
Published as a conference paper at ICLR 2025

A BLACK SWAN HYPOTHESIS: THE ROLE OF HUMAN IR-
RATIONALITY IN AI SAFETY

Hyunin Lee1∗ Chanwoo Park2 David Abel3 Ming Jin4

1UC Berkeley, 2MIT, 3Google DeepMind, 4Virgina Tech

ABSTRACT

Black swan events are statistically rare occurrences that carry extremely high risks. A stan-
dard view of black swans assumes that they originate from an unpredictable and changing
environment; however, the community lacks a comprehensive definition of black swan
events. To this end, this paper challenges that the standard view is incomplete and claims
that high-risk, statistically rare events can also occur in unchanging environments due to
human misperception of events’ values and likelihoods, which we refer to as S-BLACK
SWAN . We first carefully categorize black swan events, focusing on S-BLACK SWAN , and
mathematically formalize the definition of black swan events. We hope these definitions
can pave the way for the development of algorithms to prevent such events by rationally
correcting limitations in perception.

1 INTRODUCTION

To successfully deploy machine learning (ML) systems in open-ended environments, these systems must
exhibit robustness against rare and high-risk events, often referred to as black swans (Taleb, 2010). Achiev-
ing this robustness requires a deep and precise understanding of the origins of such events, which has been
increasingly recognized as a critical factor for enabling ML algorithms to attain full control and make op-
timal decisions (Chollet, 2019; Silva & Najafirad, 2020; He et al., 2021; Li et al., 2023; Yang et al., 2024).
Nevertheless, many contemporary ML systems remain vulnerable to black swans in real-world scenarios, as
evidenced by automated trading systems that overreact to market anomalies (Kirilenko et al., 2017; Phillips,
2021; Stafford, 2022), unexpected bankruptcies (Wiggins et al., 2014; Akhtaruzzaman et al., 2023), the
Covid pandemic (Antipova, 2020), and autonomous vehicles encountering unforeseen road or weather con-
ditions (Tesla, 2021; Witman et al., 2023; Nordhoff et al., 2023).

In this paper, we argue that ML systems remain susceptible to black swan events, regardless of an algorithm’s
representation capacity or scalability, due to an AI community’s incomplete understanding of the origins of
these events. The prevailing belief in most algorithmic approaches to preventing black swan events (Prest-
wich, 2019; Artemenko et al., 2020; Devarajan et al., 2021; Wabartha et al., 2021; Bhanja & Das, 2024;
Jin, 2024) is that such events primarily arise from dynamic, time-varying environments. We contend, how-
ever, that black swans can also emerge from static, stationary environments. To this end, we propose a new
hypothesis on their origins:

Hypothesis 1. Black swans can originate from misperceptions of an event’s reward and likelihood,
even within static environments.

∗Corresponding author: hyunin@berkeley.edu
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To warmly introduce our new hypothesis, consider the bankruptcy of Lehman Brothers, widely recognized
as the most significant black swan event in the financial industry (Wiggins et al., 2014). A strong explanation
points to the investors making rational decisions on the false market perception which appeared rational at the
time but proved irrational by correcting their perception in hindsight . The firm declared bankruptcy within 72
hours without any precursor (McDonald & Robinson, 2009), and the only factor that changed during those
three days was investors’ perception of the company (Housel, 2023; Mawutor, 2014; Fleming & Sarkar,
2014) 1. Investors made optimal decisions based on this perception, which turned out to be suboptimal once
the perception was revealed to be false during those 72 hours (See Appendix B for additional supporting
evidence of our hypothesis.).

Contribution. We refer to black swan events in stationary environments as S-BLACK SWAN and define
them in the context of a Markov Decision Process (MDP) as follows:

(Informal) An S-BLACK SWAN event is a state-action pair where humans misperceive both its like-
lihood and reward. It is perceived as impossible, despite occurring with small probability, while its
reward is overestimated relative to its true value in a stationary environment.

Our work begins with a case study on how S-BLACK SWAN emerge and cause suboptimality gaps in various
MDP settings, such as bandit (Theorem 1), small state spaces (Theorem 2), and large state spaces (Theorem
3). We introduced three MDPs to define S-BLACK SWAN : the ground truth MDP (GMDP), the Human MDP
(HMDP), and the Human-Estimation MDP (HEMDP). The GMDP represents the real world, while the
HMDP reflects humans’ biased perceptions (Definitions 1 and 2). S-BLACK SWAN (Definitions 4 and 5) are
state-action pairs perceived as impossible in the HMDP but occur with small probability and higher rewards
in the GMDP. Our main finding (Theorem 4) shows that while the HEMDP value function asymptotically
converges to that of the HMDP over longer horizons, the gap between HMDP and GMDP has a lower
bound, influenced by reward distortion, the size of the S-BLACK SWAN set, and their minimum probability of
occurrence. Finally, Theorem 5 examines S-BLACK SWAN hitting time, showing that larger reward distortion
and higher S-BLACK SWAN probability necessitate more frequent updates to human perception functions.

2 PRELIMINARY

Notations. The sets of natural, real, nonnegative, and nonpositive real numbers are denoted by N, R, R≥0,
and R≤0 respectively. For a finite set Z, the notation ∣Z ∣ represents its cardinality, and ∆(Z) denotes the
probability simplex on Z. Given X,Y ∈ N with X < Y , we define [X] ∶= {1,2, . . . ,X}, the closed interval
[X,Y ] ∶= {X,X + 1, . . . , Y }. For x ∈ R≥0, the floor function ⌊x⌋ is defined as max{n ∈ N ∪ {0} ∣ n ≤ x}2.

Markov Decision Process. We consider a finite-horizon MDP denoted asM = ⟨S,A, P,R, γ, T ⟩, where
P = {Pt}Tt=0 and R = {Rt}Tt=0 for t ∈ N. Here, S represents the state space, A denotes the action space,
Pt ∶ S ×A → ∆(S) is the transition probability function at time t, Rt ∶ S ×A → R is the reward function
at time t, γ is the discount factor, and T ∈ N is the horizon length. We define M as a stationary MDP
if Pt(s′ ∣ s, a) = Pt+1(s′ ∣ s, a) and Rt(s, a) = Rt+1(s, a) for all (s′, s, a) ∈ S × S × A and for all
t ∈ [T − 1]. Otherwise, we defineM as a non-stationary MDP. In the stationary case, we denote P and R
as the single transition probability function and reward function, respectively. A policy is denoted as π ∈ Π,
where Π ∶ S → ∆(A) is the set of policies. We denote a T -length trajectory from M under policy π as
{s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, sT }, where st ∼ Pt(⋅ ∣ st−1, at−1) and rt = Rt(st, at). Assume that
all rewards are bounded, i.e., rt ∈ [−Rmax,Rmax] for all t. The agent’s goal is to compute the optimal

1The bank’s loss endurance, evaluated at 11.7% by the U.S. government, stayed stationary over the 72 hours.
2For clarity and readability, all notations used throughout the entire paper are elaborated in Appendix A
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policy π⋆ ∈ Π that maximizes the value function: V π
M(s) ∶= Eπ[∑T

t=0 γ
tRt(st, at) ∣P, s0 = s]. We further

define the normalized visitation probability as Pπ(s, a) ∶= 1−γT

1−γ ∑
T−1
t=0 γtP((st, at) = (s, a)∣s0, π,P ), where

P(s, a∣s0, π,P ) is the probability of visiting (s, a) at time t under policy π and transition probability P
starting from s0 .

The following three theorems, drawn from existing work, lay the groundwork for mathematically formulat-
ing misperception of the Hypothesis 1.

Expected Utility Theory. Given an outcome spaceO = {o1, . . . , oK}, we define a utility function g ∶ O →
R that quantifies the gain or loss associated with each outcome oi. An individual agent is faced with choices,
where each choice represents a scenario in which the outcomes oi occur with given probabilities pi, summing
to one. The set of all choices is denoted by C. Each choice c ∈ C returnsO with a probability distribution pc =
(p(c)1 , . . . , p

(c)
K ). Under a given choice c, Expected Utility Theory (EUT) evaluates the riskiness of that choice

as V (c) = ∑K
i=1 g(oi)p

(c)
i (von Neumann, 1944; Rabin, 2013). To illustrate, consider a stock market invest-

ment scenario where O = {Economic Boom (EB),Economic Recession (ER)}. Here, g(EB) represents a
gain, while g(ER) represents a loss. The set of choices C = {invest in stocks, invest in bonds,keep cash}
corresponds to different probability distributions pc = (p

(c)
1 , p

(c)
2 ) of outcomes.

Prospect Theory. However, Expected Utility Theory (EUT) fails to account for empirical observations
from psychological experiments (Drakopoulos & Theodossiou, 2016; Pandit et al., 2019; Wahlberg &
Sjoberg, 2000; Vasterman et al., 2005; van der Meer et al., 2022) and economic cases (Rogers, 1998; Wheeler
& Wheeler, 2007; BetterUp, 2022) that demonstrate human irrationality. Specifically, humans tend to ex-
hibit internal distortions when perceiving event probabilities pc and evaluating outcome values g(O) for
any choice c (Opaluch & Segerson, 1989). To address these discrepancies, Prospect Theory (PT) introduces
a probability distortion function w ∶ [0,1]→ [0,1] and a value distortion function u ∶ R→ R, which modify
the expected utility calculation to V (c) = ∑K

i=1 u(g(oi))w(p
(c)
i ) (Kahneman & Tversky, 2013; Fennema

& Wakker, 1997). The motivation for introducing PT is not only to acknowledge human irrationality but
also to provide a more accurate mathematical framework for how people actually perceive probabilities and
outcomes. PT describes the characteristics of the functions u and w based on empirical case studies. The
function u represents value distortion, capturing how individuals assess gains and losses (x-axis of Figure 1a
represents the true value, and the y-axis represents the perceived value). The function w represents probabil-
ity distortion, reflecting how individuals tend to overestimate the likelihood of rare events and underestimate
the likelihood of more probable events. (x-axis of Figure 1b represents the true probability, and the y-axis
represents the perceived probability.)

Cumulative Prospect Theory. To enhance mathematical rigor—specifically, to ensure that distorted prob-
abilities still sum to one—Prospect Theory (PT) was further revised into Cumulative Prospect Theory (CPT).
In CPT, the expected value is defined as V (c) = ∑K

i=1 u(g(oi)) (w (∑i
j=1 p

(c)
j ) −w (∑

i−1
j=1 p

(c)
j )), where the

function w distorts the cumulative probability of an event oi. The following insurance example illustrates
CPT in action.

Example 1 (Insurance policies). Consider an example where the probability of an insured risk is 1%, the
potential loss is 1,000, and the insurance premium is 15. According to CPT, most would opt to pay the 15
premium to avoid the larger loss.

Example 1 shows how a simple decision can be modeled as a two-step Markov Decision Process with states
S = {sbase, spremium, srisk} representing utility value of 0, −15, and −1000, and actions (or choice set C)
A = {ap, anp} for paying or not paying the premium. At t = 0, humans choose between ap (leading to
spremium) and anp, which could result in sbase with 99% probability or srisk with 1% probability. Expected
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(a) Value distortion (b) Probability distortion
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Figure 1: Value distortion function u and probability distortion function w. The gray line in Figures 1a and
1b represents y = x.

utility theory suggests anp is optimal since its expected value (V (anp) = −1000 ⋅ 0.01 = −10) is lower than
that of ap (V (ap) = −15 ⋅ 1 = −15), but real-world decisions often favor ap, highlighting a divergence from
theoretical rationality.

Therefore, we begin by formalizing the key empirical observations from CPT into the following definitions.
Definition 1 (Value Distortion Function). The value distortion function u is defined as:

u(x) = {u
+(x) if x ≥ 0,

u−(x) if x < 0,
where u+ ∶ R≥0 → R≥0 is non-decreasing, concave with limh→0+(u+)′(h) ≤ 1, and u− ∶ R≤0 → R≤0 is
non-decreasing, convex with limh→0−(u−)′(h) > 1.
Definition 2 (Probability Distortion Function). The probability distortion function w is defined as:

w(pi) = {
w+(pi) if g(xi) ≥ 0,
w−(pi) if g(xi) < 0,

where w+,w− ∶ [0,1] → [0,1] satisfy: w+(0) = w−(0) = 0, w+(1) = w−(1) = 1; w+(a) = a and w−(b) = b
for some a, b ∈ (0,1); (w+)′(x) is decreasing on [0, a) and increasing on (a,1]; (w−)′(x) is increasing on
[0, b) and decreasing on (b,1].

The derivative constraints encapsulate the core observations of CPT. Specifically, the conditions on (u−)′
and (u+)′ in Definition 1 formalize the tendency for individuals to value losses more heavily than equivalent
gains (see Figure 1a). The constraints on (w−)′ and (w+)′ in Definition 2 describe the tendency to overweight
(or underweight) the probabilities of rare events and underweight (or overweight) those of average events
where the outcome results in a gain (or a loss) (see Figure 1b).

3 BLACK SWAN IN STATIONARY AND NON-STATIONARY ENVIRONMENTS

Hypothesis 1 concerns the feasibility of black swan events existing in stationary environments. We next
illustrate how black swans can originate from both stationary and non-stationary environments. We begin by
defining the black swan event dimension as follows.
Definition 3 (Black Swan Event Dimension). For a given MDPM, we define the dimension of a black swan
event as the set S ×A × [T ].

Then, we informally refer to (s, a, tbs) ∈ S × A × [T ] as a black swan event if it represents a rare, high-
risk occurrence that significantly deviates from expected outcomes based on prior experience in the real
world M. This could involve an unexpected transition or an anomalous reward signal. We then introduce
a classification rule that distinguishes black swan events based on whether they occur in non-stationary
environments or arise within stationary environments, as follows.
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Algorithm 1 (Black Swan Classification: S-BLACK SWAN ). For a given (possibly non-stationary) M,
suppose (s, a, tbs) is a black swan event. If (s, a, t) is a black swan event for ∀t ∈ [T ], then we classify
(s, a, tbs) as a black swan that originates from environment’s stationarity (S-BLACK SWAN ).

Based on Algorithm 1, one can always identify a unit time interval that classifies any black swan event as an
S-BLACK SWAN , as stated in the following proposition.
Proposition 1. If (s, a, tbs) is a black swan event, then there exists a time interval [t1, t2] ⊆ [T ] such that
for every t ∈ [t1, t2], the (s, a, t) is classified as S-BLACK SWAN .

We provide an intuitive interpretation of Proposition 1 through the following example.
Example 2. Suppose (s, a, tbs) is a black swan event.

Case 1. ConsiderM as a non-stationary MDP where Pt and Rt change at each time step, i.e., Pt ≠
Pt+1 and Rt ≠ Rt+1. If t1 = t2 = tbs, then (s, a, tbs) is classified as an S-BLACK SWAN .
However, if t1 ≠ t2 and tbs ∈ [t1, t2], then (s, a, tbs) cannot be definitively classified as an
S-BLACK SWAN .

Case 2. ConsiderM as a piecewise non-stationary MDP where Pt and Rt change every ⌊T /k⌋ time
steps, i.e., Pt = Pt+1 and Rt = Rt+1 for t ∈ [kj, kj + (k − 1)] where j = 0,1, . . . , ⌊T /k⌋. If
t1 = kjbs and t2 = kjbs + (k − 1), then (s, a, tbs) is classified as an S-BLACK SWAN where
jbs satisfies tbs ∈ [kjbs, kjbs + (k − 1)].

Case 3. ConsiderM as a stationary MDP where Pt = Pt+1 and Rt = Rt+1 for all t ∈ [T − 1]. In this
case, (s, a, tbs) is always classified as an S-BLACK SWAN , regardless of the interval [t1, t2].

We then present Case 3 of Example 2 as the following main remark:
Remark 1. IfM is stationary, then any black swan event (s, a, t) is classified as an S-BLACK SWAN . In
this case, we omit t and denote the S-BLACK SWAN simply as (s, a).

Our main goal for the remainder of the paper is to explore Remark 1, with a focus on mathematically
defining S-BLACK SWAN within a stationary MDPM. We will retain the notation for stationary transition
probabilities and reward functions as P and R, respectively, omitting the subscript t.

4 THE EMERGENCE OF S-BLACK SWAN IN SEQUENTIAL DECISION MAKING

We next present a case study to substantiate Hypothesis 1 before formally defining S-BLACK SWAN . We
begin by examining how S-BLACK SWANS emerge in sequential decision-making within a stationary envi-
ronment, starting with the bandit case. For a given (s, a) ∈ S ×A, let us assume that the function u distorts
the reward R(s, a), and the function w distorts the transition probabilities {P (s′∣s, a)}∀s′∈S where s′ is
the next state. In this Section, we refer to the MDP distorted by functions u and w as the distorted MDP
Md ∶= ⟨S,A,w(P ), u(R), γ⟩, with this notation being used exclusively within this section.

4.1 CASE 1. CONTEXTUAL BANDIT (T = 1)

We begin with a simple case where the horizon length is T = 1, commonly referred to as a contextual
bandit (Lattimore & Szepesvári, 2020). Surprisingly, in this setting, the optimal policy of a distorted world
coincides with the real world optimal policy as a following Theorem.
Theorem 1 (One-Step Optimality Deviation). If T = 1, then the optimal policy in the MDPM is identical
to the optimal policy in the distorted MDPMd.

Theorem 1 may seem counterintuitive, as Example 1 illustrates that human decision-making often exhibits
irrationality. In single-step decision-making, distortions in perception do not significantly affect the opti-
mal policy. For clarification, as shown in Example 1, the perceived reward order remains u−(r(sloss)) <
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u−(r(spremium)) < u−(r(sbase)) because u− is a non-decreasing convex function. This further implies that
a short decision horizon may reduce the influence of human irrationality.

4.2 CASE 2. ∣S ∣ = 2 WHEN T > 1

Now, let us consider the simplest case where T > 1 and ∣S ∣ = 2. Surprisingly, the result that optimality does
not deviate still holds similarly to Theorem 1.
Theorem 2 (Multi-step Optimality Deviation with ∣S ∣ = 2). If ∣S ∣ = 2, then the optimal policy from the MDP
M is also identical to the optimal policy of the distorted MDPMd for all t ∈ [T ].

Theorem 2 may initially seem counterintuitive, given that model errors propagate through distorted transition
probabilities and rewards as time t progresses (Janner et al., 2019). However, a straightforward explanation is
that for any state-action pair (s, a) ∈ S×A, the function w preserves the order of probabilities. Specifically, if
P (s1∣s, a) > P (s2∣s, a), then w(P (s1∣s, a)) > w(P (s2∣s, a)) still holds, where S = {s1, s2}. This suggests
that when the state space ∣S ∣ is small, the informational complexity required to determine the real-world
optimal action remains relatively low.

4.3 CASE 3. ∣S∣ = 3 WITH UNBIASED REWARD PERCEPTION

We now consider a general setting with arbitrary S , A, and T , but under the assumption that u(R(s, a)) =
R(s, a) for all (s, a), indicating that humans have an unbiased perception of their rewards.
Theorem 3 (Two-step Optimality Deviation with ∣S ∣ = 3). If ∣S ∣ = 3 and T = 2, there exists a transition
probability function P and a reward function R such that the optimal policy of the MDPM differs from that
of the distorted MDPMd.

The optimality deviation in Theorem 3 now aligns with the empirical observation in model-based rein-
forcement learning; increasing suboptimality is caused by model error propagation (Janner et al., 2019). In
summary, Theorems 1, 2, and 3 demonstrate that the discrepancy between the optimal policy derived from
human perception and the real-world optimal policy increases as the complexity of the environment (S)
grows or as the horizon length (T ) extends, regardless of the w function.

5 AGENT- ENVIRONMENT FRAMEWORK : PERCEPTION AS INTERSECTION

To explore Hypothesis 1, we propose a novel agent-environment framework that treats misperception as
information loss in an agent’s understanding of the real world 3 (See Figure 2). This framework introduces
two stationary MDPs: the Human MDP and the Human-Estimation MDP. We begin by defining the station-
ary ground MDP (GMDP)M as an abstraction of real-world environments without information loss. The
following subsections detail the Human MDP (HMDP) and the Human-Estimation MDP (HEMDP).

5.1 HUMAN MDP

We define the Human MDPM† = ⟨S,A, P †,R†, γ, T ⟩, where the human (agent) misperceives the visita-
tion probability Pπ(s, a) through the function w, denoted as P †,π(s, a), and the reward function R(s, a)
through the function u, denoted as R†(s, a). An internal assumption in the HMDP is that its state and action
spaces are identical to those of the GMDP M, i.e., S† = S and A† = A. Although this assumption may
seem unrealistic, especially given that insufficient exploration in large discrete state and action spaces may
violate it, the following method shows how the human (agent) can approximate S† and A† to S and A, thus
supporting this assumption.

3We detail how misperception reflects information loss from the agent’s perspective in Appendix C. .
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Remark 2. If the human (agent) cannot perceive a state s ∈ S, the state space S† can be updated to
S† ← S† ∪ {s}, then set R†(s, a) = R(s, a) and P †(s′ ∣ s, a) = P (s′ ∣ s, a) while ensuring P (s ∣ s′, a) = 0
for all s ∈ S† and a ∈ A†. As a result, the new state s does not influence decision-making in the HMDP, since
the probability of the trajectory visiting s remains zero.

For discrete S and A, the order statistics of Pπ can be defined over the sequence [∣S ∣∣A∣], with each (s, a)
corresponding to an order index in [∣S ∣∣A∣], enabling the subsequent definition of the cumulative distribution.
For brevity, we denote the cumulative distribution of Pπ(s, a) as ∫ Pπ(s, a) . The distortions are then
defined by the following relationships:

∫ P †,π(s, a) ={w
+(∫ Pπ(s, a)) if R(s, a) ≥ 0

w−(∫ Pπ(s, a)) if R(s, a) < 0 ,∀(s, a) ∈ S ×A (1)

R†(s, a) ={u
+(R(s, a)) if R(s, a) ≥ 0

u−(R(s, a)) if R(s, a) < 0 ,∀(s, a) ∈ S ×A (2)

We introduce the concept of the perception gap: if max(s,a) ∣R(s, a) − R†(s, a)∣ < ϵr, then R†(s, a) is
referred to as an ϵr-perceived reward. Similarly, if max(s,a) ∣Pπ(s, a) − Pπ,†(s, a)∣ < ϵd, then P †,π(s, a)
is called an ϵd-perceived visitation probability, where ϵr, ϵd ∈ R+. The case where ϵr = ϵd = 0 represents
an unbiased perception. Once the agent perceivesM asM†, it executes the policy π inM† and collects a
trajectory. Finally, the value function ofM† is given by V π

M†(s) ∶= Eπ [γtR†(st, at)∣P †, s0 = s].

A key challenge in understandingM† is why distortions occur in visitation probability rather than transition
probability, as discussed in Section 5. This distinction arises because (s, a) is the fundamental event unit
(see Remark 1), and a distortion in transition probability implies a distortion in the state itself. The central
question, then, is how distortions in visitation probability relate directly to data collection. The following
lemma partially addresses this question.

Lemma 1. For a given M, there always exists a function h ∶ S → S such that w (∫ Pπ(s, a)) =
∫ Pπ(h(s), a) holds for any function w.

Our perspective is that distortions in the probability distribution, state space, or other factors lead to
distortions in visitation probabilities. With unbiased perception, the agent collects a trajectory τ =
{s0, a0, r0, s1, a1, . . . , sT−1, aT−1, sT }. However, when the agent perceives M as M†, it observes a per-
ceived trajectory τ † = {h(s0), a0, u(r0), h(s1), a1, . . . , h(sT−1), aT−1, h(sT )}, where function h distorts
the states. Lemma 1 demonstrates that visitation probability distortion arises from state distortion via h.

5.2 HUMAN-ESTIMATION MDP

After the agent have perceived the ground truth world as M†, it estimates the perceived reward
R†(s, a) as R̂†(s, a) and visitation probability P †,π(s, a) as P̂ †,π(s, a) from its perceived trajectory τ †.

Environment
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
M

perception
⇐ÔÔÔ⇒

ϵr,ϵd
M† estimation⇐ÔÔ⇒

κr,κd

M̂†

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Agent

Figure 2: The agent and environ-
ment intersect with perception.

We define a Human-Estimation MDP as M̂† = ⟨S,A, P̂ †, R̂†, γ, T ⟩.
Note that this estimation process is the same as estimation of generative
model in model-based reinforcement learning (Gheshlaghi Azar et al.,
2013; Sidford et al., 2018; Agarwal et al., 2020; Kakade, 2003). We also
introduce estimation gap, that is if max(s,a) ∣R†(s, a) − R̂†(s, a)∣ ≤ κr

holds, then R̂†(s, a) is κr-estimated reward, and if max(s,a) ∣Pπ,†(s, a)−
P̂π,†(s, a)∣ ≤ κd holds, then P̂π,†(s, a) is κd-estimated visitation proba-
bility for constant κr, κd ∈ R+. Finally, the value function of M̂† is given
as V π

M̂†(s) ∶= Eπ [γtR̂†(st, at)∣P̂ †, s0 = s].

7



Published as a conference paper at ICLR 2025

We use the perception and estimation gaps to illustrate the novel agent-
environment framework in Figure 2.

6 S-BLACK SWAN

Finally, Section 6 provides a definition of S-BLACK SWAN and presents a theoretical analysis aimed at
guiding the design of safer ML algorithms in the future.

6.1 A DEFINITION OF S-BLACK SWAN

Assume that the rewards for all state-action pairs are ordered as R[1] ≤ ⋅ ⋅ ⋅ ≤ R[l] ≤ 0 ≤ R[l+1] ≤ ⋯ ≤
R[∣S∣∣A∣], and the visitation probabilities are ordered as Pπ

[1] ≤ Pπ
[2] ≤ ⋯ ≤ Pπ

[∣S∣∣A∣]
. We denote the order

index of R(s, a) as Ir(s, a) ∈ [∣S ∣∣A∣] and the order index of Pπ(s, a) as Ip(s, a) ∈ [∣S ∣∣A∣], such that
R[Ir(s,a)] = R(s, a) and Pπ

[Ip(s,a)]
= Pπ(s, a). We first provide the definition of S-BLACK SWAN in case of

discrete state and action space.
Definition 4 (S-BLACK SWAN - Discrete State and Action Space). Given distortion functions u,w and
constants Cbs ≫ 0 and ϵbs > 0, if (s, a) satisfies:

1. (High-risk): R[Ir(s,a)] − u−(R[Ir(s,a)]) < −Cbs.

2. (Rare): w− (∑Ip(s,a)
j=1 Pπ

[j]) = w− (∑
Ip(s,a)−1
j=1 Pπ

[j]), yet 0 < Pπ
[Ip(s,a)]

< ϵbs.

then we define (s, a) as S-BLACK SWAN .

Definition 4 finally formalizes the informal concept of black swan events introduced in Section 3. The
first property of Definition 4 identifies a high-risk event through value distortion. Specifically, if the agent
perceives R optimistically, such that R ≪ u−(R) < 0, it is classified as a high-risk event (see Figure 1c).
The second property characterizes a rare event through probability distortion, describing an S-BLACK SWAN

event that occurs with a small probability in the real world (0 < Pπ
[Ip(s,a)]

< ϵbs), but is perceived by the

agent as infeasible (w− (∑Ip(s,a)
j=1 Pπ

[j]) = w− (∑
Ip(s,a)−1
j=1 Pπ

[j])) (See Figure 1d).

The constants Cbs and ϵbs in Definition 4 quantify the extent of distortion in the functions u and w, re-
spectively. Intuitively, Cbs and ϵbs are directly related to the magnitude of the misperception gap between
M andM†, denoted by ϵr and ϵp. This relationship will be further formalized in Theorem 4. We now ex-
tend the definition of S-BLACK SWAN to continuous state and action spaces. Suppose the reward function
R ∶ S ×A→ R is bijective. Then, the probability R−1 ○Pπ ∶ R→ [0,1] denotes the probability of a feasible
reward induced by policy π, denoted as Pr. We then have the following definition.
Definition 5 (S-BLACK SWAN - Continuous State and Action Space). Given distortion functions u,w and
constants Cbs ≫ 0 and ϵbs > 0, if (s, a) satisfies:

1. R(s, a) − u−(R(s, a)) < −Cbs.
2. dw−(x)

dx
∣
x=F (R(s,a))

⋅ Pr(r = R(s, a)) = 0, yet 0 < Pr(r = R(s, a)) < ϵbs,

where F (r) ∶= ∫
r
−∞

dPr is the cumulative distribution of Pr, then we define (s, a) as S-BLACK SWAN .

We then define the minimum probability of S-BLACK SWAN as ϵmin
bs , denoted as ϵmin

bs ∶= min(s,a) Pr(r =
R(s, a)). Let B denote the collection of all S-BLACK SWAN . For given constants Cbs and ϵbs, we define
the distortion functions w− and u− that result in B = ∅ as w−⋆ and u−⋆ , respectively. Intuitively, w−⋆ and
u−⋆ represent a safe perception, meaning that if an agent perceives the world through those, then B = ∅.
However, it is important to note that w−⋆ and u−⋆ are not unique functions (see Figure 1d).
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6.2 THEORETICAL ANALYSIS OF S-BLACK SWAN

Subsection 6.2 explores the properties of S-BLACK SWAN , focusing on how their presence establishes a
lower bound on policy performance (Theorem 4) and the timing of their occurrences (Theorem 5), laying
the groundwork for future algorithm design. For further analysis, we assume the following.
Assumption 1 (Relative convexity). Assume u−⋆(r) ≤ u−(r) holds for r < 0.

Assumption 1 ensures that a human (agent) with u− perceives rewards more optimistically than one with u−⋆
across all (s, a) pairs. This concept is well illustrated in Figure 1c, where the function u−(r) = r represents
an unbiased perception, and deviations from this line indicate increasing reward distortion. In conjunction
with Assumption 1, we introduce a proposition regarding S-BLACK SWAN , enabling interpretation within
the reward space [−Rmax,Rmax].
Proposition 2 (S-BLACK SWAN ). Let the intersection of the functions r+Cbs and u−(r) occur at r = −Rbs

(see Figure 1c). Under Assumption 1, if r(s, a) ∈ [−Rmax,−Rbs] satisfies:

1. r − u−(r) < −Cbs,
2. w− (F (r)) = 0, with 0 < F (r) < ϵbs,

then the (s, a) is S-BLACK SWAN .

A key insight from Proposition 2 is that as u−(r) approaches u−⋆(r), the approximation −Rbs → −Rmax

occurs, finally leading to ∣B∣→ 0 since ∣[−Rmax,−Rbs]∣→ 0 (see Figures 1c). In other words, Proposition 2
demonstrates that reducing the perception gap directly correlates with a decrease in ∣B∣.
Now, to provide an guideline for designing safe learning algorithms to prevent S-BLACK SWAN , it is crucial
to quantify how the existence of S-BLACK SWAN leads to an inevitable deviation from the real-world optimal
policy. We address this by analyzing how the misperception gap establishes a lower bound on the value
function gap between the HMDPM† and the GMDPM, as presented in the following theorem.
Theorem 4 (Convergence of value estimation gap but lower bound on value perception gap). Under As-
sumption 1, the asymptotic convergence of the value function estimation holds as follows,

V π
M̂†(s)→ V π

M†(s) a.s. as T →∞, ∀s, π ∈ S ×Π. (3)

However, under specific conditions on ϵbs, ϵ
min
bs ,Rbs, the lower bound of value perception gap as follows.

∣V π
M†(s) − V π

M(s)∣ = Ω
⎛
⎝
((Rmax −Rbs) ϵmin

bs −Rbsϵbs) (Rmax −Rbs)Cbs

R2
max

⎞
⎠

(4)

There are two key consequences of Theorem 4. First, Equation (3) demonstrates that the value estimation
error converges to zero as the agent rolls out longer trajectories. However, Equation (4) reveals that the value
perception gap has a non-zero lower bound, regardless of the horizon length. Equation (4) further indicates
that if u−(x)→ u−⋆(x) and w−(x)→ w−⋆(x), then Rbs → Rmax and ϵbs → 0 (see Figures 1c and 1d), leading
to the convergence of this lower bound to zero. Second, Equation (4) aligns with the intuition that greater
distortion in reward perception (i.e., larger Cbs) and an increased number of S-BLACK SWAN (i.e., larger
(Rmax −Rbs)) coupled with a higher minimum probability of S-BLACK SWAN occurrence (i.e., larger ϵmin

bs )
result in a higher lower bound. Therefore, Theorem 4 concludes that even with zero estimation error, a lower
bound on approximating the true value function remains, and this lower bound increases as Cbs and ϵmin

bs
become more pronounced.

Then, the next natural question is how to decrease that lower bound, specifically, how can an agent can learn
to self-correct toward a safe perception, i.e., u− → u−⋆ and w− → w−⋆ . This question can be further refined to:
What is the probability of encountering S-BLACK SWAN if the agent takes t steps? We address this under the
assumption of non-zero one-step reachability, as follows.

9
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Theorem 5 (S-BLACK SWAN hitting time). Assume Pπ⋆(s′ ∣ s) > 0 for any s, s′ ∈ S, indicating that the
one-step state reachability equipped with optimal policy is non-zero, and consider that one step corresponds
to a unit time. Then, if the agent takes t steps such that t ≥ log ( δ

pmin
) / log(1 − pmax) + 1, where pmin =

Rmax−Rbs

2Rmax
ϵmin
bs and pmax = Rmax−Rbs

2Rmax
ϵbs, it will encounter S-BLACK SWAN with at least probability δ ∈ (0,1].

A key takeaway of Theorem 5 is determining how often a human should correct their internal perception.
A large perception gap (Rmax − Rbs) and frequent occurrence of black swan events (ϵmin

bs ) require more
frequent execution of the self-perception correction algorithm.

7 RELATED WORKS: NECESSITY OF S-BLACK SWAN

This section discusses safe reinforcement learning (RL) algorithms, emphasizing the limitations of existing
approaches in addressing black swan events and highlighting the need for a new perspective4.

Safe RL algorithms are generally classified into three approaches: worst-case criterion, risk-sensitive cri-
terion, and constrained criterion (Garcıa & Fernández, 2015). However, these approaches face significant
limitations when dealing with black swan events. The worst-case criterion, which optimizes policy perfor-
mance under the least favorable scenarios by maximizing the minimum return, becomes overly conservative
when black swan events are considered, as they expand the uncertainty set W , leading to impractical de-
cisions such as avoiding all risky activities or adopting extreme safety measures (Heger, 1994; Coraluppi,
1997; Coraluppi & Marcus, 1999; 2000). Similarly, risk-sensitive algorithms, which incorporate a sensitivity
factor to balance return maximization and risk management (Howard & Matheson, 1972; Chung & Sobel,
1987; Patek, 2001), are inadequate for handling black swan events because return variance, a commonly used
risk measure, fails to account for the fat tails in distributions (Huisman et al., 1998; Bradley & Taqqu, 2003;
Bubeck et al., 2013; Agrawal et al., 2021). Additionally, log-exponential utility functions, often associated
with robust MDPs, do not effectively address the risks posed by black swans (Osogami, 2012; Moldovan &
Abbeel, 2012; Leqi et al., 2019). The constrained criterion, which maximizes expected returns while meeting
multiple utility constraints such as return variance or minimum thresholds (Geibel, 2006; Delage & Mannor,
2010; Ponda et al., 2013; Di Castro et al., 2012), also faces challenges with black swan events. These events
complicate threshold selection, often necessitating more conservative policies, and suggest that constraints
should be redefined to focus on state and action-specific risks rather than overall returns (Bagnell et al.,
2001; Iyengar, 2005; Nilim & El Ghaoui, 2005; Wiesemann et al., 2013; Xu & Mannor, 2010). Furthermore,
distributional RL is vulnerable to black swans, as extreme outliers in the reward distribution slow the con-
vergence of the Bellman operator and provide a large suboptimality gap due to biased return expectations
(Bellemare et al., 2017).

In summary, traditional risk criteria in RL are insufficient for managing the unique risks associated with
black swan events, highlighting the need for novel approaches.

8 CONCLUSION

In conclusion, this paper redefines black swan events by introducing S-BLACK SWAN , highlighting that
such high-risk, rare events can occur even in unchanging environments due to human misperception. We
categorized and mathematically formalized these events, aiming to guide the development of algorithms
that correct human perception to prevent such occurrences. This work opens the door for future research to
enhance decision-making systems and reduce the impact of black swan events.

4Further details are in Appendix D, along with a discussion of CPT’s application in risk analysis in Appendix E.
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Sébastien Bubeck, Nicolo Cesa-Bianchi, and Gábor Lugosi. Bandits with heavy tail. IEEE Transactions on
Information Theory, 59(11):7711–7717, 2013.

Jonathan Colaço Carr, Prakash Panangaden, and Doina Precup. Conditions on preference relations that
guarantee the existence of optimal policies. In International Conference on Artificial Intelligence and
Statistics, pp. 3916–3924. PMLR, 2024.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Kun-Jen Chung and Matthew J. Sobel. Discounted mdp’s: distribution functions and exponential utility
maximization. Siam Journal on Control and Optimization, 25:49–62, 1987. URL https://api.
semanticscholar.org/CorpusID:119760011.

Jonathan B Clark. Overview of balloon flights and their biomedical impact on human spaceflight. In
Handbook of Bioastronautics, pp. 839–856. Springer, 2021.

Stefano P Coraluppi and Steven I Marcus. Risk-sensitive and minimax control of discrete-time, finite-state
markov decision processes. Automatica, 35(2):301–309, 1999.

Stefano P Coraluppi and Steven I Marcus. Mixed risk-neutral/minimax control of discrete-time, finite-state
markov decision processes. IEEE Transactions on Automatic Control, 45(3):528–532, 2000.

Stefano Paolo Coraluppi. Optimal control of Markov decision processes for performance and robustness.
University of Maryland, College Park, 1997.

Dominic Danis, Parker Parmacek, David Dunajsky, and Bhaskar Ramasubramanian. Multi-agent reinforce-
ment learning with prospect theory. In 2023 Proceedings of the Conference on Control and its Applica-
tions (CT), pp. 9–16. SIAM, 2023.

Erick Delage and Shie Mannor. Percentile optimization for markov decision processes with parameter
uncertainty. Operations research, 58(1):203–213, 2010.

Jinil Persis Devarajan, Arunmozhi Manimuthu, and V Raja Sreedharan. Healthcare operations and black
swan event for covid-19 pandemic: A predictive analytics. IEEE Transactions on Engineering Manage-
ment, 70(9):3229–3243, 2021.

Dotan Di Castro, Aviv Tamar, and Shie Mannor. Policy gradients with variance related risk criteria. arXiv
preprint arXiv:1206.6404, 2012.

Stavros A Drakopoulos and Ioannis Theodossiou. Workers’ risk underestimation and occupational health
and safety regulation. European Journal of Law and Economics, 41:641–656, 2016.

Hein Fennema and Peter Wakker. Original and cumulative prospect theory: A discussion of empirical dif-
ferences. Journal of Behavioral Decision Making, 10(1):53–64, 1997.

Michael J Fleming and Asani Sarkar. The failure resolution of lehman brothers. Economic Policy Review,
Forthcoming, 2014.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning. Journal of
Machine Learning Research, 16(1):1437–1480, 2015.

Peter Geibel. Reinforcement learning for mdps with constraints. In Machine Learning: ECML 2006: 17th
European Conference on Machine Learning Berlin, Germany, September 18-22, 2006 Proceedings 17,
pp. 646–653. Springer, 2006.

12

https://api.semanticscholar.org/CorpusID:119760011
https://api.semanticscholar.org/CorpusID:119760011


Published as a conference paper at ICLR 2025

Peter Geibel and Fritz Wysotzki. Risk-sensitive reinforcement learning applied to control under constraints.
Journal of Artificial Intelligence Research, 24:81–108, 2005.
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Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes. Mathematics of
Operations Research, 38(1):153–183, 2013.

Rosalind Wiggins, Thomas Piontek, and Andrew Metrick. The lehman brothers bankruptcy a: overview.
Yale program on financial stability case study, 2014.

Paul D Witman, Jim Prior, Tracy Nickl, and Scott Mackelprang. Southwest airlines didn’t crash, but it nearly
fell apart. . . . In Proceedings of the ISCAP Conference ISSN, volume 2473, pp. 4901, 2023.

Huan Xu and Shie Mannor. Distributionally robust markov decision processes. Advances in Neural Infor-
mation Processing Systems, 23, 2010.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection: A
survey. International Journal of Computer Vision, pp. 1–28, 2024.

Yuanyuan Zhang, Xiang Li, and Sini Guo. Portfolio selection problems with markowitz’s mean–variance
framework: a review of literature. Fuzzy Optimization and Decision Making, 17:125–158, 2018.

16



Published as a conference paper at ICLR 2025

A NOTATIONS

This section provides a table summarizing all the notations and their meanings introduced in the main paper.

Notation Meaning Defintion
M Ground truth MDP Section 2
S State space Section 2
A Action space Section 2
T Time horizon Section 2
P Transition probability function ofM Section 2
R Reward function ofM Section 2
γ Discount factor Section 2
π Policy Section 2
Pπ Normalized visitation probability ofM Section 2

V π
M Value function ofM Section 2

u,u−, u+ Value distortion function Section 2 (Figure 1a)
w,w−,w+ Probability distorction function Section 2 (Figure 1b)
Md Distorted MDP Section 4
w(P ) Transition probability ofMd Section 4
u(R) Reward function ofMd Section 4
M† Human MDP (HMDP) Subsection 5.1
P † Transition probability ofM† Subsection 5.1
R† Reward function ofM† Subsection 5.1
P †,π Normalized visitation probability ofM† Subsection 5.1

∫ Pπ Cumulative visitation distribution ofM Subsection 5.1

∫ P †,π Cumulative visitation distribution ofM† Subsection 5.1

V π
M† Value function ofM† Subsection 5.1

ϵr, ϵd Perception gap Subsection 5.1
M̂† Human Estimation MDP (HEMDP) Subsection 5.2
P̂ † Transition probability of M̂† Subsection 5.2
R̂† Reward function of M̂† Subsection 5.2

V π
M̂† Value function of M̂† Subsection 5.2

κr, κd Estimation gap Subsection 5.2
R[⋅], P

π
[⋅]

Order statistics of reward and visitation probability Section 6

Pr Probability of reward Section 6
F (r) Cumulative distribution function of Pr Section 6
B Collection of all S-BLACK SWAN Section 6
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Notation Meaning Defintion
Cbs, ϵbs The extent of distortion of functions u and w Section 6 (Figures 1c and 1d)
ϵmin
bs Minimum probability of S-BLACK SWAN Section 6
u−⋆ u− that satisfies B = ∅, i.e. safe reward perception Section 6
w−⋆ w− that satisfies B = ∅, i.e. safe probability perception Section 6

B SUPPORTING EVIDENCE

This section provides supporting evidence for this paper’s main perspective; how interpreting black swans
through the lens of human misperception is meaningful and applicable in the real-world scenarios beside
Lehman Brothers Bankruptcy case introduced in Introduction.

Case1. Unexpected Drowning of NASA Astronauts Due to Overlooked Details (The following is a
summary of the case; please refer to (Clark, 2021; Brinkley, 2019) for a more detailed account.) Before
launching rockets, NASA conducted tests on its space suits using high-altitude hot-air balloons. On May 4,
1961, Victor Prather and another pilot ascended to 113,720 feet to evaluate the suit’s performance. While
the test itself was successful, an unforeseen risk led to tragedy during the planned ocean landing. Prather
opened his helmet faceplate to breathe fresh air, and as he slipped into the water while attaching to a rescue
line, his now-exposed suit filled with water. Despite NASA’s rigorous planning and preparation, the risk of
opening the faceplate - perceived as an extremely minor detail - was underestimated, resulting in catastrophic
consequences. This highlights how rigorously meticulous planning can still fail to account for overlooked
events.

Case2. Healthcare Diabetes patients typically experience a highly chronic condition, making their state
relatively predictable a few hours into the future (stationary environment). However, rare hypoglycemic
events, characterized by a sudden and dangerous drop in blood sugar, pose significant risks. To address this,
Wang et al. (2023) developed an RL model capable of predicting changes in a patient’s condition and pro-
viding optimized treatments. Furthermore, (Panda et al., 2020; Ambhika et al., 2024) emphasize the critical
importance of selecting appropriate signals as inputs, as human misperceptions about what constitutes im-
portant signals can lead to unexpected and suboptimal decisions. As a result, traditional supervised learning
methods, such as general Transformers paired with loss functions like MSE, may struggle to accurately
predict rare events like hypoglycemic episodes when the input signals fail to align with the underlying dy-
namics.

C MISPERCEPTION IS INFORMATION LOSS

Based on Hypothesis 1, this prompts us to investigate the concept of misperception. Initially, we must clearly
define what constitutes perception. In The Quest for a Common Model of the Intelligent Decision Maker,
Sutton defines perception as one of four principal components of agents, stating: “The perception component
processes the stream of observations and actions to produce the subjective state, a summary of the agent-
world interaction so far that is useful for selecting action (the reactive policy), for predicting future reward
(the value function), and for predicting future subjective states (the transition model)” (Sutton, 2022). This
definition leads us to consider misperception as the information loss occurring when processing observations
into the subjective state, such that the reward and transition model are not equivalent to those from the envi-
ronment. The interpretation of misperception as information loss during processing is somewhat ambiguous,
depending on how the boundary between the agent and the environment is defined. Turing first proposed the
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concept of a boundary between the agent and environment as a ‘skin of an onion’ (Turing, 2009), and later,
Jiang (2019) suggested that algorithms are not boundary-invariant.

Therefore, we propose a new agent-environment framework that incorporates the notion that misperception
is the information loss from an agent’s processing. This framework positions perception at the intersec-
tion between the agent and the environment. We provide a detailed description of our agent-environment
framework in Figure 2.

D RELATED WORKS: NECESSITY OF A NEW PERSPECTIVE TO UNDERSTAND BLACK
SWANS AND EVIDENCE FOR HYPOTHESIS 1

In this section, we focus not only on addressing the necessity of a new perspective to understand black swan
events but also on providing evidence for the proposed perspective of black swan origin (Hypothesis 1).
This is concretized by examining the following two questions. First, in Subsection D.1, we discuss the in-
sufficiency of existing decision-making rules under risk by exploring related works, which support the need
for a new perspective to understand black swans. Specifically, we address why existing safe reinforcement
learning strategies for solving Markov Decision Processes are insufficient to handle black swan events?. If
this premise is validated, then in Subsection D.2, we elaborate on the motivation and related works that sup-
port our informal hypothesis of black swan origin (Hypothesis 1). Specifically, we explore how irrationality
relates to misperception and how irrationality could bring about black swan events.

D.1 DECISION MAKING UNDER RISK

Based on the comprehensive survey on safe reinforcement learning in Garcıa & Fernández (2015), the algo-
rithms can be classified into threefold: worst case criterion, risk-sensitive criterion and constraint criterion.
We elaborate on why the existence of black swans in the environment renders these three approaches insuf-
ficient.

Worst case criterion. Learning algorithms of the worst case criterion focus on devising a control policy that
maximizes policy performance under the least favorable scenario encountered during the learning process,
defined as maxπ∈Πminw∈W V π

M(s;w), where W represents the set of uncertainties. This criterion can be
categorized based on whetherW is defined in the environment or in the estimation of the model. The pres-
ence of black swan events in the worst case, where W represents aleatoric uncertainty of the environment
(Heger, 1994; Coraluppi, 1997; Coraluppi & Marcus, 1999; 2000), results in overly conservative, and thus
potentially ineffective, policies. This occurs because the significant impact of black swan events inflates
the size ofW , even though such events are rare. In practical terms, this could manifest itself as abstaining
from any economic activity (π), such as not investing in stocks or not depositing a check against future
potential bankruptcies (minw∈W V π

M(s;w)) in order to maximize its income (maxπ∈Π(△)), or maintain-
ing constant health precautions such as wearing mask or maintaining distance with groups (π) to prepare
for a possible pandemic (△ = minw∈W V π

M(s;w)) in order to maintain its health (maxπ∈Π). Similarly,
when W encompasses the uncertainty of the model parameter (Bagnell et al., 2001; Iyengar, 2005; Nilim
& El Ghaoui, 2005; Wiesemann et al., 2013; Xu & Mannor, 2010) - as seen in robust MDP or distribution-
ally robust MDP - this aligns closely with our black swan hypothesis, where misperception of the world
model is similar to uncertainty in model estimation. However, the need to accommodate black swan events
requires enlarging the possible set of models (∣W ∣), leading to extremely conservative policies. This can be
likened to performing an overly pessimistic portfolio optimization (π), where every bank is assumed to have
a minimal but possible risk of bankruptcy (minwinW V π

M(s;w)), thus influencing asset allocation strategies
(maxπ∈Πminw∈W V π

M(s;w)) to be extremely conservative in asset investing.

Risk sensitive criterion. Risk-sensitive algorithms strike a balance between maximizing reinforcement
and mitigating risk events by incorporating a sensitivity factor β < 0 (Howard & Matheson, 1972;
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Chung & Sobel, 1987; Patek, 2001). These algorithms optimize an alternative value function V π
M(s) =

β−1 logEπ[expβG ∣P, s0 = s], where β controls the desired level of risk and G ∶= ∑T
t=0 γ

tR(st, at) is a
cumulative return. However, it is recognized that associating risk with the variance of the return is practical,
as in V π

M(s) = β−1 logEπ[expβG] = maxπ∈ΠEπ[G] + β
2

var(G) +O(β2), and the existence of black swan
events does not significantly affect the returns of variance (var(G)) due to their rare nature. It should be
noted that risk-sensitive approaches are not well suited for handling black swan events, as the same policy
performance with small variance can entail substantial risks (Geibel & Wysotzki, 2005). More generally, the
objective of the exponential utility function is one example of risk-sensitive learning based on a trade-off be-
tween return and risk, i.e., maxπ∈Π(Eπ[G]−βw) (Zhang et al., 2018), where w is replaced by Var(G). This
approach is known in the literature as the variance-penalized criterion (Gosavi, 2009), the expected value-
variance criterion (Taha, 2007; Heger, 1994), and the expected-value-minus-variance criterion (Geibel &
Wysotzki, 2005). However, a fundamental limitation of using return variance as a risk measure is that it does
not account for the fat tails of the distribution (Huisman et al., 1998; Bradley & Taqqu, 2003; Bubeck et al.,
2013; Agrawal et al., 2021). Consequently, risk can be underestimated due to the oversight of low probability
but highly severe events (black swans).

Furthermore, a critical question arises regarding whether the log-exponential function belongs to appropri-
ate utility function class for defining real-world risk. Risk-sensitive MDPs have been shown to be equivalent
to robust MDPs that focus on maximizing the worst-case criterion, indicating that the log-exponential utility
function may not be beneficial in the presence of black swans (Osogami, 2012; Moldovan & Abbeel, 2012;
Leqi et al., 2019). This issue was first raised by Leqi et al. (2019) and led to the proposal of a more real-
istic risk definition called ‘Human-aligned risk’, which also incorporates human misperception akin to our
informal black swan hypothesis (Hypothesis 1).

Constrained Criterion. The constrained criterion is applied in the literature to constrained Markov pro-
cesses where the goal is to maximize the expected return while maintaining other types of expected utili-
ties below certain thresholds. This can be formulated as maxπ∈ΠEπ[G] subject to N multiple constraints
hi(G) ≤ αi, for i ∈ [N], where hi ∶ R→ R is a function of return G ∶= ∑T

t=0 γ
tR(st, at) (Geibel, 2006). Typ-

ical constraints include ensuring the expectation of return exceeds a specific minimum threshold (α), such
as Eπ[G] ≥ α, or softening these hard constraints by allowing a permissible probability of violation (ϵ),
such as P(Eπ[G] ≥ α) ≥ 1− ϵ, known as chance-constraint (Delage & Mannor (2010); Ponda et al. (2013)).
Constraints might also limit the return variance, such as Var(G) ≤ α (Di Castro et al. (2012)). However,
the presence of black swans highlights one of the challenges with the Constrained Criterion, specifically
the appropriate selection of α. The presence of black swans necessitates a lower α, which in turn leads to
more conservative policies. Furthermore, a black swan event is determined at least by the environment’s state
and its action, rather than its full return. Therefore, constraints should be redefined over more fine-grained
inputs—not merely returns, but in terms of state and action—which leads to our definition of black swan
dimensions (Definition 3).

D.2 HOW IRRATIONALITY RELATES WITH SPATIAL BLACK SWANS.

Before starting Subsection D.2, we clarify that the term irrationality is used here to denote rational behavior
based on a false belief. In this subsection, we first review existing work on the four rational axioms and then
claim how two of these axioms should be modified to account for irrationality in human decision-making.

Rationality in decision making. In the foundation of decision theory, rationality is understood as internal
consistency (Sugden (1991); Savage (1972)). A prerequisite for achieving rationality in decision-making
is the ability to compare outcomes, denoted as set Ω where ∣Ω∣ = N , through a preference relation in a
rational manner. In von Neumann (1944), it is demonstrated that preferences, combined with rationality
axioms and probabilities for possible outcomes, denoted as pi which is a probability of outcome oi ∈ Ω,
imply the existence of utility values for those outcomes that express a preference relation as the expectation

20



Published as a conference paper at ICLR 2025

of a scalar-valued function of outcomes. Define the choice (or lotteries) as set L, which is a combination of
selecting total N outcomes, that is, ∑N

i=1 pioi. The essential rationality axioms are as follows.

1. Completeness: Given two choices, either one is preferred over the other or they are considered
equally preferable.

2. Transitivity: If A is preferred to B and B is preferred to C, then A must be preferred to C.
3. Independence: If A is preferred to B, and a event probability p ∈ [0,1], then pA + (1 − p)C should

be preferred to pB + (1 − p)C.
4. Continuity: If A is preferred to B and B is preferred to C, there exists a event probability p ∈ [0,1]

such that B is considered equally preferable to pA + (1 − p)C.

Expanding on these axioms, Sunehag & Hutter (2015) extends rational choice theory to encompass the full
reinforcement learning problem, further axiomatizing the concept in Sunehag & Hutter (2011) to establish
a rational reinforcement learning framework that facilitates optimism, crucial for systematic explorative
behavior. Subsequent studies focusing on defining rationality in reinforcement learning, such as Shakerinava
& Ravanbakhsh (2022); Bowling et al. (2023), concentrate on the axioms of assigning utilities to all finite
trajectories of a Markov Decision Process. Specifically, Shakerinava & Ravanbakhsh (2022); Bowling et al.
(2023) clarify the reward hypothesis Sutton that underpins the design of rational agents by introducing an
additional axiom to existing rationality axioms. Furthermore, Pitis (2024) explores the design of multi-
objective rational agents, and Carr et al. (2024) explores and defines rational feedback in Large Language
Models (LLMs) by investigating the existence of optimal policies within a framework of learning from
rational preference feedback (LRPF).

Irrationality due to subjective probability. The definition of irrationality and its origins has been exten-
sively investigated through case studies in various fields such as psychology, education, and particularly
economics. Simon (1993) defined irrationality as being poorly adapted to human goals, diverging from the
norm of human’s object, influenced by emotional or psychological factors in decision-making. Subsequently,
Martino et al. (2006); Gilovich et al. (2002) further concretized what exactly these emotional or psycholog-
ical factors entail by describing them as information loss during human perception of the real world. More
specifically, Martino et al. (2006) pointed out that in a world filled with symbolic artifacts, where optimal
decision-making often requires skills of abstraction and decontextualization, such mechanisms may render
human choices irrational. Further studies, such as Opaluch & Segerson (1989), scrutinize more deeply and
classify the irrationality of human behavior into five factors: subjective probability, regret/disappointment,
reference points, complexity, and ambivalence.

In this paper, we focus on the subjective probability factor to elucidate the relationship between irrationality
and spatial black swans. Opaluch & Segerson (1989) explores subjective probabilities as an early modi-
fication to the expected utility model from von Neumann (1944), focusing on decision-makers who rely
on personal beliefs about probabilities rather than objective truths. This minor conceptual shift can lead
to significant behavioral changes due to the imperfect information and processing abilities of individuals.
Especially, Opaluch & Segerson (1989) highlights the difficulty in accurately estimating the probability of
rare events - such as black swans - which often leads to critical errors in judgment. These errors occur be-
cause rare events provide insufficient data for accurate probability estimation or are misunderstood due to
their infrequency, leading to perceptions that such events are either less likely or virtually impossible. This
misperception is exemplified in various scenarios, such as:

1. An individual working in a dangerous job who has never personally observed an accident may
underestimate the probability of an accident occurring Drakopoulos & Theodossiou (2016); Pandit
et al. (2019).

2. Media coverage of events such as plane crashes may cause an overestimation of the probability of
a crash, since the public is aware of all crashes but not of all safe trips Wahlberg & Sjoberg (2000);
Vasterman et al. (2005); van der Meer et al. (2022).
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3. The popularity of purchasing lottery tickets may be explainable in terms of people’s inability to
comprehend the true probability of winning, influenced instead by news accounts of ‘real’ people
who win multi-million dollar prizes (Rogers (1998); Wheeler & Wheeler (2007); BetterUp (2022)).

E CUMULATIVE PROSPECT THEOREM AND RISK

We note that existing works on incorporating cumulative prospect theory (CPT) into reinforcement learn-
ing, such as (Prashanth et al. (2016); Jie et al. (2018); Danis et al. (2023)), primarily focus on estimating the
CPT-based value function and optimizing it to derive an optimal policy. Specifically, (Prashanth et al. (2016);
Jie et al. (2018)) demonstrate how to estimate the CPT value function using the Simultaneous Perturbation
Stochastic Approximation method and how to compute its gradient for policy optimization algorithms. Ad-
ditionally, (Shen et al. (2014); Ratliff & Mazumdar (2019)) proposed a novel Q-learning algorithm that
applies a utility function to Temporal Difference (TD) errors and demonstrated its convergence. However,
these studies (Prashanth et al. (2016); Jie et al. (2018); Danis et al. (2023); Shen et al. (2014); Ratliff &
Mazumdar (2019)) do not focus on learning the utility and weight functions, u and w, but rather assume
these as simple functions and focus on how to estimate these functions.

However, this study aims to elucidate the mechanisms by which black swan events arise from the discrep-
ancies between M† and M, despite the agent having perfect estimation, i.e., κr = 0, κp = 0. As future
work, concentrating on devising strategies to reweight the functions u+, u−, and w to mitigate the divergence
between the Human MDPM† and the ground truth MDPM is suggested as a way to achieve antifragility.

F PRELIMINARY FOR PROOFS

This subsection covers the preliminary concepts necessary for proving the theorems and lemmas presented
in the paper.

First, in a discrete state and action space, the value functionM could be expressed as an inner product of
reward function R and normalized occupancy measure Pπ as follows,

VM(s0) =
1 − γT

1 − γ ∑
(s,a)∈S×A

R(s, a)Pπ(s, a) (5)

Based on Equations (5), (1), and (2), the CPT distorts the reward and its visitation probability as follows,

VM†(s0) =
1 − γT

1 − γ ∑
s,a∈S×A

u(R(s, a)) d

dsda
w (∫ Pπ(s, a)) . (6)

where † denotes the value function that was distorted due to misperception. As one property of CPT is that
human perception exhibits distinct distortions of events based on whether the associated rewards are posi-
tive or negative, we divide the functions u(R(s, a)) and w(∫ Pπ(s, a)) into u−(R(s, a)),w−(∫ Pπ(s, a))
where R(s, a) < 0, and u+(R(s, a)),w+(∫ Pπ(s, a)) where R(s, a) ≥ 0. Assume that the rewards from all
state-action pairs R(s, a) are ordered as R[1] ≤ ⋅ ⋅ ⋅ ≤ R[l] ≤ 0 ≤ R[l+1] ≤ ⋯ ≤ R[∣S∣∣A∣], and the visitation
probability as Pπ

[1] ≤ Pπ
[2] ≤ ⋯ ≤ Pπ

[∣S∣∣A∣]
. Then, the Equation (6) can be represented as follows:
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VM†(s0) =
1 − γT

1 − γ
⎛
⎝

∣S∣∣A∣

∑
i=1

u(R[i])
⎛
⎝
w
⎛
⎝

i

∑
j=1

Pπ
[j]

⎞
⎠
−w
⎛
⎝
i−1

∑
j=1

Pπ
[j]

⎞
⎠
⎞
⎠

=
l

∑
i=1

u−(R[i])
⎛
⎝
w−
⎛
⎝

i

∑
j=1

Pπ
[j]

⎞
⎠
−w−

⎛
⎝
i−1

∑
j=1

Pπ
[j]

⎞
⎠
⎞
⎠

+
∣S∣∣A∣

∑
i=l+1

u+(R[i])
⎛
⎝
w+
⎛
⎝

∣S∣∣A∣

∑
j=i

Pπ
[j]

⎞
⎠
−w+

⎛
⎝

∣S∣∣A∣

∑
j=i+1

Pπ
[j]

⎞
⎠
⎞
⎠
⎞
⎠

(7)

If we define the reward as the random variable X , then we can regard its instance as R[i] and its probability
as Pπ

[i] where the probability is dependent on the policy π. Suppose that reward function R ∶ S ×A → R is
one to one function. Then the probability R−1 ○ Pπ ∶ R → [0,1] denotes the probability of reward and we
denote it as Pr. Then, for a reward random variableR ∼ Pr, expanding the how CPT- applied value function
look like in Equation (4), we can rewrite the Equation (7) based on continuous state and actions space as
follows.

VM†(s0) = ∫
∞

0
w+ (Pr(u+(R) > r))dr − ∫

∞

0
w− (Pr(u−(R) > r))dr (8)

We use the fact that for real-value function g, it holds that E[g(R)] = ∫
∞

0 Pr(g(R) > r))dr. Within the
above problem setting, the agent’s goal is to estimate the value function under safe perception u−⋆,w

−
⋆ as

follows:
VM(s0) = ∫

∞

0
w+ (Pr(u+(X) > r))dr − ∫

∞

0
w−
⋆
(Pr(u−⋆(X) > r))dr (9)

Note that the safe perception is only defined over w− and u− as w−⋆ and u−⋆ . However, the agent possesses its
own perceptionsM†, for which we assume the risk perception is represented as:

VM†(s0) = ∫
∞

0
w+ (Pr(u+(X) > r))dr − ∫

∞

0
w− (Pr(u−(X) > r))dr (10)

As time goes by, the agent’s goal is approximating the weight functions and utility functions such as w− →
w−⋆ and u− → u−⋆ . Then, by the single trajectory data up to time t, i.e. {h(si), ai, u(ri), h(si+1)}ti=0 where
the reward value itself and its sampling distribution are distorted due to the functions u and w, respectively
(see Lemma 1 for definition of function h). Since function h maps state space to state space, we just use the
notation {s′i, ai, u(ri), s′i+1)}ti=0 to denote Let ri, i = 1, .., t denote n samples of the reward random variable
X . We define the empirical distribution function (EDF) for u+(X) and u−(X) as follows

F̂ +t (r) =
1

t

n

∑
i=1

1(u+(ri)≤r), and F̂ −t (r) =
1

t

n

∑
i=1

1(u−(ri)≤r).

Using the EDFs, the CPT value up to time t can be estimated as follows,

V
M̂†(s0) = ∫

∞

0
w+ (1 − F̂ +t (r))dr − ∫

∞

0
w− (1 − F̂ −t (r))dr (11)

Again, we note that the gap betweenM andM† is defined over a gap between (u−,w−) and (u−⋆,w−⋆) that
is proportional to the existence of spatial black swan events.

G PROOFS

We first like to note that the following lemma helps to quantify how much the distortion on transition prob-
ability is related to the distortion on the visitation probability.
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Lemma 2. If maxs,a ∣∣P (⋅∣s, a) − P †(⋅∣s, a)∣∣1 ≤ (1−γ)
2

γ
ϵd where ϵd > 0, then the agent can guarantee ϵd-

perceived visitation probability.

We begin with Lemma 3 to prove Lemma 2. Recall that P †,π(s, a) is the ϵd-perceived visitation proba-
bility if max(s,a) ∣Pπ(s, a) − Pπ,†(s, a)∣ < ϵd. This perception gap arises from factors such as transition
probabilities, policy, and state space. In the following lemma, we show how the perception gap in transition
probability accumulates into the visitation probability. Before, we define ϵp-perceived transition probability
if max(s,a) ∣∣P (⋅∣s, a) − P †(⋅∣s, a)∣∣1 < ϵp holds. We denote Pπ

t (s, a) as the probability of visiting (s, a) at
time t with policy π.

Lemma 3 (Bounding visitation probability of step t when ϵp-perceived transition holds). If for all (s, a)
holds ϵp-perceived transition probability, then we have

max
π

⎛
⎝ ∑
(s,a)∈S×A

∣Pπ
t (s, a) − Pπ,†

t (s, a)∣
⎞
⎠
≤ tϵp

that holds for all t ∈ N

Proof of Lemma 3. Proof by induction. We use short notation for P (st = s ∣ st−1 = s′, at−1 = a′) as
Pt(s ∣ s′, a′) and P †(st = s ∣ st−1 = s′, at−1 = a′) as P †

t (s ∣ s′, a′). By the definition of rational transition
probability the statement holds at t = 1 for any policy π. Now, suppose the statement holds for t − 1 for any
policy π. Then, we have

∑
(s,a)∈S×A

∣Pπ
t (s, a) − Pπ,†

t (s, a)∣

= ∑
(s,a)∈S×A

∣π(at = a ∣ st = s) ∑
s′,a′
(Pt(s ∣ s′, a′)Pπ

t−1(s′, a′))

− π(at = a ∣ st = s) ∑
s′,a′
(P †

t (s ∣ s′, a′)P
π,†
t−1(s′, a′)) ∣

≤ ∑
(s,a)∈S×A

π(at = a ∣ sh = s)∣ ∑
s′,a′
(Pt(s ∣ s′, a′)Pπ

t−1(s′, a′)) − ∑
s′,a′
(P †

t (s ∣ s′, a′)P
π,†
t−1(s′, a′)) ∣

=∑
s∈S

∣ ∑
s′,a′
(Pt(s ∣ s′, a′)Pπ

t−1(s′, a′)) − ∑
s′,a′
(P †

t (s ∣ s′, a′)P
π,†
t−1(s′, a′)) ∣

=∑
s∈S

∣ ∑
s′,a′
(Pt − P †

t )Pπ
t−1(s′, a′) + ∑

s′,a′
P †
t (s ∣ s′, a′) (Pπ

t−1(s′, a′) − Pπ,†
t−1(s′, a′)) ∣

≤ ∑
s′,a′
∣∑
s∈S

(Pt − P †
t )Pπ

t−1(s′, a′)∣ + ∑
s′,a′
∣∑
s∈S

P †
t (s ∣ s′, a′) (Pπ

t−1(s′, a′) − Pπ,†
t−1(s′, a′)) ∣

≤ϵp ∑
s′,a′

Pπ
t−1(s′, a′) + 1 ⋅ (t − 1)ϵp

=ϵp ⋅ 1 + (t − 1)ϵp
≤tϵp

The all of above inequalities hold for all π. Therefore, the statement holds for all t ∈ N.

Now, we prove the Lemma 2.
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Proof of Lemma 2. Lemma 2 is almost a corollary that stems from Lemma 3. By the definition of visitation
probability, we have

∑
(s,a)∈S×A

∣Pπ(s, a) − Pπ,†(s, a)∣ = ∑
(s,a)∈S×A

∣
∞

∑
t=0

γt (Pπ
t (s, a) − P†,π

t (s, a))∣

≤ ∑
(s,a)∈S×A

∞

∑
h=0

γt ∣(Pπ
t (s, a) − P†,π

t (s, a))∣

=
∞

∑
t=0

γt ∑
(s,a)∈S×A

∣(Pπ
t (s, a) − P†,π

t (s, a))∣

≤
∞

∑
h=0

γtt
(1 − γ)2

γ
ϵp

Let S = ∑∞t=0 γtt, then γS = ∑∞t=0 γt+1t = ∑∞t=1 γt(t − 1). Then by subtracting those two equations, we have
(1 − γ)S = ∑∞t=1 γt = γ

1−γ
. Therefore we have S = γ

(1−γ)2
. Finally, we have the following inequality

∑
(s,a)∈S×A

∣Pπ(s, a) − Pπ,†(s, a)∣ ≤ γ

(1 − γ)2 ⋅
(1 − γ)2

γ
ϵp = ϵp

Proof of Lemma 1. First, note that we have assumed the image of the function R is closed and dense as
[−Rmax,Rmax]. Then, in the progress of projecting all (s, a) into the reward, we define the probability of
reward as P(R = r) = ∑∀(s,a)∈S×A dπ(s, a)1[R(s, a) = r]. we use short notation for P(R = r) as PR.
Now, since dπ(s, a) is the visitation probability of visiting (s, a), then this could be converted to P(R = r)
by dπ(R = R−1(s, a)) where R−1 is many to one function.

Now, since R is the many-to-one function, we can define independent block the S,A as the set Z(r) ∶=
{(s, a) ∈ S ×A∣R(s, a) = r}. Note that if r1 ≠ r2, then Z(r1) ∩ Z(r2) = 0. Then, if h satisfies the set Z to
in be permutation-invariant. Namely, if R(s1, a) = R(s2, a), then R(h(s1)) = R(h(s2), a) holds then there
exists a one-to-one mapping function h ∶ [−Rmax,Rmax]→ [−Rmax,Rmax] such that

R(s, a) = h(R(h(s), a))

holds. The proof can be divided into two folds. The existence of such a function and its one-to-one mapping
function exists. We first prove the existence of such function h. This is because for any state and action s, a,
suppose its reward value is r. Then suppose g(s) = s′. Then since image of function R is closed and dense,
there exists r′ ∈ [−Rmax,Rmax] such that R(s′, a) = r′ holds. Then, one can say the function r = h(r′)
exists. Now, we prove the one-to-one mapping property. suppose for two state and action pair (s1, a1) and
(s2, a2) and let s′1 = h(s′1) and s′2 = h(s′2). Now, suppose R(s′1, a) ≠ R(s′2, a) holds. Then, due to the
property of h, then it should also satisfy R(s1, a) ≠ R(s2, a). Therefore, this concludes that h is the one-to-
one mapping, and the following holds

dπ(R(g(s), a) = r) = dπ(h(R(g(s), a)) = h(r))
= dπ(R(s, a) = h(r))
= P (R = h(r))
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holds. we denote P (R = h(r)) as Ph(R). Then, let’s define two different functions h+ and h− such that we
want to claim that

w− (∫
r

−Rmax

dPR) = ∫
r

−Rmax

dPh−(R), and w+ (∫
r

−Rmax

dPR) = ∫
r

−Rmax

dPh+(R) (12)

holds for any w−,w+. Since the proof for either is similar, we prove the case for the existence of h− under
w− distortion.

Now, recall that for 0 < x < b, w−(x) < x holds and for b < x < 1, w−(x) > x holds and w−(x) is monotically
increasing function. Define rb ∈ [−Rmax,0] such that b ∶= ∫

rb
−Rmax

dPR holds, and for notation simplicity we
deonte F −(r) = ∫

rb
−Rmax

dPR. Then, one can say −Rmax < r < rb, w(F (r)) < F (r) holds and. Then we can

always find a unique ratio 0 < γ(r) < 1 that depends on r such that w−(F (r)) = ∫
γ(r)r
−Rmax

dPr holds where

γ(r) = w−(F (r))
r

.

This leads to set h(r) = γ(r)r = w−(F (r)) that satisfies (12) and also one-to-one mapping. In the same
manner, we can also identify h(r) = γ(r)r = w−(F (r)) where rb < r < 0 holds for γ(r) > 1. Then,
this completes that the function h ∶ r → w−(F (r)) satisfies a one-to-one function and Equation (12). This
completes the proof.

Proof of Theorem 1. By the definition of optimal policy and the value function definition at the time T = 1,
we have the optimal policy at time 0 as follows.

π⋆ = argmax
π

V0(s)

= argmax
a∈A

Q0(s, a)

= argmax
a∈A

R(s, a)

π⋆,† = argmax
a∈A

V †
0 (s)

= argmax
a∈A

Q†
0(s, a)

= argmax
a∈A

u(R(s, a))

for any fixed s ∈ S , let’s assume a∗ is the argument that maximizes the R(s, a). Since u is the non-decreasing
convex function, a⋆ is still the same argument that maximizes the u(R(s, a)). Therefore, π⋆ = π⋆,† holds.

Proof of Theorem 2. We prove by backward induction. First by theorem 1, π⋆T = π
⋆,†
T holds. Now suppose

that π⋆t′+1 = π
⋆,†
t′+1 holds for all t′ = t + 1,⋯, T . Now, we prove the statement holds for t. To prove π⋆t = π⋆,†t ,

it is sufficient to show if Qπ⋆
t (s, a) ≥ Qπ

t (s, a′), then Q†,π⋆
t (s, a) ≥ Q†,π⋆

t (s, a′) also holds for any actions
a, a′ ∈ A. First, the gap Qπ⋆

t (s, a) −Qπ⋆
t (s, a) could be expressed as

Qπ
t (s, a) −Qπ

t (s, a) = Rt(s, a) −Rt(s, a′) + {(P (s1∣s, a) − P (s2∣s, a′)) (V π⋆
t+1(s1) − V π⋆

t+1(s2))}

= (P (s1∣s, a) − P (s2∣s, a′)) (V π⋆
t+1(s1) − V π⋆

t+1(s2))
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and Q†,π⋆
t (s, a) −Q†,π⋆

t (s, a) as

Q†,π⋆
t (s, a) −Q†,π⋆

t (s, a) = R†
t(s, a) −R†

t(s, a′) + {(P †(s1∣s, a) − P †(s2∣s, a′)) (V π⋆
t+1(s1) − V π⋆

t+1(s2))}

= (P †(s1∣s, a) − P †(s2∣s, a′)) (V †,π⋆
t+1 (s1) − V

†,π⋆
t+1 (s2))

= (w(P †(s1∣s, a)) −w(P †(s2∣s, a′))) (V †,π⋆
t+1 (s1) − V

†,π⋆
t+1 (s2))

the reward during t ∈ [1, T − 1] is zero by our problem formulation assumption in section ??. Now, without
loss of generality, we assume V π⋆

t+1(s1) > V π⋆
t+1(s2). Then, due to our assumption that π⋆t′ = π⋆,†t′ holds for

t′ = t+1,⋯, T , we also have V †,π⋆
t+1 (s1) > V

†,π⋆
t+1 (s2). Also, noticing that weight function w is also increasing

function, then P (s1∣s, a) > P (s2∣s, a) also guarantees w(P (s1∣s, a)) > w(P (s2∣s, a)) holds. Therefore, we
can claim if Qπ

t (s, a) − Qπ
t (s, a) > 0 holds, then Q†,π⋆

t (s, a) − Q†,π⋆
t (s, a) > 0 also holds. Then, this

leads to claim that argmaxQπ
t (s, a) = argmaxQ†π

t (s, a), which implies π⋆t = π⋆,†t . This completes the
proof.

Proof of Theorem 3. Assume that Theorem 3 does not hold. Given T = 2, we have V π
2 (s) =

maxa∈AR2(s, a) = R2(s) for each state s. At time t = 1, assume R2 (s1) ≤ R2 (s2) ≤ R2 (s3). The
condition Q†,π

1 (s, a1) ≥ Q
†,π
1 (s, a2) is then expressed as:

w (P (s1 ∣ s, a1)) r2 (s1) + (w (P (s2 ∣ s, a1) + P (s1 ∣ s, a1)) −w (P (s1 ∣ s, a1)))R2 (s2)
+ (1 −w (P (s2 ∣ s, a1) + P (s1 ∣ s, a1)))R3 (s3)
≥ w (P (s1 ∣ s, a2))R2 (s1) + (w (P (s2 ∣ s, a2) + P (s1 ∣ s, a2)) −w (P (s1 ∣ s, a2)))R2 (s2)
+ (1 −w (P (s2 ∣ s, a2) + P (s1 ∣ s, a2)))R3 (s3)

which simplifies to:

(w (P (s1 ∣ s, a1)) −w (P (s1 ∣ s, a2))) (R2 (s1) −R3 (s3))
+ ((w (P (s2 ∣ s, a1) + P (s1 ∣ s, a1)) −w (P (s1 ∣ s, a1)))
− (w (P (s2 ∣ s, a2) + P (s1 ∣ s, a2)) −w (P (s1 ∣ s, a2)))) (R2 (s2) −R3 (s3)) ≥ 0

For the non-distorted case, the analogous expression is:

(P (s1 ∣ s, a1) − P (s1 ∣ s, a2)) (R2 (s1) −R3 (s3))
+ (P (s2 ∣ s, a1) − P (s2 ∣ s, a2)) (R2 (s2) −R3 (s3)) ≥ 0

For arbitrary reward functions, R2, the equality of the two cases under any weighting function w leads to:

w (P (s1 ∣ s, a1)) −w (P (s1 ∣ s, a2))
w (P (s2 ∣ s, a1) + P (s1 ∣ s, a1)) −w (P (s1 ∣ s, a1)) − (w (P (s2 ∣ s, a2) + P (s1 ∣ s, a2)) −w (P (s1 ∣ s, a2))

=P (s1 ∣ s, a1) − P (s1 ∣ s, a2)
P (s2 ∣ s, a1) − P (s2 ∣ s, a2)

where w(p) = p is the only solution, contradicting the distortion required by Definition 2.
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Proof of Theorem 4. The proof of Theorem 4 is divided into three-fold.

1. Proof of asymptotic convergence

We first prove Equation (3) of Theorem 4 in this part 1, then we prove Equation (4) of Theorem 4 in part
3 of this proof. Note that the empirical distribution function F̂n(r) generate Stielgies measure which takes
mass 1

t
each of the sample points on U+(Ri).

or equivalently, show that

lim
n→+∞

n−1

∑
i=1

u+(R[i])(w+(
n − i + 1

n
) −w+(n − i

n
)) n→∞ÐÐÐ→ ∫

+∞

0
w+(P (U > t))dt,w.p. 1 (13)

where n denotes the number of positive reward among ∣S ∣∣A∣. Let ξ+i
n

and ξ−i
n

denote the i
n

th quantile of
u+(X) and u−(X), respectively.

For the convergence proof, we first concentrate on finding the following probability,

P (∣
n−1

∑
i=1

u+(R[i]) ⋅ (w+ ((
n − i
n
) −w+ (n − i − 1

n
)) −

n−1

∑
i=1

ξ+i
n
⋅ (w+ (n − i

n
) −w+ (n − i − 1

n
)))∣ > ϵ) ,

(14)

for any given ϵ > 0. It is easy to check that

P (∣
n−1

∑
i=1

u+(R[i]) ⋅ (w+(
n − i
n
) −w+(n − i − 1

n
)) −

n−1

∑
i=1

ξ+i
n
⋅ (w+(n − i

n
) −w+(n − i − 1

n
))∣ > ϵ)

≤ P (
n−1

⋃
i=1

{∣u+(R[i]) ⋅ (w+(
n − i
n
) −w+(n − i − 1

n
)) − ξ+i

n
⋅ (w+(n − i

n
) −w+(n − i − 1

n
))∣ > ϵ

n
})

≤
n−1

∑
i=1

P (∣u+(R[i]) ⋅ (w+(
n − i
n
) −w+(n − i − 1

n
)) − ξ+i

n
⋅ (w+(

n − i
n
) −w+(

n − i − 1
n

))∣ > ϵ

n
) (15)

=
n−1

∑
i=1

P (∣(u+(R[i]) − ξ+i
n
) ⋅ (w+(n − i

n
) −w+(n − i − 1

n
))∣ > ϵ

n
)

≤
n−1

∑
i=1

P (∣(u+(R[i]) − ξ+i
n
) ⋅ ( 1

n
)α∣ > ϵ

n
)

=
n−1

∑
i=1

P (∣(u+(R[i]) − ξ+i
n
)∣ > ϵ

⋅n1−α
). (16)

The right-hand side of Inequality (16) could be expressed as follows.

P (∣u+(R[i]) − ξ+i
n
∣ > ϵ

n(1−α)
)

= P (u+(R[i]) − ξ+i
n
> ϵ

n(1−α)
) + P (u+(R[i]) − ξ+i

n
< − ϵ

n(1−α)
) .
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We focus on the term P (u+(R[i]) − ξ+i
n

> ϵ
n1−α ). Now, let us define an event At = I(u+(Xt)>ξ

+
i
n

+ ϵ

n(1−α) )

where t = 1, . . . , n. Since the Cumulative distribution is non-decrasing function, we have the following,

P (u+(R[i]) − ξ+i
n
> ϵ

1 − α) = P (
n

∑
t=1

At > n ⋅ (1 −
i

n(1−α)
))

= P (
n

∑
t=1

At − n ⋅ [1 − F +(ξ+i
n
+ ϵ

n(1−α)
)] > n ⋅ [F +(ξ+i

n
+ ϵ

n(1−α)
) − i

n
]) .

Using the fact that EAt = 1 − F +(ξ+i
n

+ ϵ
n(1−α) ) in conjunction with Hoeffding’s inequality, we obtain

P (
n

∑
i=1

At − n ⋅ [1 − F +(ξ+i
n
+ ϵ

n(1−α)
)] > n ⋅ [F +(ξ+i

n
+ ϵ

n(1−α)
) − i

n
]) < e−2n⋅δ

′
t , (17)

where δ
′
i = F +(ξ+i

n

+ ϵ
n(1−α) )−

i
n

. Since F +(x) is Lipschitz, we have that δ
′
i ≤ LF+ ⋅( ϵ

1−α
). Hence, we obtain

P (u+(R[i]) − ξ+i
n
> ϵ

1 − α) < e
−2n⋅LF+

ϵ
1−α = e−2n

α
⋅L+ϵ (18)

In a similar fashion, one can show that

P (u+(R[i]) − ξ+i
n
< − ϵ

1 − α) ≤ e
−2nα

⋅LF+ϵ (19)

Combining (18) and (19), we obtain

P (∣u+(R[i]) − ξ+i
n
∣ > ϵ

1 − α) ≤ 2 ⋅ e
−2nα

⋅LF+ ϵ, ∀i ∈ N ∩ (0,1)

Plugging the above in (16), we obtain

P (∣
n−1

∑
i=1

u+(R[i]) ⋅ (w+(
n − i
n
) −w+(n − i − 1

n
)) −

n−1

∑
i=1

ξ+i
n
⋅ (w+(n − i

n
) −w+(n − i − 1

n
))∣ > ϵ)

≤ 2n ⋅ e−2n
α
⋅LF+ . (20)

Notice that ∑+∞n=1 2n ⋅ e−2n
α
⋅LF+ ϵ <∞ since the sequence 2n ⋅ e−2nα

⋅LF+ will decrease more rapidly than the
sequence 1

nk , ∀k > 1.

By applying the Borel Cantelli lemma, we have that ∀ϵ > 0

P (∣
n−1

∑
i=1

u+(R[i]) ⋅ (w+(
n − i
n
) −w+(n − i − 1

n
)) −

n−1

∑
i=1

ξ+i
n
⋅ (w+(n − i

n
) −w+(n − i − 1

n
))∣ > ϵ) = 0,

which implies
n−1

∑
i=1

u+(R[i]) ⋅ (w+(
n − i
n
) −w+(n − i − 1

n
)) −

n−1

∑
i=1

ξ+i
n
⋅ (w+(n − i

n
) −w+(n − i − 1

n
)) n→+∞ÐÐÐ→ 0 w.p 1,

which proves (13).

Also, the remaining part, conducting the proof of convergence of w− and u−,i.e.

lim
n→+∞

n−1

∑
i=1

u−(R[i])(w−(
n − i + 1

n
) −w−(n − i

n
)) n→∞ÐÐÐ→ ∫

+∞

0
w−(P (U > t))dt,w.p. 1 (21)
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also follows simliar manner. we omit the proof for this.

2. Proof of value function lower bound

By the definition, we have the following

∣VM(s0) − VM†(s0)∣ = ∣∫
0

−∞
w−⋆(Pr(u−⋆(R > r)))dr − ∫

0

∞
w−(Pr(u−(R > r)))dr∣

= ∣∫
0

−∞
w−⋆(Pr(u−⋆(R > r)))dr − ∫

0

∞
w−⋆(Pr(u−(R > r)))dr

− (∫
0

∞
w−(Pr(u−(R > r)))dr − ∫

0

∞
w−⋆(Pr(u−(R > r)))dr) ∣

≥ ∣∫
0

−∞
w−⋆(Pr(u−⋆(R > r)))dr − ∫

0

−∞
w−⋆(Pr(u−(R > r)))dr∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term (I)

− ∣∫
0

−∞
w−⋆(Pr(u−⋆(R > r)))dr − ∫

0

∞
w−⋆(Pr(u−(R > r)))dr∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term (II)

We first under bound the term (I). For notation simplicity, we let g(r) = Pr(u−(R > r))) and g⋆(r) =
Pr(u−⋆(R > r))). Then we have the following

Term (I) = ∣∫
0

−Rmax

w−⋆(g⋆(r)) −w−⋆(g(r))∣

Now, since w−⋆(x) is monotonically increasing in x ∈ [0, a] and monotonically decreasing in x ∈ [a,1], we
could say for any x, y ∈ [0,1], x ≠ y that

w−∗(x) −w−∗(y)
x − y = (w−⋆)′(z) ≥ min

z∈[0,1]
(w−⋆)′(z) =min{(w−⋆)′(0), (w−⋆)′(1)} ,

where z ∈ (x, y). The first equality holds due to the mean value theorem. Therfore it holds that

Term (I) = ∣∫
0

−Rmax

w−⋆(g⋆(r)) −w−⋆(g(r))∣

≥ ∣∫
0

−Rmax

min{(w−⋆)′(0), (w−⋆)′(1)} (g⋆(r) − g(r))∣

=min{(w−⋆)′(0), (w−⋆)′(1)} ∣∫
0

−Rmax

(g⋆(r) − g(r))∣

Now, recall the definition of g⋆(r) and g(r), then we have the following

∣∫
0

−Rmax

(g⋆(r) − g(r))dr∣ = ∣ER∼Pπ [u−⋆(R) − u−(R)]∣
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Now, let us denote the intersection of u−(R) and y = R + Cbs as R = −Rbs. We can say if the blackswan
happens, then its reward is bounded between [−Rmax,−Rbs]. Then we have the following,

∣∫
0

−Rmax

(g⋆(r) − g(r))∣ = ∣ER∼Pπ [u−⋆(R) − u−(R)]∣

= ∣ER∼Pπ [1 [R < −Rbs] (u−⋆(R) − u−(R))]

−ER∼Pπ [1 [R ≥ −Rbs] (−u−⋆(R) + u−(R))] ∣

≥ ∣ER∼Pπ [1 [R < −Rbs] (u−⋆(R) − u−(R))] ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term I-1

− ∣ER∼Pπ [1 [R ≥ −Rbs] (−u−⋆(R) + u−(R))] ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term I-2

≥ ∣ER∼Pπ [1 [R < −Rbs] (u−⋆(R) − u−(R))] ∣

To lower bound the Term I-1, let’s denote the minimum reachability of blackswan events as ϵmin
bs ≠ 0. Then

we have

Term I-1 ≥ Rmax −Rbs

Rmax
ϵmin
bs min

R∈[−Rmax,−Rbs]
∣u−(R) − u−⋆(R)∣

≥ Rmax −Rbs

Rmax
ϵmin
bs ∣u−(−Rbs) − u−⋆(−Rbs)∣ (22)

Term I-2 ≤ Rbs

Rmax
ϵbs max

R∈[−Rbs,0]
∣u−(R) − u−⋆(R)∣

≤ Rbs

Rmax
ϵbs ∣u−(−Rbs) − u−⋆(−Rbs)∣ (23)

Therefore, we have the following equation,

Term I ≥ (Rmax −Rbs) ϵmin
bs −Rbsϵbs

Rmax
∣u−(−Rbs) − u−⋆(−Rbs)∣

Also, since the function u−⋆(r) is convex, and u−⋆(−Rmax) < −Rmax + Cbs holds. Therefore, we could say
u−⋆(r) < Rmax−Cbs

Rmax
r. This leads us to come up with u−⋆(−Rbs) < Rmax−Cbs

Rmax
(−Rbs). Therefore, we have a gap

lowerbound as

∣u−(−Rbs) − u−⋆(−Rbs)∣ ≥ (Rmax −Cbs)
Rbs

Rmax
− (Rbs −Cbs)

= (Rmax −Rbs)Cbs

Rmax
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The above inequality could be minimized as

Term I ≥ (Rmax −Rbs) ϵmin
bs −Rbsϵbs

Rmax
((Rmax −Rbs)Cbs

Rmax
)

=
((Rmax −Rbs) ϵmin

bs −Rbsϵbs) (Rmax −Rbs)Cbs

R2
max

Now, let’s upper bound Term 2. Before, recall that the definition of g(r) = Pr(u−(R) > r)) and note that
by the definition of black swans, we have u−(R) > R + Cbs holds for R ∈ [−Rmax,−Rbs). Therefore,
we can say for all r ∈ [−Rmax,−Rbs), g(r) = 1 holds. Therefore, for all r ∈ [−Rmax,−Rbs], we have
w−⋆(g(r)) −w−(g(r)) = w−⋆(1) −w−(1) = 1 − 1 = 0

∣∫
0

−Rmax

w−⋆(g(r)) −w−(g(r))dr∣ = ∣∫
0

−Rmax+Cbs

w−⋆(g(r)) −w−(g(r))dr∣

= ∣∫
0

−Rmax+Cbs

w−(g(r)) −w−⋆(g(r))dr∣

≤ ∣∫
0

−Rmax+Cbs

L−g(r) − g(r)dr∣

= (L− − 1) ∣∫
0

−Rmax+Cbs

g(r)dr∣

≤ (L− − 1) ⋅ Rmax −Cbs

2Rmax
ϵbs

= (L− − 1) ∣∫
0

−Rmax+Cbs

1 − Pr(U−(R) < r)dr∣

= (L− − 1) ∣∫
0

−Rmax+Cbs

1 − Pr(U−(R) < r)dr∣

= (L− − 1) ∣((Rmax −Cbs) − ∫
0

−Rmax+Cbs

Pr(u−(R) < r)dr)∣

= (L− − 1) ∣((Rmax −Cbs) −ER∼Pr [u−(R)1[−Rmax +Cbs <R < 0]])∣
(24)

Note that if −Rmax +Cbs < −Rbs, then

1[−Rmax+Cbs <R < 0]⋅ER∼Pr [u−(R)] ≥ (
Rmax −Cbs −Rbs

2Rmax
ϵmin
bs +

Rbs

2Rmax
ϵbs)u−(−Rmax+Cbs) (25)

and if −Rmax +Cbs < −Rbs, then

1[−Rmax +Cbs <R < 0] ⋅ER∼Pr [u−(R)] ≥ (
Rmax −Cbs

2Rmax
ϵbs)u−(−Rmax +Cbs) (26)

Therefore, combining the Equations (24), (25), (26), we conclude that

Term II ≤ C ⋅
((Rmax −Rbs) ϵmin

bs −Rbsϵbs) (Rmax −Rbs)Cbs

R2
max

where C ∈ [0,1] is a constant. This completes the proof.
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3. Value function upper bound

For the proof of Equation (4) of Theorem 4, we utilized the following Lemma 4 which provides a concen-
tration inequality on the distance between empirical distribution and true distribution.

Since u+(R) is bounded above by u+(Rmax) and w+(p) is Lipschitz with constant L+(= (w+)′(a)), we
have the following inequality,

∣∫
∞

0
w+(P (u+(X)) > x)dx − ∫

∞

0
w+(1 − F̂ +t (x))dx∣

= ∣∫
u+(Rmax)

0
w+(P (u+(X)) > x)dx − ∫

u+(Rmax)

0
w+(1 − F̂ +t (x))dx∣

≤ ∣∫
u+(Rmax)

0
L+ ⋅ ∣P (u+(X) < x) − F̂ +t (x)∣dx∣

≤L+u+(Rmax) sup
x∈R
∣P (u+(X) < x) − F̂ +t (x)∣ .

Now, plugging in the DKW inequality, we obtain

P (∣∫
∞

0
w+(P (u+(X)) > x)dx − ∫

∞

0
w+(1 − F̂ +t (x))dx∣ > ϵ/2)

≤ P (L+u+(Rmax) sup
x∈R
∣(P (u+(X) < x) − F̂ +t (x)∣ > ϵ/2) ≤ 2e

−t ϵ2

2(L+u+(Rmax))2 . (27)

Along similar manner, we have

P (∣∫
∞

0
w−(P (u−(X)) > x)dx − ∫

∞

0
w−(1 − F̂ −t (x))dx∣ > ϵ/2) ≤ 2e

−t ϵ2

2(L−u−(−Rmax))2) . (28)

Combining (27) and (28), we obtain

P (∣V
M̂† − VM† ∣ > ϵ) ≤ P (∣∫

∞

0
w+(P (u+(X)) > x)dx − ∫

∞

0
w+(1 − F̂ +t (x))dx∣ > ϵ/2)

+ P (∣∫
∞

0
w−(P (u−(X)) > x)dx − ∫

∞

0
w−(1 − F̂ −t (x))dx∣ > ϵ/2)

≤ 4e−t ϵ2

2c2 .

where c =max{∣L+u+(Rmax)∣, ∣L−u−(−Rmax)∣}

Proof of Theorem 5. For a given optimal policy π⋆, define the normalized occupancy measure as dπ⋆ =
(1−γ)∑∞t=0 γtPπ((st, at) = (s, a)). Note that dπ⋆ represents the stationary distribution. Additionally, given
the assumption that the reward function R ∶ S × A → R is a bijection, it follows that the distribution
dπ⋆(R−1(s, a)) and Pr are identical. This indicates that the occurrence of black swan events can be entirely
characterized by the reward values, rather than the specific state-action pairs.
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Now, we define the event Ebs ∶= {R ∈ [−Rmax,−Rbs]} whereR ∼ Pr. The probability of event Ebs happens
is bounded as follows

P(Ebs) = F (−Rbs) − F (−Rmax)
= F (−Rbs)

∈ ((Rmax −Rbs

2Rmax
)ϵmin

bs , (Rmax −Rbs

2Rmax
)ϵmax

bs )

∶= [pmin
bs , pmax

bs ]

Note that we have assumed the 0 < Pr(r = R(s, a)) < ϵbs and its minimum reachable probability as ϵmin
bs

for all reward. now, for given trajectory, the reward instance is given as (r1, r2, ...rh, ...) where rh ∼ Pr, the
probability that the agent first visit the black swan event at step h would be defined as

P (r1,⋯, rh−1 ∉ Ebs, rh ∈ Ebs) = (1 − P(Ebs))h−1P(Ebs)
≤ (1 − pmin)h−1pmax

Therefore, its probability is bounded as follows,

(1 − pmax)h−1pmin ≤ P (r1,⋯, rh−1 ∉ Ebs, rh ∈ Ebs) ≤ (1 − pmin)h−1pmax

Now, to ensure that the blackswan probability to be lower bounded than δ, we need the following conditions,

δ ≤ (1 − pmax)h−1pmin

log δ ≤ (h − 1) log (1 − pmax) + log pmin

Therefore, we have
h ≥ log (δ/pmin)/ log(1 − pmax) + 1.

Therefore, we can conclude that if h = Ω(log (δ/pmin)/ log(1−pmax)), then the agent’s probability to meet
the black swan is at least δ.

H HELPFUL LEMMAS

Lemma 4. (Dvoretzky-Kiefer-Wolfowitz (DKW) inequality)
Let F̂n(u) = 1

n ∑
n
i=1 1((u(Xi))≤u) denote the empirical distribution of a r.v. U , with u(X1), . . . , u(Xn) being

sampled from the r.v u(X). The, for any n and ϵ > 0, we have

P (sup
x∈R
∣F̂n(x) − F (x)∣ > ϵ) ≤ 2e−2nϵ

2

.

34


	Introduction
	Preliminary
	Black Swan in stationary and non-stationary environments
	The Emergence of s-black swan in Sequential Decision Making
	Case 1. Contextual Bandit (T=1)
	Case 2. |S|=2 when T >1
	Case 3. |S|=3 with unbiased reward perception

	Agent- Environment framework : perception as intersection
	Human MDP
	Human-Estimation MDP

	s-black swan 
	A Definition of s-black swan 
	Theoretical Analysis of s-black swan 

	Related works: Necessity of s-black swan 
	Conclusion
	Notations
	Supporting Evidence
	Misperception is information loss
	Related works: Necessity of a new perspective to understand black swans and evidence for Hypothesis 1
	Decision Making Under Risk
	How irrationality relates with spatial black swans.

	Cumulative Prospect Theorem and Risk
	Preliminary for Proofs
	Proofs
	Helpful Lemmas

