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(d) 3D scene navigation(c) Fine-grained control(b) Global & local generation(a) Camera manipulation

Figure 1: Our system empowers users to generate and render customizable 3D scenes with precise control over the 3D scene
generation process. With our system, users can actively participate in the 3D scene creation process. For example, they can (a)
manipulate the virtual camera to any viewpoint, (b) adjust the size of the selection box to generate global and local content,
and try different random seeds to generate various results. (c) Besides text prompts, users can achieve fine-grained control
over the output by adding extra conditions such as scribbles, semantic segmentation maps, and depth. (d) After generating 3D
scenes, they can navigate the entire scene and create camera trajectories to render videos according to their preferences.

ABSTRACT
3D content creation has long been a complex and time-consuming
process, often requiring specialized skills and resources. While re-
cent advancements have allowed for text-guided 3D object and
scene generation, they still fall short of providing sufficient control
over the generation process, leading to a gap between the user’s
creative vision and the generated results. In this paper, we present
iControl3D, a novel interactive system that empowers users to gen-
erate and render customizable 3D scenes with precise control. To
this end, a 3D creator interface has been developed to provide users
with fine-grained control over the creation process. Technically, we
leverage 3D meshes as an intermediary proxy to iteratively merge
individual 2D diffusion-generated images into a cohesive and uni-
fied 3D scene representation. To ensure seamless integration of 3D
meshes, we propose to perform boundary-aware depth alignment
before fusing the newly generated mesh with the existing one in
3D space. Additionally, to effectively manage depth discrepancies
between remote content and foreground, we propose to model re-
mote content separately with an environment map instead of 3D
meshes. Finally, our neural rendering interface enables users to
build a radiance field of their scene online and navigate the entire
scene. Extensive experiments have been conducted to demonstrate
the effectiveness of our system.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; • Computing methodologies→ Computer vision.

KEYWORDS
Interactive user interface, 3D scene generation, controllable gener-
ation, mesh, neural rendering

1 INTRODUCTION
Recent years have witnessed explosive growth in the development
of generative image and video models. In particular, diffusion mod-
els [14, 16, 39, 46] have pushed the boundaries of image generation,
or AI-Generated Content (AIGC) to an unprecedented level of re-
alism, with their outputs often indistinguishable from real images.
Despite the success in the 2D domain, generating 3D assets and
realistic 3D scenes remains a complex process that requires a signif-
icant amount of expertise and specialized software. It can take years
of practice to master the necessary skills and techniques involved
in the 3D content creation.

In light of this, many researchers are eager to extend the power
of 2D diffusion models to the field of 3D generation. Existing
works [18, 24, 26, 28–30, 33, 44, 50, 51, 56] have demonstrated the
potential of text-guided 3D object generation using 2D diffusion.
Yet, these methods present challenges when it comes to generating
3D structures and textures on a scene-scale level. Inspired by pre-
vious studies [5, 25, 27], Fridman et al. [15] introduce SceneScape,
a novel method for text-driven perpetual view generation. While
SceneScape enables the synthesis of flying-out trajectories of scenes
from text, it struggles with generating complete 3D scenes. Con-
currently, Text2Room [17] proposes to create room-scale textured
3D meshes by using pre-trained 2D text-to-image diffusion mod-
els. However, it is restricted to indoor scene generation and offers
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limited control over the synthesis process, since only text and pre-
defined camera trajectory are available. This can be frustrating for
users who have specific creative visions for their 3D scene gener-
ation, as they cannot directly manipulate the scene’s features or
details to match their preferences.

In this paper, we present a novel system that can generate 3D
scenes while providing users with fine-grained control over the
creation process (see Fig. 1). Despite the existence of 3D generative
models [4, 10, 54], the availability of large-scale 3D datasets required
for their training is still limited. Motivated by prior works [15, 26],
we instead rely on 2D diffusion models [39] that have been pre-
trained on a large number of 2D images. For 3D scene generation,
we use 3D meshes as an intermediary proxy to merge individual
2D images into a unified representation.

Our system builds upon a generative RGB-D fusion method.
Specifically, we begin by obtaining an input image from the user
or generating one using 2D diffusion. We then utilize a monocular
depth estimator [3] to estimate the underlying geometry of the im-
age and unproject it into 3D space to generate an initial mesh. After
transforming the virtual camera to a new viewpoint, we render the
mesh and apply 2D diffusion to inpaint holes and outpaint for new
content. To ensure seamless integration of the generated content
with the existing mesh, we estimate the depth of the image from
that viewpoint and perform boundary-aware depth alignment. We
then fuse the new mesh with the existing one in 3D space. The
above process is repeated iteratively until we obtain a satisfactory
complete 3D structure. However, outdoor scenes often pose chal-
lenges as 3D meshes cannot handle dramatic depth discontinuities
well. To address this issue, we propose to model remote content
(e.g., sky) separately with an environment map. This leads to more
realistic outdoor scene representation.

To provide users with fine-grained control over the creation pro-
cess, we develop a 3D creator interface that enables users to actively
participate in the 3D scene creation process. Our interface offers
several advantages. First, users canmanipulate the virtual camera to
any viewpoint and customize camera trajectories to create person-
alized 3D scenes. Second, users can adjust the size of the selection
box to generate local content, and try different random seeds to gen-
erate various results. Third, inspired by ControlNet [53], we adopt a
neural network structure to control diffusion models by adding ex-
tra conditions such as user scribbles, semantic segmentation maps,
depth, and other information to achieve fine-grained control over
the generation process. Finally, we introduce a neural rendering
interface and incorporate Neural Radiance Fields (NeRFs) [31, 48]
into our system, allowing users to create a radiance field of their
scene online and navigate the entire scene. Users can also create
camera trajectories to render videos according to their preferences.

In summary, our main contributions are:

• We present a new interactive system to generate and render
customizable 3D scenes with user control. To this end, we
introduce a 3D creator interface and a neural rendering
interface.

• Our proposed boundary-aware depth alignment allows for
the seamless integration of 3D meshes. To better handle
outdoor scenes, we propose to model remote content with
an environment map rather than 3D meshes.

• We achieve interactive 3D scene generation with precise
controllability.

2 RELATEDWORK
3D-aware image synthesis. Various 3D-GAN based methods [7,

8, 32, 42] have been proposed to combine neural scene represen-
tations with 2D generative models for 3D-aware image synthesis,
enabling direct camera control. While these methods have demon-
strated impressive results on the problem of generating single ob-
jects such as cars or faces, they are challenging to apply to large
and diverse scenes. To extend 3D-aware image synthesis from sin-
gle objects to completely unconstrained 3D scenes, several recent
works [1, 13, 19, 45, 55] have been proposed. For example, GSN [13]
proposes to break the radiance field into a grid of local radiance
fields and collectively represent a scene by conditioning it on a 2D
grid of floorplan latent codes. Bautista et al. [1] present GAUDI,
where they first optimize a latent representation that disentangles
radiance fields and camera poses, and then use the disentangled
latent representation to learn a generative model. This allows for
both unconditional and conditional generation of 3D scenes. How-
ever, these methods usually have a significant demand for extensive
training and large-scale training data, limiting their generaliza-
tion to only specific domains. Instead, our objective is to generate
diverse 3D scenes.

Perpetual view generation. Perpetual view generation [20, 27]
refers to the process of generating a continuous video sequence
that corresponds to an arbitrary camera trajectory, using only a
single image of the scene as input. Different kinds of methods have
been explored in the literature. One line of research [23, 37, 49, 52]
has focused on synthesizing indoor scenes with controllable cam-
era trajectories. Motivated by Liu et al. [27], recent works such
as InfNat-Zero [25] and DiffDreamer [5] aim at synthesizing fly-
through videos of natural landscapes along long camera trajectories.
Yet, due to their per-frame generation framework and the lack of
underlying scene representations, these methods may suffer from
issues such as domain drifting and inconsistent novel views. Recent
studies [6, 12] learn a generative model for unconditional synthesis
of unbounded 3D nature scenes with a persistent 3D scene repre-
sentation. Although these methods are capable of producing view-
consistent flythrough videos, they necessitate significant training
on large-scale datasets and are restricted to a specific domain, e.g.,
landscapes. On the contrary, our system can generate diverse 3D
scenes without the need for large-scale training.

3D content generation. Diffusion models [16, 35, 39, 40, 46, 47]
have demonstrated remarkable success in generating highly realis-
tic images and videos. By iteratively applying a series of steps,
these models can transform a simple noise distribution into a
complex, high-dimensional data distribution, resulting in images
and videos that are virtually indistinguishable from real-world
data. As diffusion models continue to advance and gain popu-
larity in the 2D domain, researchers are exploring the possibil-
ity of using 2D diffusion priors to generate 3D content. Recent
works [9, 18, 24, 26, 28, 29, 33, 44, 50, 51] have shown promise in
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Text prompt: blue sky, mountain, realism, hyper photorealistic

OUTPAINTING ACCEPT RETRYROTATE 
CAMERA

TRANSLATE 
CAMERA

I. 3D Creator Interface

TRAINING PROGRESS

ADD CAMERA

RENDER 
TRAJECTORY

EXPORT
VIDEO

III. Neural Rendering Interface

iControl3D

II. Generative RGB-D Fusion

Camera trajectory

World coordinate 
system

Camera frame
Selection 

box

Figure 2: System overview. (I) Within our 3D creator interface, users are allowed to manipulate the camera to any viewpoint,
adjust the size of the selection box to generate local content, and try different random seeds to create a variety of results.
Moreover, users can achieve fine-grained control over the generation process by adding extra conditions such as user scribbles;
(II) Once the generated result in (I) is accepted by the users, our generative RGB-D fusion module fuses it with the existing
mesh. This alternating process between (I) and (II) continues until a satisfactory 3D structure is obtained; (III) After generating
3D scenes, our neural rendering interface then builds a radiance field online and enables users to navigate the entire scene. By
recording their virtual journey through the scene, users can also produce high-quality videos that showcase the intricacies and
beauty of their designs.

text-guided 3D object generation, but challenges remain in gener-
ating large-scale 3D structures and textures for entire scenes. Moti-
vated by previous studies in perpetual view generation [5, 25, 27],
Fridman et al. [15] propose SceneScape, a text-driven approach
that synthesizes flying-out trajectories of scenes using 2D diffusion.
However, SceneScape struggles with generating complete 3D scenes.
Text2Light [11] introduces a zero-shot text-driven HDR panorama
generation framework for creating 3D scenes but fails to impress
users with freely moving cameras. Concurrently, Text2Room [17]
uses pre-trained 2D text-to-image diffusion models to create tex-
tured 3D meshes of indoor scenes but offers limited control over
the output. To bridge this gap, we present a novel system that can
generate and render customizable 3D scenes with user control.

3 METHOD
3.1 System Overview
Our goal is to generate diverse 3D scenes while providing users with
fine-grained control over the creation process. This entails tackling
two challenges, i.e., leveraging 2D diffusion priors for consistent 3D
scene generation and providing users with controllability over the
creation process. Existing state-of-the-art methods [6, 12, 15, 17, 37]
either require extensive training and fail to ensure global consis-
tency or lack fine-grained control over the synthesis process. To
achieve our goal, we present iControl3D, an interactive system for
3D scene generation with user control. We schematically illustrate
our system in Fig. 2.

Our system mainly consists of a generative RGB-D fusion mod-
ule, a 3D creator interface, and a neural rendering interface. Our
system begins by obtaining an input image from users or gener-
ating one using 2D diffusion [39], estimating its geometry via a
depth estimator [3], and generating an initial 3D mesh. We then
render the mesh from different viewpoints, apply inpainting, per-
form boundary-aware depth alignment, and fuse it with the existing
mesh, iteratively refining it until a satisfactory 3D structure is ob-
tained. To handle outdoor scenes with depth discontinuities, we
model remote content separately with an environment map, result-
ing in a more realistic representation. Unlike previous methods that
offer a limited degree of user control, our system presents a 3D
creator interface that enables users to actively participate in the
3D scene creation process. We also incorporate ControlNet [53],
which can control diffusion models by adding extra conditions,
into our interface to provide users with fine-grained control over
the synthesized outputs. After generating 3D scenes, our neural
rendering interface then builds a radiance field online and enables
users to navigate the entire scene and create camera trajectories to
render videos according to their preferences.

3.2 Generative RGB-D Fusion
Initialization. Motivated by previous works [15, 26], we leverage
2D diffusion models [39] that have been pre-trained on a large
number of 2D images. Our system starts by obtaining an input
image 𝑰0 from users or generating one using 2D diffusion. Formally,

3
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let G be a pre-trained 2D diffusion model. We then can generate
the input image 𝑰0 using 2D diffusion model G:

𝑰0 = G (𝑇, 𝒛) , (1)

where 𝑇 is a text prompt and 𝒛 represents additional conditions,
e.g., user scribbles, semantic segmentation maps, and depth maps.
It is worth noting that 2D diffusion models can only generate inde-
pendent 2D images without any 3D structural relationship between
them. Hence, relying solely on 2D diffusion models is insufficient
to create a unified 3D scene. Inspired by prior works [17], we lever-
age 3D meshes as an intermediary proxy to merge individual 2D
images generated by 2D diffusion models into a unified 3D scene
representation. To this end, we utilize an off-the-shelf monocular
depth estimator [3] to estimate the underlying geometry of the
input image. After that, we proceed to unproject the input image
into an initial 3D meshM0 = (V, F , C) using depth values, where
V = {𝑣𝑖 }𝑁𝑖=1 is the set of 𝑁 vertices, F = {𝑓𝑖 }𝐹𝑖=1 is the set of 𝐹
faces with each connecting three vertices, and C = {𝑐𝑖 }𝑁𝑖=1 are the
color vectors attached on vertices.
Mesh projection and inpainting. We now have the initial 3D
mesh M0. Our next step is to build up the scene iteratively. To do
this, we generate new content from previously unobserved view-
points. Specifically, we first render the mesh in the target camera
pose P𝑡+1:

𝑰𝑡+1, �̂�𝑡+1, �̂�𝑡+1 = Π (M𝑡 , P𝑡+1) . (2)

The mesh renderer Π [36] produces the rendered image 𝑰𝑡+1, the
rendered depth �̂�𝑡+1 and the rendered mask �̂�𝑡+1 indicating the
visible regions of the mesh in the rendered image, where pixels
corresponding to visible and invisible parts of the mesh are set to 1
and 0, respectively. To create new content, the 2D diffusion model
G is employed to inpaint missing pixels via

𝑰𝑡+1 = G
(
𝑰𝑡+1,∼�̂�𝑡+1,𝑇 , 𝒛

)
, (3)

where ∼�̂�𝑡+1 is the inverted mask used to guide the diffusion model
by highlighting the areas of the image that should be inpainted.
Boundary-aware depth alignment. Likewise, we then employ
the depth estimator to predict the underlying geometry of 𝑰𝑡+1,
denoted as �̃�𝑡+1. It should be noted that the depth of shared regions
between the predicted depth map �̃�𝑡+1 and the rendered depth map
�̂�𝑡+1 may differ. To ensure seamless integration of the generated
content with the existing mesh, it is intuitive to align the depth
such that similar regions in a scene are placed at a similar depth as
much as possible. This can help to avoid abrupt transitions at the
boundaries between the generated content and the existing mesh.
SceneScape [15] utilizes an online test-time training technique to
promote the predicted depth map of the current frame to be in line
with the geometric structure of the synthesized scene. However,
this technique requires a certain amount of time to achieve depth
alignment, making it unsuitable for real-time applications.

To this end, we propose boundary-aware depth alignment. The
rationale behind incorporating boundary-aware depth alignment
is to minimize the time needed for depth alignment, rendering
it suitable for real-time 3D scene generation. This eliminates the
necessity of prolonged waiting periods before progressing to the
next step in scene creation. As shown in Fig. 3, we first obtain the

Rendered image

Rendered depth

Rendered mask Boundary

Predicted depth

Inpainted depth

Corrected depth

Aligned depth

Inpainted image

Combined depth�𝑫𝑫𝑡𝑡+1

�𝑫𝑫𝑡𝑡+1

�𝑫𝑫𝑡𝑡+1
′

�𝑫𝑫𝑡𝑡+1
′ 𝑫𝑫𝑡𝑡+1

�𝒃𝒃𝑡𝑡+1�𝒎𝒎𝑡𝑡+1

�𝑰𝑰𝑡𝑡+1 𝑰𝑰𝑡𝑡+1

𝐖𝐖𝑡𝑡+1

1 −𝐖𝐖𝑡𝑡+1

Boundary-aware 
depth alignment

Rendered depth �𝑫𝑫𝑡𝑡+1

Figure 3: Boundary-aware depth alignment. Directly com-
bining the rendered depth �̂�𝑡+1 and the predicted depth �̃�𝑡+1
leads to abrupt transitions in the combined depth while our
boundary-aware depth alignment ensures a more seamless
depth fusion.

boundary 𝒃𝑡+1 of the rendered mask �̂�𝑡+1 via:

𝒃𝑡+1 = (∼�̂�𝑡+1 ⊕ 𝑩) ∩ �̂�𝑡+1, (4)

where ⊕ and ∩ respectively denote the dilation and intersection
operation, while 𝑩 represents a structuring element used for the
dilation operation. Inspired by Liu et al. [27], we then conduct our
boundary-aware depth alignment by solving the following least
squares problem:

min
𝛼,𝛽

𝒃𝑡+1 ⊙ (
𝛼

�̃�𝑡+1
+ 𝛽 − 1

�̂�𝑡+1

)2 , (5)

where ⊙ denotes the Hadamard (i.e., element-wise) product. Intu-
itively, this optimization attempts to scale and shift the predicted
disparity such that the aligned disparity of the boundary region
matches the rendered disparity. After obtaining the optimal scale
and shift parameters, we can use them to compute the corrected
depth �̃�

′
𝑡+1 as follows:

�̃�
′
𝑡+1 =

1
𝛼/�̃�𝑡+1 + 𝛽

. (6)

To ensure a smoother depth transition, we further propose a depth
blending technique. Specifically, we first inpaint the rendered depth
�̂�𝑡+1 with the Navier-Stokes inpainting algorithm [2], resulting in
the inpainted depth �̂�

′
𝑡+1. Next, we blend the corrected depth �̃�

′
𝑡+1

with the inpainted depth �̂�
′
𝑡+1 to compute the aligned depth 𝑫𝑡+1

as follows:

𝑫𝑡+1 = W𝑡+1 · �̂�
′
𝑡+1 + (1 −W𝑡+1) · �̃�

′
𝑡+1, (7)

where the weight map W𝑡+1 is obtained by applying Gaussian blur
to �̂�𝑡+1.
Mesh fusion. Given the aligned depth map 𝑫𝑡+1, our next step is
to generate a new 3D mesh representation of the scene M̂𝑡+1 from
the 2D image 𝑰𝑡+1 and fuse it with the existing mesh M𝑡 . We first
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Table 1: Comparison of ours and relevant works. Indoor scene: Designed for handling indoor scenes. Outdoor scene: Designed
for handling outdoor scenes. No large-scale training: Not requiring large-scale training. Radiance field: If radiance fields are
used. Interactive generation: If interactive generation is supported using an interface. Local generation: If local generation is
supported. Conditional synthesis: If the synthesis can be conditioned on additional input. Text control: If the generation can be
controlled by text prompts. Fine-grained control: If having precise control over the generation process, e.g., scribbles.

Method Indoor Outdoor No large-scale Radiance Interactive Local Conditional Text Fine-grained
scene scene training field generation generation synthesis control control

PixelSynth [38] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
InfNat-Zero [25] ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗

LOR [37] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
SceneScape [15] ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗

GSN [13] ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗
SGAM [43] ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗

SceneDreamer [12] ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗
Persistent Nature [6] ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗
Text2Room [17] ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗
NF-LDM [21] ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

unproject the image pixels into 3D space using the camera intrinsic
matrix and target camera pose P𝑡+1. Once we have a set of 3D
points representing the scene, we follow Höllein et al. [17] and use a
triangulation scheme to construct amesh representation M̂𝑡+1. This
scheme involves connecting each set of four neighboring points in
a regular grid pattern to form two triangles.

To fuse the new 3D mesh M̂𝑡+1 with the existing mesh M𝑡 , we
extend the triangulation scheme at the edges of the inpainting mask
∼�̂�𝑡+1 to connect these faces with their neighboring faces from
the existing meshM𝑡 . This process results in the fusion of the two
meshes, producing the final mesh M𝑡+1.
Environment map modeling.We can repeat the aforementioned
process iteratively until we achieve a satisfactory 3D structure.
However, outdoor scenes may pose a challenge as 3D meshes strug-
gle to handle dramatic depth discontinuities, e.g., between the sky
and ground. These discontinuities often lead to flawed structures or
large holes in the reconstructed mesh, leading to visible artifacts in
the fusion of the new 3Dmesh with the existing one. To this end, we
propose to model remote content separately with an environment
map. Specifically, we assume that remote content has an infinite
depth and can be represented as a texture on a sphere surrounding
the scene. To embed the remote region into the environment map,
for each 𝑰𝑡+1, we use SAM [22] to segment the remote region in
the image 𝑰𝑡+1 and map each pixel in the segmented region to a
point on the surface of a sphere using inverse equirectangular pro-
jection. When we change to the next viewpoint, we first obtain the
remote content from the environment map, followed by the mesh
projection. This allows for accurate rendering of remote regions
in subsequent steps, bypassing the issue of depth discontinuities
between remote content and foreground.

3.3 3D Creator Interface
Current methods [6, 11, 12, 15, 17, 37] provide limited control over
the synthesis process as they only allow for text and predefined
camera trajectories as input. This can be frustrating for users who
have specific creative visions or requirements for their 3D scene
generation, as they cannot directly manipulate the scene’s features
or details to match their preferences. To overcome this limitation,

we introduce a 3D creator interface as a key component of our
system. The interface provides a user-friendly and intuitive way
for users to actively participate in the 3D scene creation process.
Our 3D creator interface offers several advantages (see Fig. 1). One
of the most notable features of our interface is the ability for users
to adjust the size of the selection box, allowing them to generate
local content and try different random seeds to create a variety of
results. This feature gives users the ability to select the best output
that matches their creative vision. The virtual camera module is
another highlight of our interface. It allows users to manipulate
the camera to any viewpoint and customize camera trajectories,
providing a personalized experience for creating 3D scenes.
Fine-grained control. Our objective is to provide users with not
only full control over the 3D scene creation process but also fine-
grained control to achieve their desired level of detail and cus-
tomization. Inspired by ControlNet [53], we adopt a neural network
structure to control diffusion models, which allows users to achieve
fine-grained control over the generation process by adding extra
conditions such as user scribbles, semantic segmentation maps,
depth, and other information. This feature enables users to create
more complex and detailed 3D scenes.

3.4 Neural Rendering Interface
Our generative RGB-D fusion module uses 3D meshes as an inter-
mediary proxy to merge individual 2D images into a unified 3D
scene representation. However, we do not employ hole-filling and
smoothing techniques as used in previous works [17]. This is be-
cause we empirically find that iterative mesh reconstruction often
leads to unavoidable artifacts in 3D meshes. We instead propose
to leverage the 2D diffusion-generated images, which are usually
visually pleasing. These images have shared a 3D structural rela-
tionship due to our generative RGB-D fusion module. We, therefore,
introduce a neural rendering interface and integrate Neural Radi-
ance Fields [31, 48] into our system to further smooth the artifacts
shown in 3D meshes. We train a neural radiance field using the
2D diffusion-generated images and their corresponding poses. This
enables users to create a radiance field of their scene online and
navigate the entire scene during training and after training. Our
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Table 2: Quantitative comparisons. We show that our system
outperforms all baselines in terms of both the Inception
Score (IS) [41] and CLIP Score (CS) [34].

Method IS ↑ CS ↑
LOR [37] 1.77 20.96

SceneDreamer [12] 1.35 21.35
Persistent Nature [6] 1.33 28.20
Text2Room [17] 2.57 28.50

Ours 2.63 29.77

neural rendering interface offers users an immersive way to explore
their 3D creations and produce customized videos.

4 EXPERIMENTS
In this section, we present a comprehensive evaluation of our sys-
tem on a diverse range of indoor and outdoor scenes and compare
its performance with state-of-the-art methods both quantitatively
and qualitatively. Additionally, we conduct a user study to better
evaluate the effectiveness of our system. Finally, we perform an
ablation study to justify our design choices.

4.1 Baselines
Table 1 presents a comparison of our method with other relevant
works. In our experiments, we primarily compare ours against four
representative works including LOR [37], SceneDreamer [12], Per-
sistent Nature [6], and Text2Room [17]. Specifically, LOR [37] is an
autoregressive method that can generate long-term 3D indoor scene
video from a single image but presents challenges when it comes to
generating consistent 3D structures and textures on a scene-scale
level. SceneDreamer [12] and Persistent Nature [6] learn a gener-
ative model for unconditional synthesis of unbounded 3D nature
scenes with a persistent 3D scene representation, but necessitate
significant training on large-scale datasets and are restricted to a
specific domain. Text2Room [17] uses pre-trained 2D text-to-image
diffusion models to create textured 3D meshes of indoor scenes but
lacks fine-grained control over the synthesis process.

Our method distinguishes Text2Room in four significant ways.
The most notable difference from Text2Room is the introduction of
an interactive system designed to facilitate the comprehensive cre-
ation of a 3D scene by the user. The key strength of this system lies
in its capacity to empower users with finer control over generated
content. It allows for the integration of text with other modalities
such as scribbles and semantic segmentation maps, offering users
the capability to select specific parts of the scene for focus. Secondly,
while Text2Room employs scale-and-shift depth alignment, our
method goes a step further by incorporating a depth blending tech-
nique around the boundary. This enhancement ensures a smoother
depth transition in the generated scenes. Thirdly, Text2Room is
limited to handling indoor scenes, whereas our method extends its
capabilities to generate outdoor scenes through the incorporation
of environment maps. This broadens the scope of scene generation
possibilities beyond indoor environments. Furthermore, we inte-
grate Neural Radiance Fields into our system to further smooth the
artifacts shown in 3D meshes.

Table 3: User study. We conduct a user study to compare our
system against competitive methods. All methods are evalu-
ated on the perceptual quality (PQ) of the imagery and scene
diversity (SD). Here we only present pairwise comparison
results between ours and baselines.

Comparison PQ ↑ SD ↑
LOR [37] / Ours 7.6% / 92.4% 1.7% / 98.3%

SceneDreamer [12] / Ours 29.5% / 70.5% 11.9% / 88.1%
Persistent Nature [6] / Ours 17.7% / 82.3% 13.8% / 86.2%
Text2Room [17] / Ours 18.6% / 81.4% 25.0% / 75.0%

4.2 Results
Evaluation metrics. To evaluate our system, we utilize Inception
Score [41] and CLIP Score [34] as our evaluation metrics. A higher
Inception Score indicates that the generated images have both high
quality and diversity, whereas a higher CLIP Score signifies a greater
similarity between the generated image and the given text prompt.
Quantitative comparisons.We adopt 21 scene settings, including
6 challenging outdoor settings such as “mountain” and “garden”,
and 15 indoor settings such as “living room” and “spaceship”, and
randomly generate outdoor scenes twice and indoor scenes once,
resulting in 12 outdoor scenes and 15 indoor scenes. Since our
focus is not on achieving complete mesh reconstruction, we instead
render 200 images to compute both Inception Score and CLIP Score
for each scene. In our evaluation, we closely follow Text2Room. It
employs 20 different trajectories for method evaluation, generating
60 images from novel viewpoints for each scene to calculate 2D
metrics. Likewise, we adopt 21 scene settings, totaling 27 scenes for
each method, and generate 200 images for each scene to compute
both the IS and CS. Therefore, our evaluation scale aligns with
that of Text2Room. As shown in Table 2, our system outperforms
existing baselines, which indicates that our system produces high-
quality and diverse images across different scene settings.
Qualitative comparisons. Fig. 7 and Fig. 8 present a qualitative
comparison between our system and baselines. We showcase ran-
domly extracted novel views of generated scenes. We find that
LOR [37] exhibits the tendency to produce inconsistent novel views
and susceptibility to error accumulation. These limitations can lead
to domain drifting and a decline in output quality. While Scene-
Dreamer [12] and Persistent Nature [6] can synthesize large camera
trajectories consistently, they require extensive training and are
limited to specific domains such as landscapes. On the other hand,
Text2Room [17] performs well in indoor scenarios but faces chal-
lenges when dealing with outdoor scenes. It also often produces
over-smoothed regions in the reconstructions. In contrast, our sys-
tem can generate high-quality novel views in both indoor and
outdoor scenes. In addition, we show in Fig. 4 that our system can
achieve fine-grained control.

4.3 User Study
To further evaluate the performance of our system, we conduct a
user study involving 65 participants with diverse backgrounds and
expertise in the field. We use different approaches to generate 60
free-navigating videos of various scenes, respectively. To prevent
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Figure 4: Fine-grained control. Compared to (a) current text-
driven methods [15, 17], (b) our system can achieve fine-
grained control over the output by adding extra conditions
such as scribbles, depth, and semantic segmentation maps.

Table 4: Ablation study. We perform an ablation study on
different components of our model to investigate their in-
fluence. Each component of our model contributes to the
overall performance.

Method IS ↑ CS ↑
w/o boundary-aware depth alignment 2.19 28.37

w/o environment map 2.53 29.02
Full model 2.63 29.77

participants from guessing which results are generated by our sys-
tem during the user study, we randomly present two sets of three
videos each time. Both sets consist of three videos generated by
randomly selected methods, rather than having one set generated
exclusively by our system and the other set by another method.
Participants are asked to compare two key aspects: the perceptual
quality of the imagery and scene diversity. They are invited to
choose the method with better perceptual quality and scene diver-
sity, or none if difficult to judge. We report the results in Table 3,
which points out that our system achieves higher perceptual quality
and scene diversity compared to the alternative methods.

4.4 Ablation Study
To validate the effectiveness of each component of our system,
we also conduct an ablation study. We design two variants of our
system by removing boundary-aware depth alignment and environ-
ment map modeling while keeping the rest of the pipeline intact.
As shown in Fig. 5 and Fig. 6, both boundary-aware depth align-
ment and environment map modeling contribute to the overall
performance. Table 4 also confirms the effect of these components.

Rendered image Fused depth Fused meshInpainted image

w/o depth 
alignment

Full model

Figure 5: Effectiveness of boundary-aware depth alignment.
Without boundary-aware depth alignment, the generated
mesh may exhibit abrupt transitions at the boundaries be-
tween the newly generated content and the existing mesh.

N.A.

Environment map MeshInpainted image

w/o envmap

Full model

Figure 6: Effectiveness of environment map modeling. With-
out environment map modeling, handling outdoor scenes
with 3D meshes becomes challenging due to dramatic depth
discontinuities, leading to visible artifacts.

5 CONCLUSION
In this paper, we introduce iControl3D, an interactive system for
controllable 3D scene generation and rendering. To achieve this, we
develop a 3D creator interface to provide users with fine-grained
control over the creation process and a neural rendering interface to
allow them to navigate the entire scene. We show that our system
can generate diverse 3D scenes with user control. We conduct
extensive experiments to verify the effectiveness of our system. We
hope that our system will inspire and empower users to unleash
their creativity and bring their imaginations to life in the world of
3D content creation.
Limitation.While our method provides a user-friendly platform
for interactive 3D content creation, certain challenges can impact its
performance. One such challenge arises when the depth prediction
module produces inaccurate geometry based on the input image,
or when the segmentation model fails to predict with precision.
These issues can compromise the quality of the generated 3D scenes.
Moreover, distortions in the 3D meshes can further contribute to
inaccuracies and inconsistencies, ultimately affecting the overall
realism and quality.
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Figure 7: Qualitative comparison on indoor scenes. Here we present the qualitative results of indoor scenes, displayed alternately
from left to right. The scenes, in sequence, are “spaceship”, “forge”, “library”, “cave”, “ice castle”, and “small office”. (a) LOR [37],
(b) Text2Room [17], and (c) ours. As can be seen, (a) LOR [37] is prone to domain drifting and a decline in output quality.
Although (b) Text2Room [17] performs well on indoor scenes, it often produces over-smoothed artifacts in the reconstructions.
In contrast, (c) our system presents diverse and photo-realistic results.

(a)

(b)

(c)

(d)

Figure 8: Qualitative comparison on outdoor scenes. We present the qualitative results of outdoor scenes, displayed alternately
from left to right. The scenes, in sequence, are “garden”, “waterfall”, “forest”, “river”, “house”, and “mountain”. (a) Scene-
Dreamer [12], (b) Persistent Nature [6], (c) Text2Room [17], and (d) ours. Note that (a) SceneDreamer [12] and (b) Persistent
Nature [6] require extensive training and are limited to a specific domain, i.e., landscapes. While (c) Text2Room [17] can
also generate outdoor scenes, it suffers from notable mesh distortions and artifacts. By contrast, (d) our system can generate
high-quality and consistent novel views across diverse domains.
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