

000 MEDSPIKEFORMER

001
002
003 **Anonymous authors**

004 Paper under double-blind review

005 006 007 008 A CODE LINK 009

010 Our code is available on <https://github.com/AnonymousPaper2026/MedSpikeFormer>.
011

012 B PROOF OF THE PROPOSITION 1 013

014
015 **Proposition 1. Information Gain of SDSA.** Let S_{SA} denote the output of conventional spike attention (e.g., SSA, Q-K attention) which only models interactions among activated neurons. Suppose the inactivated components ($Q_{\mathcal{I}} > 0$ or $K_{\mathcal{I}} > 0$) carry non-trivial information about the input X . Then the enhanced attention output S_{enh} constructed by SDSA reduces information loss compared to traditional spike attention, and satisfies:

$$016 \quad H(X|S_{enh}) < H(X|S_{SA})$$

017 Equivalently in mutual information form:

$$018 \quad I(X; S_{enh}) = I(X; Q_{\mathcal{A}}, Q_{\mathcal{I}}, K_{\mathcal{A}}, K_{\mathcal{I}}) \\ 019 \quad > I(X; Q_{\mathcal{A}}, K_{\mathcal{A}}) = I(X; S_{SA}).$$

020 where $I(\cdot; \cdot)$ denotes the mutual information.

021 **Proof 1.** The proof consists of three parts establishing strict information gain from inactivated neurons.

022 *Part 1: Information Loss in Traditional Approach.* For any inactivated neuron (i, j) where $Q^{ij} = 0$:

$$023 \quad H(X_{ij}|Q^{ij} = 0) = H(X_{ij}) \\ 024 \quad I(X_{ij}; Q^{ij}) = 0$$

025 since $Q^{ij} = 0$ provides no information about sub-threshold values $X_{ij} \in (0, \theta)$. The traditional output S_{SA} discards all sub-threshold information:

$$026 \quad H(X|S_{SA}) = H(X|Q_{\mathcal{A}}, K_{\mathcal{A}}) \geq \sum_{\substack{i,j \\ Q^{ij}=0}} H(X_{ij}) \\ 027 \\ 028$$

029 *Part 2: Information Preservation in Decomposition.* For inactivated neurons, $Q_I^{ij} = 1$ when $Q^{ij} = 0$. This preserves knowledge of sub-threshold activation:

$$030 \quad I(X_{ij}; Q_I^{ij}) = H(Q_I^{ij}) - H(Q_I^{ij}|X_{ij}) \\ 031 \quad = H_b(p_0) - (1 - p_0)H_b\left(\frac{p_\theta}{1 - p_0}\right) > 0$$

032 where $p_0 = P(X_{ij} < \theta)$, $p_\theta = P(0 < X_{ij} < \theta)$, and H_b is binary entropy. The strict inequality holds when $0 < p_\theta < 1$.

033 *Part 3: Attention Mechanism Propagates Information.* The SDSA output contains terms directly utilizing inactivated neurons:

$$034 \quad S_{enh} \supseteq \begin{cases} W_{\mathcal{A}} \odot K_{\mathcal{A}} & \text{(activated-inactivated interaction)} \\ W_{\mathcal{I}} \odot K_{\mathcal{A}} & \text{(direct inactivated information)} \\ W_{\mathcal{A}} \odot K_{\mathcal{I}} & \text{(direct inactivated information)} \\ W_{\mathcal{I}} \odot K_{\mathcal{I}} & \text{(direct inactivated information)} \end{cases}$$

054 where S_{enh} incorporates interactions from inactivated neurons, the support set expands to \mathcal{S}_{enh} ,
 055 strictly containing \mathcal{S}_{SA} . By the data processing inequality and the information chain rule:
 056

$$\begin{aligned} 057 \quad I(X; S_{enh}) &= I(X; Q_{\mathcal{A}}, Q_{\mathcal{I}}, K_{\mathcal{A}}, K_{\mathcal{I}}) \\ 058 \quad &= \sum_{i,j} I(X_{ij}; Q_{\mathcal{A}}^{ij}, Q_{\mathcal{I}}^{ij}, K_{\mathcal{A}}^{ij}, K_{\mathcal{I}}^{ij}) \\ 059 \quad &> \sum_{i,j} I(X_{ij}; Q_{\mathcal{A}}^{ij}, K_{\mathcal{A}}^{ij}) \\ 060 \quad &= I(X; S_{SA}) \\ 061 \quad & \\ 062 \quad & \\ 063 \end{aligned}$$

064 where the strict inequality comes from Part 2 when \exists inactivated neurons with $0 < X_{ij} < \theta$.
 065

066 The conditional entropy result follows from the mutual information identity:
 067

$$\begin{aligned} 068 \quad H(X|S) &= H(X) - I(X; S) \\ 069 \quad H(X|S_{enh}) &= H(X) - I(X; S_{enh}) \\ 070 \quad &< H(X) - I(X; S_{SA}) \\ 071 \quad &= H(X|S_{SA}) \end{aligned}$$

072 completing the proof.
 073

074 C PROOF OF THE PROPOSITION 2

075 **Proposition 2. Gradient Dynamics and Stability of Distribution Alignment.** *Under the standard
 076 assumption that $\mathcal{O}_s \in [\epsilon, 1]$ and $\mathcal{O}_a \in [\epsilon, 1]$ for a small $\epsilon > 0$ (ensuring no log-domain singularity),
 077 the combined gradient effectively guides the optimization process to address the aforementioned
 078 challenges in practice:*

$$\nabla \mathcal{L}_{align} = \frac{\partial \mathcal{L}_{align}}{\partial \mathcal{O}_s} = \frac{1}{N} \left(\log \frac{\mathcal{O}_s}{\mathcal{O}_a} + 1 \right) + \frac{2}{N} (\mathcal{O}_s - \mathcal{O}_a),$$

079 where the gradient $\frac{1}{N}(\log \frac{\mathcal{O}_s}{\mathcal{O}_a} + 1)$ governs distributional alignment by measuring relative discrepancies
 080 in probabilistic structure. The gradient $\frac{2}{N}(\mathcal{O}_s - \mathcal{O}_a)$ enforces geometric fidelity by penalizing
 081 absolute pixel-wise errors.

082 *Further, the Frobenius norm of the gradient satisfies:*

$$083 \quad \|\nabla \mathcal{L}_{align}\|_F \leq \frac{1}{N} \sqrt{N^2(\log \epsilon + 1)^2} + \frac{2}{N} \sqrt{N^2(1 - \epsilon)^2} = 3 - 2\epsilon + |\log \epsilon|,$$

084 This guarantees that gradients remain bounded for any matrix, which ensures convergence. Therefore,
 085 the $\nabla \mathcal{L}_{align}$ effectively minimizes the divergence between SDSA and ANN-based self-
 086 attention feature response distributions, thereby reducing spike-information distortion to enhance
 087 segmentation performance under cluttered or low-contrast conditions.

088 **Proof 2.** The proof establishes the boundedness of the gradient norm through two parts of analysis.
 089

090 *Part 1: Gradient Component Derivation.* We first derive the gradient components of the distribution
 091 alignment loss term-wise.
 092

093 For the KL-divergence component:

$$\begin{aligned} 094 \quad \frac{\partial}{\partial \mathcal{O}_s} \left[\mathcal{O}_s \log \left(\frac{\mathcal{O}_s}{\mathcal{O}_a + \epsilon} \right) \right] &= \frac{\partial}{\partial \mathcal{O}_s} [\mathcal{O}_s \log \mathcal{O}_s - \mathcal{O}_s \log(\mathcal{O}_a + \epsilon)] \\ 095 \quad &= \log \mathcal{O}_s + 1 - \log(\mathcal{O}_a + \epsilon) \\ 096 \quad &= \log \frac{\mathcal{O}_s}{\mathcal{O}_a + \epsilon} + 1. \\ 097 \end{aligned}$$

098 For the L2-distance component:
 099

$$\frac{\partial}{\partial \mathcal{O}_s} [\|\mathcal{O}_s - \mathcal{O}_a\|_2^2] = 2(\mathcal{O}_s - \mathcal{O}_a).$$

108 The complete gradient combines both components with normalization:
 109

$$110 \quad \nabla \mathcal{L}_{\text{align}} = \frac{1}{N} \left(\log \frac{\mathcal{O}_s}{\mathcal{O}_a + \epsilon} + 1 \right) + \frac{2}{N} (\mathcal{O}_s - \mathcal{O}_a).$$

112
 113 *Part 2: Frobenius Norm Bound.* We establish element-wise bounds under the standard assumption
 114 that $\mathcal{O}_s \in [\epsilon, 1]$ and $\mathcal{O}_a \in [\epsilon, 1]$ for a small $\epsilon > 0$ (ensuring no log-domain singularity):

115 Since $\frac{\mathcal{O}_s}{\mathcal{O}_a} \in [\epsilon, \frac{1}{\epsilon}]$, we have:
 116

$$117 \quad \left| \log \frac{\mathcal{O}_s}{\mathcal{O}_a} + 1 \right| \leq |\log \epsilon| + 1, \quad |\mathcal{O}_s - \mathcal{O}_a| \leq 1 - \epsilon,$$

119 These element-wise bounds extend to Frobenius norms:
 120

$$121 \quad \left\| \log \frac{\mathcal{O}_s}{\mathcal{O}_a} + 1 \right\|_F \leq N(|\log \epsilon| + 1), \quad \|\mathcal{O}_s - \mathcal{O}_a\|_F \leq N(1 - \epsilon),$$

123 Applying the triangle inequality:
 124

$$125 \quad \begin{aligned} \|\nabla \mathcal{L}_{\text{align}}\|_F &\leq \frac{1}{N} \left\| \log \frac{\mathcal{O}_s}{\mathcal{O}_a} + 1 \right\|_F + \frac{2}{N} \|\mathcal{O}_s - \mathcal{O}_a\|_F \\ 126 &\leq (|\log \epsilon| + 1) + 2(1 - \epsilon) \\ 127 &= |\log \epsilon| + 3 - 2\epsilon. \end{aligned}$$

130 completing the proof.
 131

132 D OVERALL ORCHESTRATION OF MEDSPIKEFORMER

135 **Algorithm 1:** MedSpikeFormer training loop

1 **Input:** Training image X , Ground truth Y .
 2 **Output:** Prediction mask \hat{Y} /* \hat{Y} is MedSpikeFormer' output mask.*/
 3 **for** $t \leftarrow 1$ to 4 **do** /***Feature Extraction.***/
 4 $f_p \leftarrow \text{Conv}(\text{SpikeConv}(f_e^{t-1}))$ /*This is operations of Patch Embedding. f_e^{t-1} ($t = 1$)
 denotes the input X .*/
 5 $Q, K, V \leftarrow \text{SNN}(\text{BN}(W_Q f_p, W_K f_p, W_V f_p))$ /* $W_{Q/K/V}$ are learned weights, $\text{BN}(\cdot)$ is
 batch normalization, and $Q, K, V \in \{0, 1\}$ */
 6 $Q_{\mathcal{A}} \leftarrow Q, Q_{\mathcal{I}} \leftarrow 1 - Q, K_{\mathcal{A}} \leftarrow K, K_{\mathcal{I}} \leftarrow 1 - K$ /*Complementary Spike
 Decomposition.*/
 7 $S_{\text{enh}} \leftarrow \odot \left([Q_{\mathcal{A}}, Q_{\mathcal{I}}] \otimes [K_{\mathcal{A}}, K_{\mathcal{I}}]^T; [Q_{\mathcal{I}}, Q_{\mathcal{A}}] \otimes [K_{\mathcal{A}}, K_{\mathcal{I}}]^T \right)$
 8 $\mathcal{O}_s \leftarrow \odot \left(\frac{[Q_{\mathcal{A}}, Q_{\mathcal{I}}] \otimes [K_{\mathcal{A}}, K_{\mathcal{I}}]^T}{\sqrt{C}} \otimes V; \frac{[Q_{\mathcal{I}}, Q_{\mathcal{A}}] \otimes [K_{\mathcal{A}}, K_{\mathcal{I}}]^T}{\sqrt{C}} \otimes V \right)$ /* $\odot(\cdot)$ is concatenation
 operation.*/
 9 $f_e^t \leftarrow \text{SpikeConv}(\mathcal{O}_s) + f_p$ /* f_e^t is the output of SDQK-A of t -th layer.*/
 10 **for** $t \leftarrow 4$ to 1 **do** /***Feature Fusion.***/
 11 **if** $t == 4$ **do**
 12 $f_s^t \leftarrow \text{SpikeConv}(f_e^t)$
 13 **else**
 14 $f_s^t \leftarrow \text{SpikeConv}(f_e^t + f_s^{t+1})$
 15 /***Loss Function** \mathcal{L}_{Seg} : region-level and pixel-level supervision.*/
 16 $\hat{Y} = \sigma(\phi_s(f_s^1, \omega_s))$ /*Generating prediction \hat{Y} . σ is the sigmoid function*/ /* $\phi_s(\cdot)$ is a map
 function. ω_s is learned weights.*/
 17 $\mathcal{L}_{\text{Seg}}(\hat{Y}, Y) \leftarrow 1 - \underbrace{\frac{2 \sum_i \hat{Y}_i Y_i + \epsilon}{\sum_i \hat{Y}_i^2 + \sum_i Y_i^2 + \epsilon}}_{\mathcal{L}_{\text{Dice}}} + \underbrace{- \sum_i \left[Y_i \log(\hat{Y}_i) + (1 - Y_i) \log(1 - \hat{Y}_i) \right]}_{\mathcal{L}_{\text{BCE}}}$

162 E EXPERIMENT
163164 E.1 DATASETS AND EXPERIMENT DETAILS
165166 **Datasets.** Our method is evaluated on 5 different modalities of public datasets, including ISIC2018,
167 Kvasir, BUSI, Moun-Seg, and COVID-19.168 The ISIC2018 is a relative large dataset, which contains 2594 skin lesion images for the task of skin
169 cancer detection, with 2076 images used for training and 518 images for testing.170 The Kvasir dataset focuses on pixel-level segmentation of colorectal polyps and includes 1,000
171 endoscopic images, with 800 images used for the training set and 200 images for the test set.172 The BUSI is a breast ultrasound imaging dataset that is categorized into three classes: normal,
173 benign, and malignant, comprising a total of 780 images, with 624 images used for training and 156
174 images for testing.175 The Monu-Seg is a medical imaging dataset for cell nucleus segmentation, containing 74 images,
176 with 59 images used for training and 15 images for testing.177 The COVID-19 dataset contains 894 images for the segmentation of CT images of lung infection
178 regions, with 716 images used for training and 178 images for testing.179 **Implementation Details.** We use PyTorch on NVIDIA TITAN RTX GPU. The optimization is
180 AdamW, and the learning rate scheduler is CosineAnnealingLR. We resize input images to 256
181 \times 256. To enhance model robustness, we use horizontal flipping, vertical rotation, and rotation
182 operations for data augmentation. The training epoch is set as 200 and the initial learning rate is set
183 to be 1e-4. Plus, the batchsize is set as 12, and the seed is set as 41.184 E.2 STATISTICAL SIGNIFICANCE
185186 To assess statistical significance, we conduct paired t-tests comparing our method with other SOTA
187 approaches across five datasets. As shown in Table 1, our method consistently achieves statistically
188 significant improvements ($p < 0.05$) over most baselines, validating the robustness of our per-
189 formance gains.190 Table 1: Paired t-test p -values comparing our method with other SOTAs.

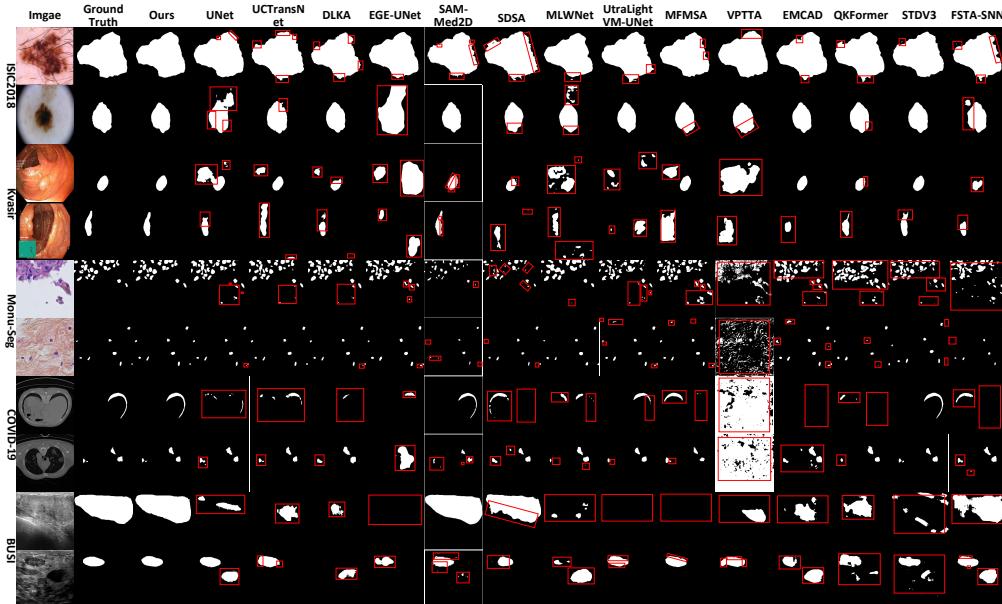
191 Model vs. Ours	192 p -value
193 U-Net	0.0829
194 UCTransNet	0.1855
195 D-LKA	0.0791
196 EGE-UNet	0.0266
197 SAM-Med2D	0.0144
198 SDSA	0.0349
199 MLW-Net	0.0255
200 UltraLight VM-UNet	0.0122
201 MFMSA	0.0122
202 VPTTA	0.0103
203 EMCAD	0.0218
204 QKFormer	0.0120
205 STDV3	0.1384
206 FSTA-SNN	0.0235

207 E.3 COMPARISON WITH STATE-OF-THE-ARTS
208209 As shown in Table 2, our method has obvious advantages. Plus, Figure 1 show the superior
210 capability of our method in image segmentation tasks Notably, as shown in Fig 2, on the ISIC2018
211 dataset, the mIoU curve of our method maintains a stable upward trend when trained to 80 epochs.
212 It is worth noting that on the Kvasir dataset, our method continues to improve performance and
213 significantly surpasses other methods at 100 epochs. On the Monu-Seg dataset, other methods reach

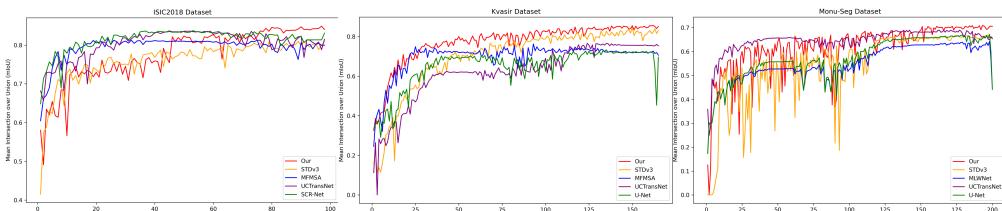
216 performance saturation at 125 epochs, while our method can still continue to optimize. Comprehensive
 217 experimental results show that our method has obvious advantages in both model convergence
 218 and stability in medical image segmentation tasks.
 219
 220

221 Table 2: Performance comparison with 14 SOTA methods on ISIC2018, Kvasir, BUSI, COVID-19
 222 and Monu-Seg datasets.
 223

Dataset	Metric	U-Net MICCAI 2015	UCTrans AAAI 2022	D-LKA WACV 2023	EGE- UNet MICCAI 2023	SAM- Med2D arXiv 2023	SDSA NeurIPS 2023	MLW-Net CVPR 2023	UltraLight VM-UNet arXiv 2024	MFMSA CVPR 2024	VPTTA CVPR 2024	EMCAD NeurIPS 2024	QKFormer NeurIPS 2024	STDV3 TPAMI 2025	FSTA- SNN AAAI 2025	Our 2025
ISIC 2018	mIoU↑	0.8004	0.8185	0.8033	0.8108	0.7383	0.7853	0.7650	0.8110	0.8163	0.7842	0.8071	0.7706	0.8303	0.6403	0.8550
	DSC↓	0.8891	0.9002	0.8909	0.8955	0.8494	0.8579	0.8613	0.8956	0.8988	0.8790	0.8932	0.8614	0.8965	0.7400	0.9081
	Acc↑	0.9513	0.9565	0.9514	0.9535	0.9397	0.9572	0.9404	0.9527	0.9549	0.9467	0.9531	0.9475	0.9666	0.9110	0.9812
	Spe↑	0.9738	0.9794	0.9742	0.9721	0.9970	0.9816	0.9768	0.9662	0.9724	0.9691	0.9750	0.9718	0.9812	0.9728	0.9896
	Sen↑	0.8730	0.8769	0.8738	0.8891	0.7457	0.8432	0.8161	0.8943	0.8659	0.8769	0.8793	0.8951	0.7810	0.9177	
Kvasir	mIoU↑	0.7530	0.7670	0.7212	0.5606	0.7200	0.7070	0.6536	0.7000	0.7623	0.5164	0.7173	0.6558	0.8215	0.6313	0.8534
	DSC↓	0.8459	0.8824	0.8386	0.8282	0.7430	0.8726	0.7977	0.7577	0.8652	0.6814	0.8533	0.8523	0.8932	0.7342	0.9093
	Acc↑	0.9253	0.9579	0.9595	0.9108	0.9324	0.9741	0.9378	0.9190	0.9568	0.9716	0.9748	0.9662	0.9722	0.9264	0.9804
	Spe↑	0.9676	0.9767	0.9760	0.9499	0.9964	0.9805	0.9745	0.9441	0.9500	0.9639	0.9716	0.9844	0.9813	0.9815	0.9777
	Sen↑	0.8145	0.8690	0.8115	0.7068	0.6020	0.8764	0.7620	0.7879	0.8617	0.6137	0.8234	0.8622	0.9177	0.7242	0.9259
Monu- Seg	mIoU↑	0.6782	0.6890	0.6300	0.5009	0.2699	0.6554	0.6533	0.5600	0.6111	0.4241	0.5603	0.6003	0.6696	0.6495	0.7014
	DSC↓	0.8084	0.8159	0.7730	0.6674	0.4250	0.7893	0.7904	0.7180	0.7595	0.4867	0.7192	0.7476	0.8098	0.5824	0.8238
	Acc↑	0.9348	0.9433	0.9284	0.9433	0.9433	0.9414	0.9332	0.9094	0.9338	0.8662	0.9263	0.9335	0.9467	0.909	0.9518
	Spe↑	0.9493	0.9663	0.9532	0.9149	0.9977	0.9515	0.9540	0.9386	0.9493	0.9188	0.9522	0.9497	0.9613	0.9463	0.9615
	Sen↑	0.8164	0.7920	0.7351	0.2774	0.8296	0.8187	0.7489	0.8261	0.5911	0.7461	0.7718	0.8063	0.5658	0.8598	
COVID -19	mIoU↑	0.3605	0.3971	0.3098	0.3912	0.4025	0.5062	0.4295	0.5532	0.6362	0.4591	0.4120	0.4701	0.5974	0.4902	0.7138
	DSC↓	0.5300	0.5684	0.4730	0.5624	0.5739	0.6261	0.6009	0.7123	0.7201	0.6293	0.5835	0.6357	0.6933	0.6517	0.8099
	Acc↑	0.9784	0.9809	0.9766	0.9805	0.9856	0.9782	0.9808	0.9867	0.9901	0.9859	0.9790	0.9715	0.9286	0.9713	0.9565
	Spe↑	0.9881	0.9902	0.9888	0.9909	0.9981	0.9891	0.9893	0.9933	0.9966	0.9968	0.9872	0.9938	0.9596	0.9915	0.9787
	Sen↑	0.5488	0.5623	0.4574	0.5397	0.4359	0.7922	0.6221	0.7092	0.7136	0.5203	0.6334	0.6026	0.7406	0.6749	0.8401
BUSI	mIoU↑	0.4775	0.5870	0.4969	0.5103	0.4770	0.5115	0.4811	0.4743	0.5771	0.4420	0.4620	0.4310	0.2854	0.5582	0.6006
	DSC↓	0.6463	0.7382	0.6639	0.6758	0.6459	0.5917	0.6496	0.6434	0.7318	0.6131	0.6320	0.6041	0.3774	0.7165	0.6676
	Acc↑	0.9605	0.9637	0.9502	0.9551	0.9616	0.9571	0.9491	0.9462	0.9626	0.9412	0.9377	0.9362	0.9652	0.9759	
	Spe↑	0.9906	0.9852	0.9732	0.9810	0.9963	0.9735	0.9742	0.9696	0.9853	0.9686	0.9620	0.9750	0.9898	0.9874	0.9906
	Sen↑	0.5384	0.6955	0.6632	0.6313	0.5003	0.6404	0.6360	0.6540	0.6828	0.6136	0.6811	0.5871	0.3750	0.6558	0.6667
Params (M) ↓		14.7518	66.2424	22.8401	0.0458	-	13.5588	94.9794	0.0376	31.2192	22.0224	26.7643	16.9595	25.5286	45.6777	1.7369
GFLOPs ↓		32.8948	30.9839	16.8894	0.0072	-	28.5805	108.0758	0.0602	9.9752	40.0514	5.5960	32.8858	12.3349	20.6515	19.0929



238
 239 Figure 1: We compare our method with 14 state-of-the-art methods. The red box indicates the area
 240 of incorrect predictions.
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257



258 Figure 2: The Mean Intersection over Union (mIoU) curves.
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269

270 E.4 COMPUTATIONAL ENERGY CONSUMPTION
271

272 Though not lightweight-oriented, MedSpikeFormer keeps low overhead. It outperforms other spike-
273 based methods, such as STDV3 and QKFromer. These results show that our method is hardware-
274 friendly.

275 Table 3: Computational energy consumption comparison.
276

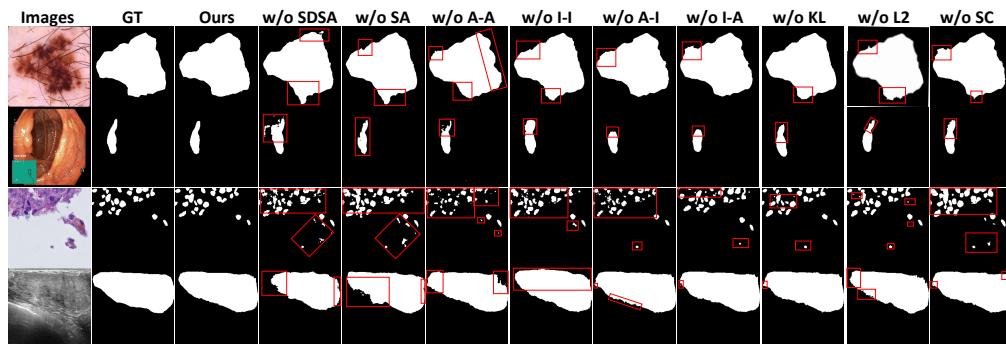
277 Model	278 Params(M)	279 Gflops	280 Power(mJ)
Ours	1.7369	19.0929	1.909
STDV3	25.5286	12.3349	7.4
QKFormer	16.9599	32.8858	15.5709

282 E.5 ABLATION STUDIES

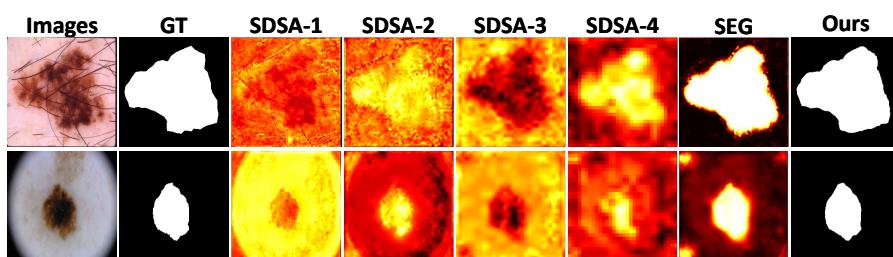
283 We validate the contribution of our method to segmentation performance on 5 datasets using the
284 mIoU metric. Specifically, we conduct extensive experimental evaluations to answer the following
285 questions:

286 Q1: How critical is SDSA to segmentation performance? As shown in Fig. 3, when removing
287 SDSA from MedSpikeFormer (**w/o SDSA**) on the ISIC2018 dataset, the model struggles to sup-
288 press interference from non-salient objects, leading to decreased accuracy in detecting segmentation
289 boundaries. On the Monu-Seg dataset, where blurry backgrounds coexist with multiple small ob-
290 jects, the variant (**w/o SDSA**) fails to reliably detect individual small objects. Other datasets exhibit
291 similar performance degradation patterns. In contrast, our proposed method demonstrates superior
292 segmentation performance in scenarios with misleading co-occurrence between salient and non-
293 salient objects, effectively addressing these challenges. These results fully validate the effectiveness
294 of SDSA. Plus, we further provide heatmaps to show SDSA’s effectiveness, as shown in Figure 4.

295 Q2: Does the ANN-based self-attention (SA) module significantly affect performance? Yes. As
296 shown in Fig. 3, when removing ANN-based self-attention (**w/o SA**), the performance of model
297 significantly descends. These results fully validate its effectiveness for segmentation performance.



313 Figure 3: Ablation Visualization comparison. The red box indicates the area of incorrect predictions.



323 Figure 4: Ablation Visualization comparison. The red box indicates the area of incorrect predictions.

324 Q3: Does the Spike Convolution (SC) module improve performance? Yes. Similarly, as shown in
 325 Fig. 3, removing the Spike Convolution (w/o SC) leads to notable performance degradation. These
 326 results fully validate its effectiveness for segmentation performance.

327 Q4: Do all four types of spike interactions in SDSA matter? Yes. Fig. 3 shows that removing
 328 any of the four interaction types (w/o A-A, w/o A-I, w/o I-A, and w/o I-I) leads to performance
 329 drop. In particular, both A-A and I-I interactions demonstrate a significant impact on the segmenta-
 330 tion performance. This confirms that all interaction pairs contribute to comprehensive information
 331 modeling.

332 Q5: Does the distribution alignment loss improve segmentation performance? Yes. The distribution
 333 alignment loss consists of both KL divergence and L_2 loss. As shown in Table. 4, removing either
 334 loss component leads to a drop in segmentation performance, with the L_2 loss having a particularly
 335 significant impact. This result confirms the effectiveness of the distribution alignment loss. Plus,
 336 as shown in Fig. 3, removing either loss component leads to a drop in segmentation performance,
 337 with the L_2 loss having a particularly significant impact. This result confirms the effectiveness of
 338 the distribution alignment loss.

340 Table 4: Ablation on the distribution loss (mIoU).

Model Variant	ISIC2018	Kvasir	Monu-Seg	COVID-19	BUSI
Ours	0.8550	0.8534	0.7014	0.7138	0.6006
w/o KL	0.7743	0.7782	0.4988	0.3988	0.5108
w/o L_2	0.7743	0.7782	0.4988	0.3988	0.5108

346 Q6: Is the timestep D in Our method important? Yes. Table 5 shows that both under-quantized
 347 ($D = 1, 2$) and over-quantized ($D = 6$) configurations reduce segmentation performance. Our
 348 design with $D = 4$ yields optimal results.

350 Table 5: Ablation on timestep D in MedSpikeFormer (mIoU).

Time Step	ISIC2018	Kvasir	Monu-Seg	COVID-19	BUSI
(D=4) Ours	0.8550	0.8534	0.7014	0.7138	0.6006
$D = 1$	0.7545	0.7082	0.4444	0.4275	0.4516
$D = 2$	0.7995	0.7314	0.4536	0.4387	0.3780
$D = 6$	0.8158	0.8174	0.7039	0.6761	0.5332

359 F OBSERVATIONS AND DISCUSSION

361 We highlight two key observations:

363 **Salient object detection in scenarios with blurred edges.** Our method performs well in scenarios
 364 with blurred boundaries, successfully identifying the salient objects. However, there are still minor
 365 differences compared to the ground truth. This suggests that the model’s ability to precisely capture
 366 object boundaries requires further refinement. Therefore, we plan to explore advanced edge-aware
 367 techniques to enhance the model’s segmentation performance.

368 **Multiple object detection in the co-occurrence scenario of salient and non-salient objects.** Our
 369 method performs favorably on medical images containing multiple small objects, successfully de-
 370 tecting each of the small objects. Nonetheless, there remain slight mismatches with the ground
 371 truth. This indicates that the model still has room for improvement in accurately segmenting mul-
 372 tiple small objects. Therefore, we plan to develop efficient spike convolution mechanisms to better
 373 capture fine-grained details.