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For a comprehensive evaluation and demonstration of our system,
please refer to our supplementary video. This document includes
the following contents:

(1) Contribution revisited.
(2) Implementation details.
(3) Baselines.
(4) Experiment details.
(5) Additional results.
(6) Details of the user study.
(7) Reasons of 3D meshes as an intermediate proxy.
(8) Limitation discussion.

A CONTRIBUTION REVISITED
Existing 3D scene generation methods often lack adequate user
control, leading to the generation of scenes that may not align with
users’ preferences. Our primary objective is to overcome this limita-
tion and provide users with enhanced controllability in the creation
of 3D scenes. To achieve this goal, we propose an interactive system
that seamlessly combines sequential scene generation with user
controllability. Besides the interactive UI, one of the challenges
is that depth estimation network may produce depth maps that
exhibit inconsistencies in scale between two frames. To solve this,
we introduce a novel technique called boundary-aware depth align-
ment. This approach ensures a smooth integration of 3D meshes.
Moreover, to better handle outdoor scenes, we integrate an envi-
ronment map into our system, further enhancing the overall scene
generation process.

Our proposed system differs from previous works in four ways: i)
Boundary-aware depth alignment (faster, comparable performance);
ii) Outdoor scene generation (not fully addressed in previousworks);
iii) Adding finer-grained control to the scene generation process
(not fully addressed in previous works); iv) Consolidating the final
results in neural radiance fields to ameliorate artifacts common to
meshes.

B IMPLEMENTATION DETAILS
Our system leverages Stable Diffusion [10], which has been pre-
trained on a large number of 2D images, to generate a diverse range
of images. To enable controllable 3D scene generation, we inte-
grate ControlNet [12] with the pre-trained large diffusion models
to support additional input conditions and enhance control over
the generated scenes. For estimating depth maps, we utilize an
off-the-shelf monocular depth estimator [1] to estimate the un-
derlying geometry of the input image. This allows us to predict
dense depth maps for in-the-wild photos. The implementation of
mesh reconstruction, projection, and fusion is carried out using
PyTorch3D [8]. To segment remote content such as the sky, we
first employ Grounding DINO [7] to detect remote regions based
on text inputs. Then, we apply SAM [6] for precise segmentation.

Our 3D creator interface is based on an open-source project1 and
implemented using PyScript and Gradio, providing a user-friendly
interface for creating 3D scenes. The neural rendering interface is
built on top of Nerfstudio [11], which enables users to navigate the
entire scene freely and render customizable videos according to
their preferences. We conduct all experiments on a single NVIDIA
GeForce RTX 3090 GPU. Our code will be publicly available upon
acceptance for academic purposes.

C BASELINES
In our experiments, we primarily compare ours against four repre-
sentative works including LOR [9], SceneDreamer [3], Persistent
Nature [2], and Text2Room [5]. Specifically, LOR [9] is an autore-
gressive method that can generate long-term 3D indoor scene video
from a single image but presents challenges when it comes to gen-
erating consistent 3D structures and textures on a scene-scale level.
SceneDreamer [3] and Persistent Nature [2] learn a generative
model for unconditional synthesis of unbounded 3D nature scenes
with a persistent 3D scene representation, but necessitate signifi-
cant training on large-scale datasets and are restricted to a specific
domain. Text2Room [5] uses pre-trained 2D text-to-image diffusion
models to create textured 3D meshes of indoor scenes but lacks fine-
grained control over the synthesis process. We implement these
works using the official codes released on GitHub.

D EXPERIMENT DETAILS
In the main paper, we provide a comprehensive comparison with
LOR [9], SceneDreamer [3], Persistent Nature [2], and Text2Room [5].
We utilize their official codes and pre-trained models for compari-
son. To evaluate the performance of our system, we adopt 21 scene
settings. This includes 6 challenging outdoor settings “mountain”,
“garden”, “house”, “river”, “waterfall”, and “forest” as well as 15 in-
door settings “baby room”, “bathroom”, “bedroom”, “cave”, “forge”,
“ice castle”, “library”, “living room”, “farmhouse living room”, “mod-
ern living room”, “bedroom-bathroom combo”, “kitchen-living room
combo”, “large office”, “small office”, and “spaceship”. Note that we
only use LOR [9] to generate indoor scenes. For SceneDreamer [3]
and Persistent Nature [2], we only utilize them to generate the
“mountain” scene. For ours and Text2Room [5], we randomly gen-
erate outdoor scenes twice and indoor scenes once, resulting in a
total of 12 outdoor scenes and 15 indoor scenes. For each scene,
we render 200 images to compute both Inception Score and CLIP
Score. For a fair evaluation, when compared with baselines such as
Text2Room, we use identical camera trajectories and text prompts
as Text2Room to generate 3D scenes and compute quantitative
metrics.

1https://github.com/lkwq007/stablediffusion-infinity



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

E ADDITIONAL RESULTS
In this section, we present additional qualitative comparisons in
Fig. E.1, Fig. E.2, Fig. E.3, and Fig. E.4. As shown in Fig. E.5 and
Fig. E.6, besides text prompts, our system allows users to achieve
fine-grained control over the output by adding extra conditions
such as scribbles, depth maps, semantic segmentation maps, Canny
edge maps, Hough line maps, and HED maps.

F USER STUDY
To evaluate the performance of our system, we organize a user study
involving 65 participants with diverse backgrounds and expertise in
the field. The study is conducted using an online website designed
specifically for this purpose. A screenshot of the website interface is
shown in Fig. F.7. Note that our user study is completely anonymous,
and no personally identifiable data is collected from the participants.
During the study, we present participants with synthesized videos
generated by two different methods, labeled as “Method 1” and
“Method 2”. To ensure fairness and eliminate bias, each time we
randomly select two sets of three videos, where both sets consist of
videos generated by randomly chosen methods, including LOR [9],
Persistent Nature [2], SceneDreamer [3], Text2Room [5], and ours,
rather than having one set generated exclusively by our system
and the other set by another method. This prevents participants
from guessing which results are generated by ours during the user
study. Participants are asked to compare two key aspects of the
videos: the perceptual quality of the imagery and scene diversity.
Specifically, they are invited to choose the method that exhibits
better perceptual quality and scene diversity or select “Similar” if
it is difficult to judge. We have a total of 65 participants, and we
collect a substantial amount of data, 2142 data points in total. On
average, each participant answered approximately 33 questions.
In the user study of our main paper, we exclude data points with
“Similar” options. As a reference, here we provide the version with
“Similar” options accounted in Table F.1.

F.1 User Interview
To study how users react to using iControl3D, we randomly select
five participants from the user study and invite them to test our
system for 3D scene generation. After that, we conduct interviews
with each participant to gather feedback on how well our system
fulfills their preferences and requirements. We summarize their
comments as follows:

• User-friendly interface.
• Customizable camera trajectories.
• The generation process is easy to control.
• The system supports a wide variety of scene types.
• The processing speed is deemed acceptable.
• May need to make multiple attempts or retries to achieve
satisfactory results in creating their scenes.

G WHY 3D MESHES AS AN INTERMEDIATE
PROXY?

The primary reason for using meshes is that they provide an ex-
plicit representation that allows for the iterative build-up of the
scene. On the other hand, point clouds are collections of individual

Comparison PQ ↑ SD ↑
LOR [9] / Ours 15.8% / 84.2% 10.34% / 89.7%

SceneDreamer [3] / Ours 36.8% / 63.2% 20.0% / 80.0%
Persistent Nature [2] / Ours 29.8% / 70.2% 21.3% / 78.7%

Text2Room [5] / Ours 27.2% / 72.8% 36.1% / 63.9%

Table F.1: User study with “Similar” options accounted. All
methods are evaluated on the perceptual quality (PQ) of the
imagery and scene diversity (SD). Here we only present pair-
wise comparison results between our system and baselines.

points in 3D space, lacking structural information like connectivity
and orientation between points. While they are useful for certain
tasks like point cloud-based object recognition, they lack the ex-
plicit structure necessary for scene creation. Voxel grids divide the
3D space into small cubes or voxels, each representing a discrete
volume element. While they offer a more straightforward represen-
tation for volumetric data, they often require high memory usage
and can be less flexible in handling detailed geometry and shape
variations. Implicit representations like NeRFs, are generally not
well-suited because the underlying surface geometry is not explic-
itly represented, which makes it difficult to manipulate and edit the
resulting 3D scene representation.

H LIMITATION DISCUSSION
While our system provides a user-friendly platform for interactive
3D content creation, certain challenges can impact its performance.
(a) The quality of the scene depends on how users create it. Our
system offers users the freedom to create 3D scenes according to
their will. However, this may be a double-edged sword. For example,
if a user only chooses viewpoints in a “circular rotation” without
changing the camera position, the generated scene might degener-
ate into a panorama. If a user selects suboptimal viewpoints, the
generated scene might contain artifacts or fail to close the loop, i.e.,
create a complete scene, due to failure cases of depth alignment. In
addition, a scene might remain incomplete, e.g., with holes, because
parts of the scene are never viewed by the user; (b) The extent to
which users can move the camera during the rendering process
depends on how users build their scenes. When users create their
scenes, the camera’s motion can be varied significantly. If users
continuously move the camera away from the world origin and
progressively build the world, our system can generate videos with
substantial camera motion beyond mere circular rotations. In such
cases, the rendered videos showcase diverse perspectives and views.
However, if users opt to only rotate the camera without changing
its position, our system can still generate novel views, but the cam-
era movement will be limited to rotational and slight positional
changes. Nevertheless, it is essential to emphasize that our method
is not limited to “circular rotation”. Users have the flexibility to cus-
tomize their own generation trajectories, enabling a broader range
of camera motions. (c) A challenge arises when the depth prediction
module produces inaccurate geometry based on the input image, or
when the segmentation model fails to predict with precision. These
issues can compromise the quality of the generated 3D scenes; (d)
Distortions in the 3D meshes may contribute to inaccuracies and
inconsistencies, ultimately affecting the overall realism and quality
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Figure E.1: Additional qualitative comparison on indoor scenes. Here we present the qualitative results of six indoor scenes,
displayed alternately from left to right. The scenes, in sequence, are “spaceship”, “forge”, “library”, “cave”, “ice castle”, and
“small office”. As can be seen, (a) LOR [9] is prone to domain drifting and a decline in output quality. Although (b) Text2Room [5]
performs well on indoor scenes, it often produces over-smoothed regions and artifacts in the reconstructions. In contrast, (c)
our system presents diverse and photo-realistic results.

(a)

(b)

(c)

Figure E.2: Additional qualitative comparison on indoor scenes. We present the qualitative results of another six indoor scenes,
displayed alternately from left to right. The scenes, in sequence, are “baby room”, “bathroom”, “bedroom”, “farmhouse living
room”, “large office”, and “modern living room”. (a) LOR [9], (b) Text2Room [5], and (c) ours.
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Figure E.3: Continuation of the qualitative comparison on indoor scenes. We present the qualitative results of another six
indoor scenes, displayed alternately from left to right. The scenes, in sequence, are “baby room”, “bathroom”, “bedroom”,
“farmhouse living room”, “large office”, and “modern living room”. (a) LOR [9], (b) Text2Room [5], and (c) ours.

of the output. We leave them for our future work. However, we
believe that the proposed system will empower users to unleash
their creativity and may open up exciting possibilities for the field
of 3D scene generation.
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Figure E.4: Addtional qualitative comparison on outdoor scenes. We present the qualitative results of six outdoor scenes,
displayed alternately from left to right. The scenes, in sequence, are “garden”, “waterfall”, “forest”, “river”, “house”, and
“mountain”. Note that (a) SceneDreamer [3] and (b) Persistent Nature [2] require extensive training and are limited to a specific
domain, i.e., landscapes. While (c) Text2Room [5] can also generate outdoor scenes, it suffers from notable mesh distortions
and artifacts. By contrast, (d) our system can generate high-quality and consistent novel views across diverse domains.
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Figure E.5: Fine-grained control. From top to bottom, we sequentially show “small office”, “house”, and “library”. Compared to
(a) current text-drivenmethods [4, 5], (b) our system can achieve fine-grained control over the output by adding extra conditions
such as scribbles, depth, and semantic segmentation maps.
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Figure E.6: Fine-grained control. From top to bottom, we sequentially show “baby room”, “bedroom”, and “garden”. Compared
to (a) current text-driven methods [4, 5], (b) our system can achieve fine-grained control over the output by adding extra
conditions such as Canny edge maps, Hough line maps, and HED maps.

Figure F.7: Interface of the user study website.
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