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A CODE LINK

Our code is available on https://github.com/AnonymousPaper2026/MedSpikeFormer.

B PROOF OF THE PROPOSITION 1

Proposition 1. Information Gain of SDSA. Let SSA denote the output of conventional spike atten-
tion (e.g., SSA, Q-K attention) which only models interactions among activated neurons. Suppose
the inactivated components (QI > 0 or KI > 0) carry non-trivial information about the input X .
Then the enhanced attention output Senh constructed by SDSA reduces information loss compared
to traditional spike attention, and satisfies:

H(X|Senh) < H(X|SSA)

Equivalently in mutual information form:

I(X;Senh) = I(X;QA, QI ,KA,KI)

> I(X;QA,KA) = I(X;SSA).

where I(· ; ·) denotes the mutual information.

Proof 1. The proof consists of three parts establishing strict information gain from inactivated
neurons.

Part 1: Information Loss in Traditional Approach. For any inactivated neuron (i, j) where Qij = 0:

H(Xij |Qij = 0) = H(Xij)

I(Xij ;Q
ij) = 0

since Qij = 0 provides no information about sub-threshold values Xij ∈ (0, θ). The traditional
output SSA discards all sub-threshold information:

H(X|SSA) = H(X|QA,KA) ≥
∑
i,j

Qij=0

H(Xij)

Part 2: Information Preservation in Decomposition. For inactivated neurons, Qij
I = 1 when Qij =

0. This preserves knowledge of sub-threshold activation:

I(Xij ;Q
ij
I ) = H(Qij

I )−H(Qij
I |Xij)

= Hb(p0)− (1− p0)Hb

(
pθ

1− p0

)
> 0

where p0 = P (Xij < θ), pθ = P (0 < Xij < θ), and Hb is binary entropy. The strict inequality
holds when 0 < pθ < 1.

Part 3: Attention Mechanism Propagates Information. The SDSA output contains terms directly
utilizing inactivated neurons:

Senh ⊇


WA ⊙KA (activated-inactivated interaction)
WI ⊙KA (direct inactivated information)
WA ⊙KI (direct inactivated information)
WI ⊙KI (direct inactivated information)

1
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where Senh incorporates interactions from inactivated neurons, the support set expands to Senh,
strictly containing SSA. By the data processing inequality and the information chain rule:

I(X;Senh) = I(X;QA, QI ,KA,KI)

=
∑
i,j

I(Xij ;Q
ij
A, Q

ij
I ,K

ij
A ,Kij

I )

>
∑
i,j

I(Xij ;Q
ij
A,K

ij
A )

= I(X;SSA)

where the strict inequality comes from Part 2 when ∃ inactivated neurons with 0 < Xij < θ.

The conditional entropy result follows from the mutual information identity:

H(X|S) = H(X)− I(X;S)

H(X|Senh) = H(X)− I(X;Senh)

< H(X)− I(X;SSA)

= H(X|SSA)

completing the proof.

C PROOF OF THE PROPOSITION 2

Proposition 2. Gradient Dynamics and Stability of Distribution Alignment. Under the standard
assumption that Os ∈ [ϵ, 1] and Oa ∈ [ϵ, 1] for a small ϵ > 0 (ensuring no log-domain singularity),
the combined gradient effectively guides the optimization process to address the aforementioned
challenges in practice:

∇Lalign =
∂Lalign

∂Os
=

1

N

(
log
Os

Oa
+ 1

)
+

2

N

(
Os −Oa

)
,

where the gradient 1
N (log Os

Oa
+1) governs distributional alignment by measuring relative discrepan-

cies in probabilistic structure. The gradient 2
N (Os −Oa) enforces geometric fidelity by penalizing

absolute pixel-wise errors.

Further, the Frobenius norm of the gradient satisfies:

||∇Lalign||F ≤
1

N

√
N2(log ϵ+ 1)2 +

2

N

√
N2(1− ϵ)2 = 3− 2ϵ+ | log ϵ|,

This guarantees that gradients remain bounded for any matrix, which ensures convergence. There-
fore, the ∇Lalign effectively minimizes the divergence between SDSA and ANN-based self-
attention feature response distributions, thereby reducing spike-information distortion to enhance
segmentation performance under cluttered or low-contrast conditions.

Proof 2. The proof establishes the boundedness of the gradient norm through two parts of analysis.

Part 1: Gradient Component Derivation. We first derive the gradient components of the distribution
alignment loss term-wise.

For the KL-divergence component:

∂

∂Os

[
Os log

(
Os

Oa + ϵ

)]
=

∂

∂Os
[Os logOs −Os log(Oa + ϵ)]

= logOs + 1− log(Oa + ϵ)

= log
Os

Oa + ϵ
+ 1.

For the L2-distance component:

∂

∂Os

[
∥Os −Oa∥22

]
= 2(Os −Oa).

2
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The complete gradient combines both components with normalization:

∇Lalign =
1

N

(
log

Os

Oa + ϵ
+ 1

)
+

2

N
(Os −Oa).

Part 2: Frobenius Norm Bound. We establish element-wise bounds under the standard assumption
that Os ∈ [ϵ, 1] and Oa ∈ [ϵ, 1] for a small ϵ > 0 (ensuring no log-domain singularity):

Since Os

Oa
∈ [ϵ, 1

ϵ ], we have:∣∣∣∣log Os

Oa
+ 1

∣∣∣∣ ≤ | log ϵ|+ 1, |Os −Oa| ≤ 1− ϵ,

These element-wise bounds extend to Frobenius norms:∥∥∥∥log Os

Oa
+ 1

∥∥∥∥
F

≤ N(| log ϵ|+ 1), ∥Os −Oa∥F ≤ N(1− ϵ),

Applying the triangle inequality:

∥∇Lalign∥F ≤
1

N

∥∥∥∥log Os

Oa
+ 1

∥∥∥∥
F

+
2

N
∥Os −Oa∥F

≤ (| log ϵ|+ 1) + 2(1− ϵ)

= | log ϵ|+ 3− 2ϵ.

completing the proof.

D OVERALL ORCHESTRATION OF MEDSPIKEFORMER

Algorithm 1: MedSpikeFormer training loop
1 Input: Training image X , Ground truth Y .
2 Output: Prediction mask Ŷ /*Ŷ is MedSpikeFormer’ output mask.*/
3 for t⇐= 1 to 4 do /*Feature Extraction.*/
4 fp ← Conv(SpikeConv(f t−1

e )) /*This is operations of Patch Embedding. f t−1
e (t = 1)

denotes the input X .*/
5 Q,K, V ← SNN(BN(WQfp,WKfp,WV fp)) /*WQ/K/V are learned weights, BN(·) is

batch normalization, and Q,K, V ∈ {0, 1}*/
6 QA ← Q, QI ← 1−Q, KA ←K, KI ← 1−K /*Complementary Spike

Decomposition.*/
7 Senh ← ©

([
QA, QI

]
⊗
[
KA,KI

]T
;
[
QI , QA

]
⊗
[
KA,KI

]T)
8 Os ← ©

([
QA,QI

]
⊗
[
KA,KI

]T
√
C

⊗ V ;

[
QI ,QA

]
⊗
[
KA,KI

]T
√
C

⊗ V
)

/*©(·) is concatenation
operation.*/

9 f t
e ← SpikeConv(Os) + fp /*f i

e is the output of SDQK-A of t-th layer.*/
10 for t⇐= 4 to 1 do /*Feature Fusion.*/
11 if t == 4 do
12 f t

s ← SpikeConv(f t
e)

13 else
14 f t

s ← SpikeConv(f t
e + f t+1

s )

15 /*Loss Function LSeg: region-level and pixel-level supervision.*/
16 Ŷ = σ(ϕs(f

1
s , ωs)) /*Generating prediction Ŷ. σ is the sigmoid function*/ /*ϕs(·) is a map

function. ωs is learned weights.*/

17 LSeg(Ŷ , Y ) ← 1−
2
∑

i ŶiYi + ϵ∑
i Ŷ

2
i +

∑
i Y

2
i + ϵ︸ ︷︷ ︸

LDice

+ −
∑
i

[
Yi log(Ŷi) + (1− Yi) log(1− Ŷi)

]
︸ ︷︷ ︸

LBCE

3
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E EXPERIMENT

E.1 DATASETS AND EXPERIMENT DETAILS

Datasets. Our method is evaluated on 5 different modalities of public datasets, including ISIC2018,
Kvasir, BUSI, Moun-Seg, and COVID-19.

The ISIC2018 is a relative large dataset, which contains 2594 skin lesion images for the task of skin
cancer detection, with 2076 images used for training and 518 images for testing.

The Kvasir dataset focuses on pixel-level segmentation of colorectal polyps and includes 1,000
endoscopic images, with 800 images used for the training set and 200 images for the test set.

The BUSI is a breast ultrasound imaging dataset that is categorized into three classes: normal,
benign, and malignant, comprising a total of 780 images, with 624 images used for training and 156
images for testing.

The Monu-Seg is a medical imaging dataset for cell nucleus segmentation, containing 74 images,
with 59 images used for training and 15 images for testing.

The COVID-19 dataset contains 894 images for the segmentation of CT images of lung infection
regions, with 716 images used for training and 178 images for testing.

Implementation Details. We use PyTorch on NVIDIA TITAN RTX GPU. The optimization is
AdamW, and the learning rate scheduler is CosineAnnealingLR. We resize input images to 256
× 256. To enhance model robustness, we use horizontal flipping, vertical rotation, and rotation
operations for data augmentation. The training epoch is set as 200 and the initial learning rate is set
to be 1e-4. Plus, the batchsize is set as 12, and the seed is set as 41.

E.2 STATISTICAL SIGNIFICANCE

To assess statistical significance, we conduct paired t-tests comparing our method with other SOTA
approaches across five datasets. As shown in Table 1, our method consistently achieves statistically
significant improvements (p < 0.05) over most baselines, validating the robustness of our perfor-
mance gains.

Table 1: Paired t-test p-values comparing our method with other SOTAs.

Model vs. Ours p-value
U-Net 0.0829
UCTransNet 0.1855
D-LKA 0.0791
EGE-UNet 0.0266
SAM-Med2D 0.0144
SDSA 0.0349
MLW-Net 0.0255
UltraLight VM-UNet 0.0122
MFMSA 0.0122
VPTTA 0.0103
EMCAD 0.0218
QKFormer 0.0120
STDV3 0.1384
FSTA-SNN 0.0235

E.3 COMPARISON WITH STATE-OF-THE-ARTS

As shown in Table 2, our method has obvious advantages. Plus, Figure 1 show the superior ca-
pability of our method in image segmentation tasks Notably, as shown in Fig 2, on the ISIC2018
dataset, the mIoU curve of our method maintains a stable upward trend when trained to 80 epochs.
It is worth noting that on the Kvasir dataset, our method continues to improve performance and
significantly surpasses other methods at 100 epochs. On the Monu-Seg dataset, other methods reach

4
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performance saturation at 125 epochs, while our method can still continue to optimize. Comprehen-
sive experimental results show that our method has obvious advantages in both model convergence
and stability in medical image segmentation tasks.

Table 2: Performance comparison with 14 SOTA methods on ISIC2018, Kvasir, BUSI, COVID-19
and Monu-Seg datasets.

Dataset Metric
U-Net UCTrans

Net D-LKA EGE-
UNet

SAM-
Med2D SDSA MLW-Net UltraLight

VM-UNet MFMSA VPTTA EMCAD QKFormer STDV3 FSTA
-SNN Our

MICCAI AAAI WACV MICCAI arXiv NeurIPS CVPR arXiv CVPR CVPR CVPR NeurIPS TPAMI AAAI
2015 2022 2023 2023 2023 2023 2023 2024 2024 2024 2024 2024 2025 2025 2025

ISIC
2018

mIoU↑ 0.8004 0.8185 0.8033 0.8108 0.7383 0.7853 0.7650 0.8110 0.8163 0.7842 0.8071 0.7706 0.8303 0.6403 0.8550
DSC↑ 0.8891 0.9002 0.8909 0.8955 0.8494 0.8579 0.8613 0.8956 0.8988 0.8790 0.8932 0.8614 0.8965 0.7400 0.9081
Acc↑ 0.9513 0.9565 0.9514 0.9535 0.9397 0.9572 0.9404 0.9527 0.9549 0.9467 0.9531 0.9475 0.9666 0.9110 0.9812
Spe↑ 0.9738 0.9794 0.9742 0.9721 0.9970 0.9816 0.9768 0.9662 0.9724 0.9699 0.9750 0.9718 0.9812 0.9728 0.9896
Sen↑ 0.8730 0.8769 0.8738 0.8891 0.7457 0.8432 0.8161 0.9061 0.8943 0.8659 0.8769 0.8703 0.8951 0.7810 0.9177

Kvasir

mIoU↑ 0.7330 0.7670 0.7212 0.5604 0.5911 0.7970 0.6636 0.6100 0.7625 0.5164 0.7173 0.7658 0.8215 0.6313 0.8534
DSC↑ 0.8459 0.8681 0.8380 0.7182 0.7430 0.8726 0.7977 0.7577 0.8652 0.6811 0.8353 0.8521 0.8915 0.7642 0.9093
Acc↑ 0.9253 0.9579 0.9495 0.9108 0.9324 0.9741 0.9378 0.9190 0.9568 0.9076 0.9478 0.9662 0.9722 0.9264 0.9804
Spe↑ 0.9786 0.9767 0.9760 0.9499 0.9964 0.9805 0.9715 0.9441 0.9750 0.9639 0.9716 0.9844 0.9813 0.9815 0.9877
Sen↑ 0.8145 0.8600 0.8115 0.7068 0.6020 0.8764 0.7620 0.7879 0.8617 0.6137 0.8234 0.8622 0.9177 0.7246 0.9259

Moun
-Seg

mIoU↑ 0.6784 0.6890 0.6300 0.5009 0.2699 0.6554 0.6535 0.5600 0.6111 0.4151 0.5603 0.6003 0.6696 0.6495 0.7014
DSC↑ 0.8084 0.8159 0.7730 0.6674 0.4250 0.7883 0.7904 0.7180 0.7586 0.5867 0.7182 0.7475 0.8008 0.5834 0.8238
Acc↑ 0.9348 0.9433 0.9284 0.8873 0.9433 0.9414 0.9332 0.9094 0.9338 0.8662 0.9263 0.9335 0.9467 0.9095 0.9518
Spe↑ 0.9493 0.9663 0.9532 0.9149 0.9977 0.9515 0.9540 0.9386 0.9493 0.9188 0.9522 0.9497 0.9613 0.9463 0.9615
Sen↑ 0.8587 0.8164 0.7920 0.7351 0.2774 0.8296 0.8187 0.7489 0.8261 0.5911 0.7461 0.7718 0.8063 0.5658 0.8598

COVID
-19

mIoU↑ 0.3605 0.3971 0.3098 0.3912 0.4025 0.5062 0.4295 0.5532 0.6262 0.4591 0.4120 0.4701 0.5974 0.4902 0.7138
DSC↑ 0.5300 0.5684 0.4730 0.5624 0.5739 0.6261 0.6009 0.7123 0.7201 0.6293 0.5835 0.6357 0.6933 0.6517 0.8009
Acc↑ 0.9784 0.9804 0.9766 0.9805 0.9856 0.9782 0.9808 0.9867 0.9901 0.9859 0.9790 0.9715 0.9286 0.9713 0.9565
Spe↑ 0.9881 0.9902 0.9888 0.9909 0.9981 0.9891 0.9893 0.9933 0.9966 0.9968 0.9872 0.9938 0.9596 0.9915 0.9787
Sen↑ 0.5488 0.5626 0.4574 0.5397 0.4359 0.7922 0.6221 0.7092 0.7139 0.5203 0.6334 0.6026 0.7406 0.6749 0.8401

BUSI

mIoU↑ 0.4775 0.5870 0.4969 0.5103 0.4770 0.5115 0.4811 0.4743 0.5771 0.4420 0.4620 0.4310 0.2854 0.5582 0.6006
DSC↑ 0.6463 0.7382 0.6639 0.6758 0.6459 0.5917 0.6496 0.6434 0.7318 0.6131 0.6320 0.6041 0.3774 0.7165 0.6676
Acc↑ 0.9605 0.9637 0.9502 0.9551 0.9616 0.9571 0.9491 0.9462 0.9629 0.9426 0.9412 0.9377 0.9362 0.9652 0.9759
Spe↑ 0.9906 0.9852 0.9732 0.9810 0.9963 0.9735 0.9742 0.9696 0.9853 0.9689 0.9620 0.9750 0.9898 0.9874 0.9906
Sen↑ 0.5384 0.6955 0.6632 0.6313 0.5003 0.6404 0.6360 0.6540 0.6828 0.6136 0.6811 0.5871 0.3750 0.6558 0.6667

Params (M) ↓ 14.7518 66.2424 22.8401 0.0458 - 13.5588 94.9794 0.0376 31.2192 22.0224 26.7643 16.9599 25.5286 45.6777 1.7369
GFLOPs ↓ 32.8948 30.9839 16.8894 0.0072 - 28.5805 108.0758 0.0602 9.9752 40.0514 5.5960 32.8858 12.3349 20.6515 19.0929

Imgae
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Figure 1: We compare our method with 14 state-of-the-art methods. The red box indicates the area
of incorrect predictions.

Figure 2: The Mean Intersection over Union (mIoU) curves.
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E.4 COMPUTATIONAL ENERGY CONSUMPTION

Though not lightweight-oriented, MedSpikeFormer keeps low overhead. It outperforms other spike-
based methods, such as STDV3 and QKFromer. These results show that our method is hardware-
friendly.

Table 3: Computational energy consumption comparison.

Model Params(M) Gflops Power(mJ)
Ours 1.7369 19.0929 1.909

STDV3 25.5286 12.3349 7.4
QKFormer 16.9599 32.8858 15.5709

E.5 ABLATION STUDIES

We validate the contribution of our method to segmentation performance on 5 datasets using the
mIoU metric. Specifically, we conduct extensive experimental evaluations to answer the following
questions:

Q1: How critical is SDSA to segmentation performance? As shown in Fig. 3, when removing
SDSA from MedSpikeFormer (w/o SDSA) on the ISIC2018 dataset, the model struggles to sup-
press interference from non-salient objects, leading to decreased accuracy in detecting segmentation
boundaries. On the Monu-Seg dataset, where blurry backgrounds coexist with multiple small ob-
jects, the variant (w/o SDSA) fails to reliably detect individual small objects. Other datasets exhibit
similar performance degradation patterns. In contrast, our proposed method demonstrates superior
segmentation performance in scenarios with misleading co-occurrence between sali ent and non-
salient objects, effectively addressing these challenges. These results fully validate the effectiveness
of SDSA. Plus, we further provide heatmaps to show SDSA’s effectiveness, as shown in Figure 4.

Q2: Does the ANN-based self-attention (SA) module significantly affect performance? Yes. As
shown in Fig. 3, when removing ANN-based self-attention (w/o SA), the performance of model
significantly descends. These results fully validate its effectiveness for segmentation performance.

Images GT w/o SDSA w/o SA w/o A-AOurs w/o I-I w/o A-I w/o I-A w/o KL w/o L2 w/o SC

Figure 3: Ablation Visualization comparison. The red box indicates the area of incorrect predictions.

Images GT SDSA-1 SDSA-2 SDSA-3 SDSA-4 SEG OursImages GT SDSA-1 SDSA-2 SDSA-3 SDSA-4 SEG Ours

Figure 4: Ablation Visualization comparison. The red box indicates the area of incorrect predictions.
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Q3: Does the Spike Convolution (SC) module improve performance? Yes. Similarly, as shown in
Fig. 3, removing the Spike Convolution (w/o SC) leads to notable performance degradation. These
results fully validate its effectiveness for segmentation performance.

Q4: Do all four types of spike interactions in SDSA matter? Yes. Fig. 3 shows that removing
any of the four interaction types (w/o A-A, w/o A-I, w/o I-A, and w/o I-I) leads to performance
drop. In particular, both A-A and I-I interactions demonstrate a significant impact on the segmenta-
tion performance. This confirms that all interaction pairs contribute to comprehensive information
modeling.

Q5: Does the distribution alignment loss improve segmentation performance? Yes. The distribution
alignment loss consists of both KL divergence and L2 loss. As shown in Table. 4, removing either
loss component leads to a drop in segmentation performance, with the L2 loss having a particularly
significant impact. This result confirms the effectiveness of the distribution alignment loss. Plus,
as shown in Fig. 3, removing either loss component leads to a drop in segmentation performance,
with the L2 loss having a particularly significant impact. This result confirms the effectiveness of
the distribution alignment loss.

Table 4: Ablation on the distribution loss (mIoU).

Model Variant ISIC2018 Kvasir Monu-Seg COVID-19 BUSI
Ours 0.8550 0.8534 0.7014 0.7138 0.6006

w/o KL 0.7743 0.7782 0.4988 0.3988 0.5108
w/o L2 0.7743 0.7782 0.4988 0.3988 0.5108

Q6: Is the timestep D in Our method important? Yes. Table 5 shows that both under-quantized
(D = 1, 2) and over-quantized (D = 6) configurations reduce segmentation performance. Our
design with D = 4 yields optimal results.

Table 5: Ablation on timestep D in MedSpikeFormer (mIoU).

Time Step ISIC2018 Kvasir Monu-Seg COVID-19 BUSI
(D=4) Ours 0.8550 0.8534 0.7014 0.7138 0.6006

D = 1 0.7545 0.7082 0.4444 0.4275 0.4516
D = 2 0.7995 0.7314 0.4536 0.4387 0.3780
D = 6 0.8158 0.8174 0.7039 0.6761 0.5332

F OBSERVATIONS AND DISCUSSION

We highlight two key observations:

Salient object detection in scenarios with blurred edges. Our method performs well in scenarios
with blurred boundaries, successfully identifying the salient objects. However, there are still minor
differences compared to the ground truth. This suggests that the model’s ability to precisely capture
object boundaries requires further refinement. Therefore, we plan to explore advanced edge-aware
techniques to enhance the model’s segmentation performance.

Multiple object detection in the co-occurrence scenario of salient and non-salient objects. Our
method performs favorably on medical images containing multiple small objects, successfully de-
tecting each of the small objects. Nonetheless, there remain slight mismatches with the ground
truth. This indicates that the model still has room for improvement in accurately segmenting mul-
tiple small objects. Therefore, we plan to develop efficient spike convolution mechanisms to better
capture fine-grained details.

7
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