tests pass rate
avl tree 30 28 17 56.7%
queue 30 30 30 100.0%
linked list 32 32 24 75.0%
binary search tree 25 25 24 96.0%
hash table 29 29 26 89.7%
heap 22 22 12 54.5%
red black tree 26 26 15 57.7%
stack 15 15 11 73.3%
vector 18 18 16 88.9%
Average 25.22 24.56 19.44 77.0%

Table 2: Invariant-only results from 8 completions show that 25 invariants per
benchmark and 77% pass unit tests.

4.4 Completeness

To evaluate completeness, we use mutation testing. We generate mutants using
mutate cpp [28], producing between 236 and 682 mutants per program. We
focus on mutants that either compile successfully but crash during execution or
survive execution without errors.
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Example # filter tests # filtered inv. # good inv. pass rate
(coverage) (1 refine) (1 refine)
avl tree 10 (91.7%) 15 20 100.0%
queue 8 (100.0%) 20 29 100.0%
linked list 8 (92.3%) 22 36 100.0%
binary search tree 12 (95.6%) 16 19 100.0%
hash table 9 (90.3%) 25 27 100.0%
heap 7 (96.0%) 10 11 100.0%
red black tree 13 (85.4%) 11 18 100.0%
stack - 8 (100.0%) 14 14 100.0%
vector 10 (94.6%) 22 22 100.0%
Average 9.44 (94.0%) 17.22 21.78 100.0%

Table 3: For each example, the table shows the number and line coverage of
filtering tests, the number of filtered invariants without refinement, and with 1
refinement, as well as the unit test pass rate after 1 refinement. With filtering
tests and 1 refinement, ClassInvGen achieves a perfect unit test pass rate.

Table 4: ClassInvGen Performance Over Baseline for Previously Survived Mu-
tants. The table shows additional mutants killed by ClassInvGen compared to
the baseline and percentage improvement.

Data Structure Unsolved Base (#(%)) Add. by ClassInvGen (#) Impr. (%)

binary search tree 107(23.67) 7 6.54
hash _table 258(37.83) 38 14.73
heap 108(32.24) 12 11.11
linked _list 57(13.54) 2 3.51
red black tree 184(27.10) 9 4.89
stack 67(28.39) 6 8.96
vector 101(29.79) 33 32.67
avl tree 84(17.57) 0 0.00
queue 91(26.30) 11 12.09
Total 1057 118 11.16

We conducted experiments to evaluate three configurations: unit tests only,
ClassInvGen only, and unit tests with ClassInvGen (strongest test oracles). As
shown in Table |4 ClassInvGen’s invariants kill an additional 11.2% of mutants
on average compared to unit tests alone, with improvements reaching up to
32.67% for specific data structures.

Figure [5] shows tests with ClassInvGen kill the most mutants. Figures [f]
and [7] show examples of mutants that survived unit tests but were killed by
ClassInvGen invariants.

4.5 Comparison of ClassInvGen v.s. Daikon

We compared ClassInvGen with Daikon [I0], using filtering tests to generate
program traces for Daikon’s invariant detector. On average, each benchmark
example has around 5 Daikon invariants, with some being incorrect (Table [5]).
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Fig. 5: Completeness Experiment Result. The 3 bars from left to right are Tests,
ClassInvGen, Tests+ClassInvGen. Tests+ClassInvGen kills the most mutants.

1 void HashTable::clear_table() {
2 this->table.clear();
3 this->_num_elements = 0;
4 - this->_size = 0;

5 + this->_size += 0;

6 }

7}

Fig. 6: Mutant that survived unit tests but killed by ClassInvGen

Table 5: Daikon Incorrect Invariants per Benchmark

Data Structure Total # Invariants Incorrect Invariants

hash _table 8 1
binary search tree 3 0
heap 10 1
red black tree 2 0
avl tree 4 0
vector 3 1
stack 6 2
queue 7 1
linked list 4 1
Average 5.2 0.78

Through manual review, we identified 7 incorrect Daikon invariants that pass
unit test validation. These invariants pass because both the filtering tests and
unit tests coincidentally constructed similar data structures.
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this->hash_function
this->_num_elements
this->_size = size;
- this->load_factor = 0.75;
+ this->load_factor = -0.75;
this->table =
std::vector<std::shared_ptr<std::vector<std::pair<Key, Value>>>>(size);

hash_function;
0;

Fig. 7: Another Mutant that survived unit tests but was killed by ClassInvGen
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Fig. 8: Daikon vs. ClassInvGen Kills

Most Daikon invariants simply indicate that class pointers are not null (27
of 40 correct invariants) or that element counts are non-negative (6 invariants).
The most valuable invariants, like this->n < this->maxSize in Stack, have more
impact on identifying mutants (Figure .

This shows a key weakness of Daikon: it cannot differentiate between univer-
sally true invariants and those that hold only in specific test contexts. LLMs are
better at capturing true "class" invariants that are inherent to the data structure
rather than incidental to the tests.

5 Case study: Z3 bdd_manager class

As a real-world case study, we apply ClassInvGen to synthesize invariants for 7
core data structures from Z3 [33], ranging from the simple 57-line ema class to the
complex 1635-line bdd_manager. The complete set includes dlist, heap, hashtable,
permutation, and scoped_vector, with varying implementation complexity and



14 C. Sun et al.

Table 6: Statistics of the studied data structures in Z3

‘ema dlist heap hashtable permutation scoped vector bdd manager

# LoC 57 243 309 761 177 220 1635
# dependencies| 0 2 1 9 2 2 13

the number of dependent classes as shown in Table[f] Our results were validated
by one of the Z3 authors, who confirmed at least one correct and useful invariant
for each studied class, with the bdd_manager class yielding 11 valuable invariants
including the 2 already present from 8 generations.

73 is a widely adopted SMT solver used in a variety of high-stakes ap-
plications requiring rigorous correctness, such as formal verification, program
analysis, and automated reasoning. It is integrated into tools like LLVM [22],
KLEE [5], Dafny [25] and Frama-C [19]. We selected the Z3 codebase due to its
stringent correctness requirements; as an SMT solver, Z3 is employed in appli-
cations demanding high reliability. This high-stakes environment makes Z3 an
ideal testbed for assessing the effectiveness of synthesized invariants.

The bdd_manager classlﬂ is particularly noteworthy. It was chosen because
it is a self-contained example with developer-written unit tests for validation,
presenting a realistic yet manageable challenge. Note that the existing devel-
oper tests were used after invariants were generated, not as input to the LLM.
The bdd_manager class in Z3 is a utility for managing Binary Decision Diagrams
(BDDs), which are data structures used to represent Boolean functions effi-
ciently. In BDDs, Boolean functions are represented as directed acyclic graphs,
where each non-terminal node corresponds to a Boolean variable, and edges
represent the truth values of these variables (true or false). This representa-
tion simplifies complex Boolean expressions and enables efficient operations on
Boolean functions.

With 382 lines of code in its header and 1253 lines in the implementation
file, bdd_manager surpasses standard data structure complexity, offering an op-
portunity to evaluate ClassInvGen’s capability to generate meaningful invariants
relevant to real-world scenarios. ClassInvGen achieves this by compositional gen-
eration, recursively traversing the source program’s AST (Section . Recursive
generation became crucial when handling large classes like bdd_manager, which
exceeded the LLM’s context window. Decomposing and processing its compo-
nents separately allowed us to fit relevant parts into the model’s input, demon-
strating the utility of recursive invariant generation for large codebases. This
supports its relevance in real-world applications beyond the benchmarks.

The bdd_manager class includes a developer-written member function for check-
ing its well-formedness, as shown in Figure [9] which we removed during Class-
InvGen generation. Of the 56 invariants generated by ClasslnvGen, one of Z3
main authors identified 11 distinct correct and useful invariants (e.g., Figure
including the 2 developer-written invariants; these invariants could potentially

5 https: //github.com/Z3Prover/z3/blob/master/src/math/dd/dd_bdd.h
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be integrated into the codebase. An additional 5 distinct ok invariants (e.g.,
Figure are labeled correct but have limited utility, 16 distinct correct but
useless invariants (e.g., those already checked during compilation, such as type
checks and constants, Figure , and 2 incorrect invariants (e.g., Figure .
The remaining invariants were repetitions within these categories. This evalua-
tion aligns with ClassInvGen’s validation results, as our validation pipeline also

identified 2 incorrect invariants that failed bdd_manager unit tests.

Overall, the Z3 authors’ evaluation results further confirm ClassInvGen’s
potential utility in real-world, large-scale codebases.

bool bdd_manager::well_formed() {

bool ok

for (un
ok
if

<

for (bdd_node const& n

= true;

signed n : m_free_nodes) {

&= (lo(n) == 0 && hi(n)

(tok) {
IF_VERBOSE (O,
< lo(n) << " "

verbose_stream() <<
<< hi(n) <<

display(verbose_stream()););

UNREACHABLEQ) ;
return false;

m_nodes) {

if (n.is_internal()) continue;
igned 1vl = n.m_level;

uns
BDD
BDD
ok
ok
ok
ok
if

" hi

return

lo = n.m_lo;
hi = n.m_hi;
&= is_const(lo)
&= is_const (hi)
&= is_const(lo)
&= is_const (hi)
(lok) {
IF_VERBOSE (0,
UNREACHABLE(Q) ;
return false;

ok;

level(lo) < 1lvl;
level(hi) < 1lvl;
Im_nodes[lo].is_internal();
Im_nodes[hi].is_internal();

display(verbose_stream() << n.m_index << " lo
<< hi << "\n")3;);

== 0 & m_nodes[n].m_refcount == 0);

<< m_nodes[n].m_refcount <<

"free node is not internal "
"\n";
H

<< n <<

<< lo <<

Fig.9: Z3 developer-written class invariants for bdd_manager class

// Node con
for (unsign

}

sistency: Each node’s index should match its position in m_nodes
ed i = 0; i < m_nodes.size(); ++i) {
assert(m_nodes[i].m_index == 1i);

Fig.10: Correct and useful invariant for bdd_manager class
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// Cache consistency: Entries in the operation cache should be valid
for (const auto* e : m_op_cache) {

assert(e != nullptr);

assert(e->m_result != null_bdd);

Fig.11: Ok invariant for bdd_manager class

// m_is_new_node is a boolean
assert(m_is_new_node == true || m_is_new_node == false);

Fig.12: Correct and useless invariant for bdd_manager class

6 Related Work

In this section, we discuss how ClassInvGen relates to previous works on syn-
thesizing program invariants statically, dynamically and neurally.

6.1 Static approaches

Static techniques, such as interpolation [30] or abstract interpretation [6] perform
a symbolic analysis of source code to compute static over-approximations of run-
time behavior and represent them as program invariants over suitable domains.
These techniques are often used to prove the safety properties of the code. They
focus on synthesizing loop invariants and method pre/postconditions, and a few
around module-level specifications [2I]. Given the undecidability of program ver-
ification, these techniques scale poorly for real-world programs, especially in the
presence of complex data structures and frameworks. In contrast, ClassInvGen
can be applied to large codebases to synthesize high-quality class invariants but
does not guarantee soundness by construction.

6.2 Dynamic approaches

Dynamic synthesis techniques, such as Daikon [10], DIG [34], SLING [24], and
specification mining [I], learn invariants by observing the dynamic behaviors
of programs over a set of concrete execution traces. One advantage of these
dynamic techniques is that they can be agnostic to the code and generally ap-
plicable to different languages. However, these approaches are limited by the
templates or patterns over which the invariants can be expressed. DySy [7] em-
ploys dynamic symbolic execution to alleviate the problem of fixed templates for
bounded executions but resorts to ad-hoc abstraction for loops or recursion. [16]
trained models to predict the quality of invariants generated by tools such as
Daikon, but do not generate new invariants. SpecFuzzer [32] generates numerous
candidate assertions via fuzzing to construct templates and filters them using
Daikon and mutation testing. Finally, Geminus [2] aims at synthesizing sound
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1 // The number of nodes should not exceed the maximum number of BDD nodes
2 assert(m_nodes.size() <= m_max_num_bdd_nodes);

Fig. 13: Incorrect invariant for bdd_manager class

and complete class invariants representing the set of reachable states, guiding
their search using random test cases termed Random Walk.

Unlike these approaches, ClassInvGen can generate a much larger class of
invariants, leveraging multimodal inputs, including source code, test cases, com-
ments, and even the naming convention learned from training data, to enhance
invariant synthesis. Further, unlike prior dynamic approaches, LLM-based test
generation (an active area of research [26] B8] [41]) reduces the need to have a
high-quality test suite to obtain the invariants.

For the use case of static verification, learning-based approaches have been
used to iteratively improve the quality of the synthesized inductive invariants [13]
141, 35] from dynamic traces. However, these approaches have not been evaluated
in real-world programs due to the need for symbolic reasoning.

6.3 Neural approaches

LLM-based invariant synthesis is an emerging area of research with some note-
worthy recent contributions. [36] trained a model for zero-shot invariant syn-
thesis, which incurs high training costs and lacks feedback-driven repair. Their
approach uses Daikon-generated invariants as both training data and ground
truth, which can lead to spurious invariants.

Prior work on nl2postcond [9] prompts LLMs to generate pre and postcon-
dition of Python and Java benchmarks, illustrating LLMs’ ability to generate
high-quality specifications. However, they do not prune incorrect invariants and
do not generate class invariants that ClassInvGen does. It is an interesting future
work to combine this work with ClassInvGen to generate complete class-level
specifications including pre and postconditions for the public methods of the
class.

For static verification, recent works include the use of LLM for intent-formalization
from natural language [20], and inferring specifications and inductive program
invariants [I8] 29]. None of these techniques scale to real-world programs due to
the need for complex symbolic reasoning.

7 Limitation

ClassInvGen uses generated tests for invariant pruning, but the test suite may
include spurious tests that can incorrectly prune valid invariants. The generated
tests might not represent valid sequences of method calls; for example, invoking
a pop() method before a push() method could fail certain assertions, leading to
improper pruning.
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Another limitation is the LLM’s context window, which restricts the amount
of code that can be processed in a single call. This limitation makes it challeng-
ing to handle large codebases. ClassInvGen partially addresses this issue through
compositional generation, breaking down the code into manageable parts. On-
going advancements in LLMs, as highlighted in recent work [27], [12], are also
expected to mitigate this limitation.

For future work, we plan to integrate invariant generation with the genera-
tion of formal specifications for member functions, enabling LLM a more com-
prehensive understanding of program behavior. Additionally, we aim to evaluate
ClassInvGen on larger and more complex systems beyond Z3, demonstrating its
scalability to diverse codebases.

8 Conclusion

In this paper, we describe an approach to leverage LLMs and a lightweight mixed
static/dynamic approach to synthesize class invariants. Our experiments on stan-
dard C++ data structures as well as a popular and high-assurance codebase
demonstrate the feasibility of our approach. Our technique is currently limited
by an automated way to integrate the generated tests into the build system of
the underlying repo, and the need for developers to validate the invariants. We
envision that integrating ClassInvGen with the continuous integration (CI) and
pull requests (PR) can aid in scaling the approach to more developers. In future
work, we also plan to investigate incorporating developer feedback to repair or
strengthen generated invariants.
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A  Prompt

You are an expert in creating program invariants from code and natural language.
Invariants are assertions on the variables in scope that hold true at different

program points

We are interested in finding invariants that hold at both start and end of a
function within a data structure. Such an invariant is commonly known as an object
invariant.

The invariants can usually be expressed as a check on the state at the particular
program point. The check should be expressed as a check in the same underlying
programming language which evaluates to true or false. To express these, you can
use:

- An assertion in the programming language

- A pure method (which does not have any side effect on the variables in scope)
that checks one or more assertion

- For a collection, you can use a loop to iterate over elements of the collection
and assert something on each element or a pair of elements.

Task Description:

Task 1: Given a module, in the form of a class definition, your task is to infer
object invariants about the class. For doing so, you may examine how the methods
of the class read and modify the various fields of the class.

For coming up with invariants, you may use the provided code and any comments in
the code. You may also use world knowledge to guide the search for invariants.

Task 2: Generate unit tests for the class based on the class definition and public
API methods. The test cases should simulate a series of public method calls to
verify the behavior of the class, but do not use any testing framework like gtest.
Do not add ‘assert‘ or any form of assertions.

Fig. 14: ClassInvGen Generation system prompt: instruction and task descrip-
tion.

Figure [14] and Figure [15] show the system prompt used by ClassInvGen for
invariant-test co-generation. The former presents the instruction and task de-
scription, while the latter illustrates the input-output format.
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Input Format:

You will be given the name of a class or typedef, and a section of code containing
the definition of the class. You will also be given the definitions of functions
that read and modify the fields of the class.

Output Format:
The output should be in the following format:

The first paragraph should begin with "REASONING:". From the next line onwards, it
should contain the detailed reasoning and analysis used for the inference of the

object invariants. The entire text should be enclosed in $$$. For example,

‘88$

REASONING:

explanation

$$$

The next paragraph should begin with "INVARIANTS:". From the next line onwards, it
should contain a list of the various invariants inferred. The invariants should
be in the form of code in the same underlying programming language, enclosed by
Each invariant should start from a new line, and be separated by "---". Use
lambda if necessary. If lambda is recursive, explicitly specify the type of the
lambda function and use ‘std::function‘ for recursion. Do not use helper functions
For example,
INVARIANTS:
£¢t/% Invariant 1 */‘*°*
£¢¢/* Multi line Invariant 2 */
assert(...); “‘°

¢¢t/*% Invariant 3 */*‘*‘*

The next paragraph should begin with "TESTS:". From the next line onwards, it
should contain a list of a API call sequence in the form of code enclosed by ‘*‘°
Each test should start from a new line, and be separated by "---". For example,
TESTS:

Cei/x Test 1%/
this->methodl1();
this->method2(); ‘"

fei/% Test 2 ¥/

this.method3(...); “*¢

Coi/k Test 3 R/t

Important:

1. Follow the output format strictly, particularly enclosing each invariant in
triple-ticks (‘‘‘), and enclosing the reasoning in $$$.

2. Only find object invariants for the target class provided to you, do not infer
invariants for any other class.

3. Make sure the invariant is a statement in the same underlying programming
language as the source program.

4. If you can decompose a single invariant into smaller ones, try to output
multiple invariants.

Fig. 15: ClassInvGen Generation system prompt: input-output format.

Name of Data Structure to Annotate: {struct}
Code:

{code}

Fig. 16: ClassInvGen Generation user prompt template.
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You are an expert in repairing program invariants from code and natural language.
Invariants are assertions on the variables in scope that hold true at different
program points.

We are interested in finding invariants that hold at both start and end of a
function within a data structure. Such an invariant is commonly known as an object
invariant.

The invariants can usually be expressed as a check on the state at the particular
program point. The check should be expressed as a check in the same underlying
programming language which evaluates to true or false. To express these, you can
use:

- An assertion in the programming language

- A pure method (which does not have any side effect on the variables in scope)
that checks one or more assertion

- For a collection, you can use a loop to iterate over elements of the collection
and assert something on each element or a pair of elements.

Task Description:

Given a module, in the form of a class definition, your task is to infer object
invariants about the class. For doing so, you may examine how the methods of the
class read and modify the various fields of the class.

For coming up with invariants, you may use the provided code and any comments in
the code. You may also use world knowledge to guide the search for invariants.

Input Format:

You will be given the name of a class or typedef, and a section of code containing
the definition of the class. You will also be given the definitions of functions

which read and modify the fields of the class.

Output Format:
The output should be in the following format:

The first paragraph should begin with "REASONING:". From the next line onwards, it
should contain the detailed reasoning and analysis used for the inference of the

object invariants. The entire text should be enclosed in $$$. For example,

‘88$

REASONING:

explanation

$$8° ¢

The next paragraph should begin with "INVARIANTS:". From the next line onwards, it
should contain a list of the various invariants inferred. The invariants should
be in the form of code in the same underlying programming language, enclosed by

Each invariant should start from a new line, and be separated by "---". For
example,

INVARIANTS:

f¢f/*% Invariant 1 */“°°¢

f¢¢/*% Multi line Invariant 2 */

assert(...); "

‘¢¢/* Invariant 3 */‘‘*

Important:

1. Follow the output format strictly, particularly enclosing each invariant in
triple-ticks (‘‘‘), and enclosing the reasoning in $$$.

2. Only find object invariants for the target class provided to you, do not infer
invariants for any other class.

3. Make sure the invariant is a statement in the same underlying programming
language as the source program.

4. If you can decompose a single invariant into smaller ones, try to output
multiple invariants.

Fig. 17: ClassInvGen Refinement system prompt: instruction and task descrip-
tion.
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Please fix the failed invariants given the feedback, tests and the original source
code.

Failed Invariant:

{invariant}

Error message for the failed invariant:

{feedback}

Name of Data Structure to Annotate: {struct}

Original Code:

{code}

Gold Tests that Fail the Invariant:
{tests}

Fig. 18: ClassInvGen Refinement user prompt template.
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B Daikon Invariants Frequency Tables

Table 7: Invariants for avl tree, 11 public methods.
Invariant Count
this->root has only one value
this->root. M _t has only one value
this->root. M t. uniq ptr_impl<AvlTree::Node, std::default delete<AvlTree::Node> >. M t has only one value
this[0] has only one value
this->n one of { 3, 4 }
this[0] != null
this->root != null
this->root. M t != null
this->root. M _t.__uniq_ptr_impl<AvlTree::Node, std::default _delete<AvlTree::Node> >. M _t != null
this->n one of { 1, 2, 3 }
this->n one of { 0, 3 }
this->n >=1
this->n —=
t.root has only one value
t.root. M _t has only one value
t.root._ M_t. uniq_ptr_impl<AvlTree::Node, std::default _delete<<AvlTree::Node> >. M _t has only one value
t.n ==
this->n == return
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Table 8: Invariants for red black tree, 11 public methods.

Invariant Cot
this[0] != null 3
this->root != null 3
this->root. M _t != null 3
this->root. M _t. _uniq_ptr_impl<RedBlackTree::Node, std::default delete<RedBlackTree::Node> >. M _t != null 3
this->n one of { 3, 4, 6 } 3
this->root has only one value 3
this->root. M t has only one value 3
this->root. M _t.__uniq_ptr_impl<RedBlackTree::Node, std::default delete<RedBlackTree::Node> >. M _t has only one value| 3
this[0] has only one value 2
this->n >= 0 1
(No intersection exists) 1
t.root has only one value 1
t.root. M _t has only one value 1
t.root. M _t. _uniq_ptr_impl<RedBlackTree::Node, std::default _delete<RedBlackTree::Node> >. M _t has only one value 1
tn ==3 1
No intersection 1
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Table 9: Invariants for linked list, 8 public methods.
Invariant Count
this[0] has only one value 5
this->head has only one value
this->head. M _t has only one value
this->head. M _t. _uniq_ptr_impl<LinkedList::Node, std::default _delete<LinkedList::Node> >. M t has only one value
this[0] != null
this->head != null
this->head. M _t != null
this->head. M _t. _uniq_ptr_impl<LinkedList::Node, std::default _delete<LinkedList::Node> >. M _t != null
this->tail[] elements != null
this->tail[].next elements != null
this->tail[].next. M t elements != null
this->n >= 0
this->n == 0
this->tail[].data elements one of { 1 }
this->tail[].data one of { [1] }
this->n one of { 1 }
this->n one of { 1, 2 }
this->tail[|.data elements >= 1
this->tail[].data elements <= this->n
this->tail[].data elements one of { 1, 2, 4 }
this->tail[|.data one of { [1], [2], [4] }
this->n one of { 2, 3 }
this->tail[].data == [3]
this->tail[].data elements ==
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Table 10: Invariants for binary search tree, 11 public methods.
Invariant
this->root has only one value
this->root. M t has only one value
this->root. M _t.__uniq_ptr_impl<BinarySearchTree::Node, std::default _delete<BinarySearchTree::Node> >. M _t has only one va
this->n one of { 0, 2, 3 }
this->n one of { 0, 3 }
this[0] has only one value
this[0] != null
this->root != null
this->root. M _t != null
this->root. M _t.  uniq ptr_impl<BinarySearchTree::Node, std::default delete<BinarySearchTree::Node> >. M _t != null
t.root has only one value
t.root. M _t has only one value
t.root. M _t.__uniq_ptr_impl<BinarySearchTree::Node, std::default_delete<BinarySearchTree::Node> >. M _t has only one value
tn ==3
(this->n == return) == (return == orig(this->n))
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Table 11: Invariants for heap, 7 public methods.

Invariant Count
this->comp._M _invoker has only one value 7
this->comp. Function base. M manager has only one value 7
this[0] has only one value 6
this->data has only one value 6
this->data. Vector_base<int, std::allocator<int> >. M _impl has only one value 6
this->comp has only one value 6
this->comp. Function base. M functor has only one value 6
this->comp. Function base. M _functor. M _unused has only one value 6
this[0] != null 3
this->data != null 3
this->data. Vector base<int, std::allocator<int> >. M impl != null 3
this->comp != null 3
this->comp. M _invoker != null 3
this->comp. Function base. M _functor != null 3
this->comp._ Function_base. M _functor. M _unused != null 3
this->comp. Function base. M manager != null 3
this->data. Vector base<int, std::allocator<int> >. M impl. Vector impl data. M start[|] elements >= 1 2
this->data._Vector_ base<int, std::allocator<int>> >. M _impl. Vector_ impl data. M _start != null 1
this->data. Vector base<int, std::allocator<int> >. M _impl. Vector_ impl data. M finish != null 1
this->data. Vector base<int, std::allocator<int> >. M impl. Vector impl data. M end of storage != null| 1

Table 12: Invariants for hash table, 7 public methods.

Invariant Count
digits == "000102...6979899" 3
77tag —_—nn 3
this[0] has only one value 3
this->hash_ function has only one value 3
this->hash _function. Function base. M functor has only one value 3
this->hash _function. Function base. M _functor._ M _unused has only one value 3
this->hash _function. Function base. M _functor. M _pod_data == "" 3
this->load _factor == 0.75 3
this->table has only one value 3
this->table. Vector base<... >. M impl has only one value 2
this->table._Vector base<... >. M _impl has only one value 1
this-> num_elements one of { 0, 1 } 1
this-> size == 10 1
this->table. Vector base<... > > > > >. M _impl. Vector_ impl data. M _ end_ of storage 1
key. M dataplus has only one value 1
key. M _dataplus. M _p one of { "keyl", "key2" } 1
key. M _string length == 4 1
this-> num_elements >= 0 1
this-> size >= 0 1
this-> num elements <— this-> size 1
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Table 13: Invariants for vector, 11 public methods.
Invariant Count
this[0] has only one value 9
this->capacity == 5

this->data has only one value
this->datal[] elements one of { 1, 2 }

this->n ==
this->data[] == [1, 2|
this->n in this->data]|
this->data| == [1]

this->n == 0

this->n one of { 1 }

this->n in return]]

return|] == [1, 2]

return|| elements one of { 1, 2 }
this->capacity ==

this->data == null

this->n ==1
this->n == v.n
this->capacity == v.capacity

v.data has only one value
voneof {1,2}

this->capacity one of { 5 }
this->data[| sorted by <
this->n <= this->capacity
this->n < this->capacity
this->n one of { 2, 5 }
this->data[| elements == 1
this->data[| one of { [1], [1, 2] }
return one of { 1, 2
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Table 14: Invariants for queue, 7 public methods.
Invariant Count
this->data has only one value
this->maxSize == 10

this[0] has only one value

this->data[] == [10, 20, 30]
this->data|| elements one of { 10, 20, 30 }
this->head one of { 0, 1 }

this->tail == 3

this->n one of { 2, 3 }

this->maxSize in this->data||

this[0] != null

this->data != null

this->datal] elements >= 0
this->datal] sorted by <

this->head < this->maxSize

this->tail < this->maxSize
this->datal|] elements one of { 1, 2 }
this->datal] one of { [1], [1, 2] }
this->tail one of { 0, 1, 2 }

this->tail in this->datal]]

this->head - this->tail + this->n == 0
this->tail one of { 2, 3, 100 }
this->maxSize one of { 10, 160 }
this->n < this->maxSize

this->head one of { 0, 50 }

this->tail >= 0

this->n <= this->maxSize

this->head <= this->tail

this->head one of { 0, 2 }

this->n one of { 0, 1 }

this->head == other.head
this->maxSize == other.maxSize
this->datal] == [7, 14]

this->datal| elements one of { 7, 14 }
this->head == 0

other.data has only one value

other.tail ==
this->head one of { 0, 1, 2 }
this->head - this->tail 4 return == 0
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return one of { 0, 1, 2 }

Table 15: Invariants for stack, 6 public methods.
Invariant Count
this->maxSize one of { 10, 160, 1280 }
this->data[] sorted by <

this->data[| elements < this->maxSize
this->n < this->maxSize

this[0] != null

this->data != null

this[0] has only one value

this->data[| elements >= 0

this->n one of { 0, 1, 2 }
this->maxSize == other.maxSize

this has only one value

this->data has only one value

this->n == 2

this->maxSize == 10

other.data has only one value
other.datal] == [1, 2]

other.data[] elements one of { 1, 2 }
this->n <= this->maxSize

NN WW WS R

31



32 C. Sun et al.

C Additional Implementation Details

This appendix provides additional details and examples for the implementation
of ClassInvGen.

C.1 Code Instrumentation and Invariant Examples

Figure[I9]shows how a public method is instrumented with invariant checks, and
Figure [20] shows an example of an incorrect invariant.

bool AvlTree::empty() { 1 void AvlTree::check_invariant() {
check_invariant(); 2 std:: function<bool (const std::unique_ptr<
auto ret = empty_original(); Node>&) >
check_invariant(); 3 is_balanced = [&](const std::unique_ptr<
return ret; Node>& node) -> bool {
} 4 if (!node) return true;
5 int left_height = height(node->left);
bool AvlTree::empty_original() { 6 int right_height = height(node->right);
return n == 0; 7 if (std::abs(left_height - right_height
} ) > 1)
8 return false;
9 return i alan n ->lef
(a) AvlTree instrumented with invaris i::ﬁalanﬁzgEnggi_ﬂfgﬁi)f&
ants 11 b

12 assert(is_balanced(root));

13 }

(b) Example of a correct AvlTree class invari-
ant

Fig. 19: AvlTree instrumentation and invariant example

void AvlTree::check_invariant() {
assert (height(root) == get_height(root));

3}

Fig.20: Example of an incorrect invariant of AvlTree because there is no
get height method

C.2 Test Generation Examples

Figure[2I]shows an example of a generated test suite used for filtering invariants.

C.3 Refinement Details

ClassInvGen implements a feedback loop for refining failing invariants. Figure
shows an error message, while Figures and [23] show the BST invariant
before and after refinement.
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int main(Q) {
// Test Case 1:

tree.insert (20);

33

Basic insertions and traversals

tree.insert(5);

empty checks

tree.insert (20);

tree.empty(Q);

{
AvlTree tree;
tree.insert (10);
tree.in_order_traversal();
tree.pre_order_traversal();
}
// Test Case 2: Size, height,
{
AvlTree tree;
tree.insert (10);
tree.size(); tree.height();
}
// more test cases

Fig.21: A test suite generated for AvlTree

avl_tree.cpp: In lambda function:

avl_tree.cpp:21:16: error: use of

’is_balanced’ before deduction of
auto’

(a) gce compiler error messages

void AvlTree::check_invariant() {

std:: function<bool (const std::unique_ptr<Node>&,
[&] (const std::unique_ptr<Node>& node,

if (!node) return true;
if (node->data <= min ||
return is_bst(node->left,
is_bst(node->right,
};
assert(is_bst(root,

));

std::numeric_limits<T>::min(),

1 void AvlTree::check_invariant() {
2 auto is_bst = [&](const std::unique_ptr
<Node>& node,

3

3 const T& min, const T& max) -> bool {

1 if (!node) return true;

5 if (node->data <= min ||

6 node->data >= max) return false;

7 return is_bst(node->left, min, node->
data) &&

8 is_bst(node->right, node->data,
max) ;

9 58

10 assert(is_bst(root, std::numeric_limits<
T>::minQ),

std::numeric_limits<T>::max()));

(b) BST property before refinement

const T&)>
const T& max)

const T&,

const T& min, ->

node->data >= max) return false;
min,
node->data,

node->data) &&
max) ;

std::numeric_limits<T>::max()

Fig.23: BST property after refinement: auto is changed to explicit declarations
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