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A NOTATIONS

This section provides a table summarizing all the notations and their meanings introduced in the main paper.

Notation Meaning Defintion

M Ground truth MDP Section 2

S State space Section 2

A Action space Section |2

T Time horizon Section |2

P Transition probability function of M Section 2

R Reward function of M Section |2

5y Discount factor Section [2

T Policy Section |2

PT Normalized visitation probability of M Section |2

Vi Value function of M Section |2

w,u,ut Value distortion function Section [2|(Figure|la
w,w”,w’ Probability distorction function Section [2| (Figure|1b

My Distorted MDP Section 4

w(P) Transition probability of M, Section 4

u(R) Reward function of M, Section |4
M Human MDP (HMDP) Subsection 5.1
pf Transition probability of M Subsection 5.1
RY Reward function of M’ Subsection|5.1
prr Normalized visitation probability of M Subsection 5.1
| P Cumulative visitation distribution of M Subsection 5.1
[ Pt Cumulative visitation distribution of M" Subsection 5.1
o Value function of M Subsection 5.1
€ry€d Perception gap Subsection 5.1
M Human Estimation MDP (HEMDP) Subsection |5.2
Pt Transition probability of M Subsection 5.2
Rf Reward function of M Subsection 5.2
o Value function of M Subsection|5.2
Kpy Kd Estimation gap Subsection 5.2

Ry, P[’_T] Order statistics of reward and visitation probability Section (6

P, Probability of reward Section (6

F(r) Cumulative distribution function of P,. Section |6

B Collection of all S-BLACK SWAN Section (6
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Notation Meaning Defintion

Chs, €bs The extent of distortion of functions « and w SectionH(Figures 1c and@l)
eg;i“ Minimum probability of S-BLACK SWAN Section (6
U, u~ that satisfies B = @, i.e. safe reward perception Section (6
w;, w™ that satisfies B = @, i.e. safe probability perception Section (6

B  MISPERCEPTION IS INFORMATION LOSS

Based on Hypothesis|I] this prompts us to investigate the concept of misperception. Initially, we must clearly
define what constitutes perception. In The Quest for a Common Model of the Intelligent Decision Maker,
Sutton defines perception as one of four principal components of agents, stating: “The perception component
processes the stream of observations and actions to produce the subjective state, a summary of the agent-
world interaction so far that is useful for selecting action (the reactive policy), for predicting future reward
(the value function), and for predicting future subjective states (the transition model)” (Sutton, |2022). This
definition leads us to consider misperception as the information loss occurring when processing observations
into the subjective state, such that the reward and transition model are not equivalent to those from the envi-
ronment. The interpretation of misperception as information loss during processing is somewhat ambiguous,
depending on how the boundary between the agent and the environment is defined. Turing first proposed the
concept of a boundary between the agent and environment as a ‘skin of an onion’ (Turing, 2009), and later,
Jiang| (2019) suggested that algorithms are not boundary-invariant.

Therefore, we propose a new agent-environment framework that incorporates the notion that misperception
is the information loss from an agent’s processing. This framework positions perception at the intersec-
tion between the agent and the environment. We provide a detailed description of our agent-environment
framework in Figure 2]

C RELATED WORKS: NECESSITY OF A NEW PERSPECTIVE TO UNDERSTAND BLACK
SWANS AND EVIDENCE FOR HYPOTHESIS (1]

In this section, we focus not only on addressing the necessity of a new perspective to understand black swan
events but also on providing evidence for the proposed perspective of black swan origin (Hypothesis [I).
This is concretized by examining the following two questions. First, in Subsection [C.1} we discuss the in-
sufficiency of existing decision-making rules under risk by exploring related works, which support the need
for a new perspective to understand black swans. Specifically, we address why existing safe reinforcement
learning strategies for solving Markov Decision Processes are insufficient to handle black swan events?. If
this premise is validated, then in Subsection [C.2] we elaborate on the motivation and related works that sup-
port our informal hypothesis of black swan origin (Hypothesis|[I)). Specifically, we explore how irrationality
relates to misperception and how irrationality could bring about black swan events.

C.1 DECISION MAKING UNDER RISK

Based on the comprehensive survey on safe reinforcement learning in|Garcia & Fernandez| (2015), the algo-
rithms can be classified into threefold: worst case criterion, risk-sensitive criterion and constraint criterion.
We elaborate on why the existence of black swans in the environment renders these three approaches insuf-
ficient.

Worst case criterion. Learning algorithms of the worst case criterion focus on devising a control policy that
maximizes policy performance under the least favorable scenario encountered during the learning process,
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defined as max e mingepy V/Cl(s; w), where W represents the set of uncertainties. This criterion can be
categorized based on whether W is defined in the environment or in the estimation of the model. The pres-
ence of black swan events in the worst case, where WV represents aleatoric uncertainty of the environment
(Heger, 1994 |Coraluppi, (1997} |Coraluppi & Marcus, 1999} |2000), results in overly conservative, and thus
potentially ineffective, policies. This occurs because the significant impact of black swan events inflates
the size of W, even though such events are rare. In practical terms, this could manifest itself as abstaining
from any economic activity (), such as not investing in stocks or not depositing a check against future
potential bankruptcies (min,epw Vi (s;w)) in order to maximize its income (maxerr(4)), or maintain-
ing constant health precautions such as wearing mask or maintaining distance with groups () to prepare
for a possible pandemic (A = minyew Vi (s;w)) in order to maintain its health (max cr). Similarly,
when W encompasses the uncertainty of the model parameter (Bagnell et al., 2001} Iyengar, |2005}; INilim
& El Ghaouil [2005; [Wiesemann et al.| [2013; [ Xu & Mannor, [2010) - as seen in robust MDP or distribution-
ally robust MDP - this aligns closely with our black swan hypothesis, where misperception of the world
model is similar to uncertainty in model estimation. However, the need to accommodate black swan events
requires enlarging the possible set of models (|WV)), leading to extremely conservative policies. This can be
likened to performing an overly pessimistic portfolio optimization (7), where every bank is assumed to have
a minimal but possible risk of bankruptcy (min,i,yw Vi (s;w)), thus influencing asset allocation strategies
(max ey mingew Vi (5;w)) to be extremely conservative in asset investing.

Risk sensitive criterion. Risk-sensitive algorithms strike a balance between maximizing reinforcement
and mitigating risk events by incorporating a sensitivity factor 8 < 0 (Howard & Matheson, |1972;
Chung & Sobel, (1987 [Patek, 2001). These algorithms optimize an alternative value function V/C[(s) =
B~ logE,[exp”C |P, sy = 5], where 3 controls the desired level of risk and G == Y- 7' R(ss, ;) is a
cumulative return. However, it is recognized that associating risk with the variance of the return is practical,
asin VT (s) = B log Ex[exp”“] = maxen Ex[G] + gvar(G) +O(3?), and the existence of black swan
events does not significantly affect the returns of variance (var(G)) due to their rare nature. It should be
noted that risk-sensitive approaches are not well suited for handling black swan events, as the same policy
performance with small variance can entail substantial risks (Geibel & Wysotzkil [2005). More generally, the
objective of the exponential utility function is one example of risk-sensitive learning based on a trade-off be-
tween return and risk, i.e., max < (E,[G] - fw) (Zhang et al., 2018), where w is replaced by Var(G). This
approach is known in the literature as the variance-penalized criterion (Gosavil, [2009)), the expected value-
variance criterion (Tahal, 2007} [Heger, [1994), and the expected-value-minus-variance criterion (Geibel &
Wysotzki, [2005). However, a fundamental limitation of using return variance as a risk measure is that it does
not account for the fat tails of the distribution (Huisman et al.,|1998; Bradley & Taqqu, 2003} Bubeck et al.|
2013;|Agrawal et al.,2021). Consequently, risk can be underestimated due to the oversight of low probability
but highly severe events (black swans).

Furthermore, a critical question arises regarding whether the log-exponential function belongs to appropri-
ate utility function class for defining real-world risk. Risk-sensitive MDPs have been shown to be equivalent
to robust MDPs that focus on maximizing the worst-case criterion, indicating that the log-exponential utility
function may not be beneficial in the presence of black swans (Osogamil 2012 [Moldovan & Abbeel, [2012;
Leqi et al.l [2019). This issue was first raised by |Leqi et al.| (2019) and led to the proposal of a more real-
istic risk definition called ‘Human-aligned risk’, which also incorporates human misperception akin to our
informal black swan hypothesis (Hypothesis|I).

Constrained Criterion. The constrained criterion is applied in the literature to constrained Markov pro-
cesses where the goal is to maximize the expected return while maintaining other types of expected utili-
ties below certain thresholds. This can be formulated as max <y E,[G] subject to N multiple constraints
hi(G) < oy, fori € [N], where h; : R - R is a function of return G := Ztho vt R(s¢, at) (Geibel, [2006). Typ-
ical constraints include ensuring the expectation of return exceeds a specific minimum threshold (a;), such
as E;[G] > a, or softening these hard constraints by allowing a permissible probability of violation (e),
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such as P(E;[G] > &) > 1 — ¢, known as chance-constraint (Delage & Mannor|(2010); Ponda et al.|(2013)).
Constraints might also limit the return variance, such as Var(G) < « (Di Castro et al|(2012)). However,
the presence of black swans highlights one of the challenges with the Constrained Criterion, specifically
the appropriate selection of a.. The presence of black swans necessitates a lower «, which in turn leads to
more conservative policies. Furthermore, a black swan event is determined at least by the environment’s state
and its action, rather than its full return. Therefore, constraints should be redefined over more fine-grained
inputs—not merely returns, but in terms of state and action—which leads to our definition of black swan
dimensions (Definition [3).

C.2 HOW IRRATIONALITY RELATES WITH SPATIAL BLACK SWANS.

Before starting Subsection we clarify that the term irrationality is used here to denote rational behavior
based on a false belief. In this subsection, we first review existing work on the four rational axioms and then
claim how two of these axioms should be modified to account for irrationality in human decision-making.

Rationality in decision making. In the foundation of decision theory, rationality is understood as internal
consistency (Sugden| (1991)); [Savage, (1972)). A prerequisite for achieving rationality in decision-making
is the ability to compare outcomes, denoted as set 2 where || = N, through a preference relation in a
rational manner. In [von Neumann| (1944), it is demonstrated that preferences, combined with rationality
axioms and probabilities for possible outcomes, denoted as p; which is a probability of outcome o; € €2,
imply the existence of utility values for those outcomes that express a preference relation as the expectation
of a scalar-valued function of outcomes. Define the choice (or lotteries) as set £, which is a combination of
selecting total N outcomes, that is, Zfil p;0;. The essential rationality axioms are as follows.

1. Completeness: Given two choices, either one is preferred over the other or they are considered
equally preferable.

2. Transitivity: If A is preferred to B and B is preferred to C, then A must be preferred to C.

3. Independence: If A is preferred to B, and a event probability p € [0, 1], then pA + (1 — p)C should
be preferred to pB + (1 - p)C.

4. Continuity: If A is preferred to B and B is preferred to C, there exists a event probability p € [0, 1]
such that B is considered equally preferable to pA + (1 - p)C.

Expanding on these axioms, Sunehag & Hutter| (2015) extends rational choice theory to encompass the full
reinforcement learning problem, further axiomatizing the concept in |[Sunehag & Hutter| (2011) to establish
a rational reinforcement learning framework that facilitates optimism, crucial for systematic explorative
behavior. Subsequent studies focusing on defining rationality in reinforcement learning, such as|Shakerinava
& Ravanbakhshl (2022); Bowling et al.| (2023), concentrate on the axioms of assigning utilities to all finite
trajectories of a Markov Decision Process. Specifically, Shakerinava & Ravanbakhsh| (2022); Bowling et al.
(2023) clarify the reward hypothesis Sutton| that underpins the design of rational agents by introducing an
additional axiom to existing rationality axioms. Furthermore, |Pitis| (2024) explores the design of multi-
objective rational agents, and |Carr et al.| (2024)) explores and defines rational feedback in Large Language
Models (LLMs) by investigating the existence of optimal policies within a framework of learning from
rational preference feedback (LRPF).

Irrationality due to subjective probability. The definition of irrationality and its origins has been exten-
sively investigated through case studies in various fields such as psychology, education, and particularly
economics. Simon| (1993)) defined irrationality as being poorly adapted to human goals, diverging from the
norm of human’s object, influenced by emotional or psychological factors in decision-making. Subsequently,
Martino et al.| (2006); |Gilovich et al.| (2002) further concretized what exactly these emotional or psycholog-
ical factors entail by describing them as information loss during human perception of the real world. More
specifically, Martino et al.| (2006) pointed out that in a world filled with symbolic artifacts, where optimal
decision-making often requires skills of abstraction and decontextualization, such mechanisms may render
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human choices irrational. Further studies, such as|Opaluch & Segerson| (1989)), scrutinize more deeply and
classify the irrationality of human behavior into five factors: subjective probability, regret/disappointment,
reference points, complexity, and ambivalence.

In this paper, we focus on the subjective probability factor to elucidate the relationship between irrationality
and spatial black swans. (Opaluch & Segerson| (1989) explores subjective probabilities as an early modi-
fication to the expected utility model from [von Neumann| (1944), focusing on decision-makers who rely
on personal beliefs about probabilities rather than objective truths. This minor conceptual shift can lead
to significant behavioral changes due to the imperfect information and processing abilities of individuals.
Especially, |Opaluch & Segerson| (1989) highlights the difficulty in accurately estimating the probability of
rare events - such as black swans - which often leads to critical errors in judgment. These errors occur be-
cause rare events provide insufficient data for accurate probability estimation or are misunderstood due to
their infrequency, leading to perceptions that such events are either less likely or virtually impossible. This
misperception is exemplified in various scenarios, such as:

1. An individual working in a dangerous job who has never personally observed an accident may
underestimate the probability of an accident occurring |Drakopoulos & Theodossiou| (2016)); [Pandit
et al.|(2019).

2. Media coverage of events such as plane crashes may cause an overestimation of the probability of
a crash, since the public is aware of all crashes but not of all safe trips[Wahlberg & Sjoberg|(2000);
Vasterman et al.|(2005)); [van der Meer et al.| (2022).

3. The popularity of purchasing lottery tickets may be explainable in terms of people’s inability to
comprehend the true probability of winning, influenced instead by news accounts of ‘real’ people
who win multi-million dollar prizes (Rogers|(1998));|Wheeler & Wheeler|(2007); |BetterUp, (2022)).

D CUMULATIVE PROSPECT THEOREM AND RISK

We note that existing works on incorporating cumulative prospect theory (CPT) into reinforcement learn-
ing, such as (Prashanth et al.|(2016);|Jie et al.|(2018); Danis et al.|(2023)), primarily focus on estimating the
CPT-based value function and optimizing it to derive an optimal policy. Specifically, (Prashanth et al.|(2016);
Jie et al.| (2018))) demonstrate how to estimate the CPT value function using the Simultaneous Perturbation
Stochastic Approximation method and how to compute its gradient for policy optimization algorithms. Ad-
ditionally, (Shen et al| (2014); Ratliff & Mazumdar| (2019)) proposed a novel Q-learning algorithm that
applies a utility function to Temporal Difference (TD) errors and demonstrated its convergence. However,
these studies (Prashanth et al.| (2016); Jie et al. (2018)); [Danis et al.| (2023)); [Shen et al.| (2014)); [Ratliff &
Mazumdar| (2019)) do not focus on learning the utility and weight functions, v and w, but rather assume
these as simple functions and focus on how to estimate these functions.

However, this study aims to elucidate the mechanisms by which black swan events arise from the discrep-
ancies between M" and M, despite the agent having perfect estimation, i.e., k, = 0, kp = 0. As future
work, concentrating on devising strategies to reweight the functions «*, u~, and w to mitigate the divergence
between the Human MDP M and the ground truth MDP M is suggested as a way to achieve antifragility.

E PRELIMINARY FOR PROOFS

This subsection covers the preliminary concepts necessary for proving the theorems and lemmas presented
in the paper.
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First, in a discrete state and action space, the value function M could be expressed as an inner product of
reward function R and normalized occupancy measure P™ as follows,

T
"7 S R(s.a)P(s.a) 5)

V =
M(SO) 1=~ (s,a)eSxA

Based on Equations (3), (1)), and @), the CPT distorts the reward and its visitation probability as follows,

1-4" > u(R(s,a))ﬁddaw(/P”(s,a)). (6)

1- Y s,aeSxA

VM“;' (S(]) =

where T denotes the value function that was distorted due to misperception. As one property of CPT is that
human perception exhibits distinct distortions of events based on whether the associated rewards are posi-
tive or negative, we divide the functions u(R(s,a)) and w([ P"(s,a)) into u” (R(s,a)),w” ([ P™(s,a))
where R(s,a) <0, and u* (R(s,a)),w* ([ P™(s,a)) where R(s,a) > 0. Assume that the rewards from all
state-action pairs R(s,a) are ordered as Ry} < -+ < Ry < 0 < Rpjiqy < -+ < Ryjs)ap], and the visitation
probability as Pﬂ] < P[’;] << P[T\rsn Al Then, the Equation (6) can be represented as follows:

! i i1
= ;u_(R[i]) (w_ (Z;P[Tjr]) -—w~ (Z; PE;]))
|SAl [S]l.A| [S]l.A|
+ > u+(Rm)(w+( Z P[T;-])—uf'( Z P{;]))) 7

1 — AT (1814 i i1
Vi (s0) = 5 ( > u(Rm(w(ZP@])—w(ZlPﬁ]))

i=l+1 j=i+l

If we define the reward as the random variable X, then we can regard its instance as R[;] and its probability
as P[’;] where the probability is dependent on the policy 7. Suppose that reward function R : S x A — R is
one to one function. Then the probability R~ o P™ : R — [0, 1] denotes the probability of reward and we
denote it as IP,.. Then, for a reward random variable R ~ P,., expanding the how CPT- applied value function
look like in Equation (4), we can rewrite the Equation based on continuous state and actions space as

follows.
Vi (50) = fo w* (B (u* (R) > 7)) dr - fo w (B (" (R) > r)) dr )

We use the fact that for real-value function g, it holds that E[g(R)] = [, Pr(g(R) > r))dr. Within the
above problem setting, the agent’s goal is to estimate the value function under safe perception u, ,w; as
follows:

Va(s0) = f w* (Pr(u* (X) > 7)) dr - / w? (P (ul(X) > 1)) dr ©)
0 0
Note that the safe perception is only defined over w™ and »~ as w; and u,. However, the agent possesses its
own perceptions M, for which we assume the risk perception is represented as:
Ve (s0) = f w* (B, (u* (X) > 7)) dr - f w™ (P, (u(X) > 7)) dr (10)
0 0
As time goes by, the agent’s goal is approximating the weight functions and utility functions such as w™ —

w} and u~ — u. Then, by the single trajectory data up to time ¢, i.e. {h(s;),a;,u(r;), h(si+1)}i, where
the reward value itself and its sampling distribution are distorted due to the functions v and w, respectively
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(see Lemma [T for definition of function h). Since function & maps state space to state space, we just use the
notation {s/, a;, u(r;), s},1)}._, to denote Let r;,4 = 1, .., denote n samples of the reward random variable
X . We define the empirical distribution function (EDF) for «*(X) and v~ (X)) as follows

. 1 g 1&
F;(’I") = ; Z 1(u+(7‘i)sr)a and Ft (’I“) = ; Z 1(u‘(ri)sr)~
i=1 i=1
Using the EDFs, the CPT value up to time ¢ can be estimated as follows,

Vﬂi(so):fowar(l—F{'(r))dr—fooow_ (1—Ft_(r))dr (11)

Again, we note that the gap between M and M is defined over a gap between (u~,w~) and (u},w}) that
is proportional to the existence of spatial black swan events.

F PROOFS

We first like to note that the following lemma helps to quantify how much the distortion on transition prob-
ability is related to the distortion on the visitation probability.

N2
Lemma 2. [f max, , ||P(:|s,a) - PT(:]s,a)|l; < %ed where ¢4 > 0, then the agent can guarantee €g-
perceived visitation probability.

We begin with Lemma [3| to prove Lemma [2| Recall that P"'™(s,a) is the e4-perceived visitation proba-
bility if maxs ) [P™(s,a) — P™(s,a)| < eq. This perception gap arises from factors such as transition
probabilities, policy, and state space. In the following lemma, we show how the perception gap in transition
probability accumulates into the visitation probability. Before, we define €,-perceived transition probability

if max s ) ||[P(-|s,a) = P*(:|s,a)|l1 < €, holds. We denote P} (s, a) as the probability of visiting (s, a) at
time ¢ with policy 7.

Lemma 3 (Bounding visitation probability of step ¢ when e,-perceived transition holds). If for all (s,a)
holds €y,-perceived transition probability, then we have

max( Z |Pf(s,a) —[P?vf(s,a)|) < tep

T \(s,a)eSxA

that holds for all t € N

Proof of Lemma 3] Proof by induction. We use short notation for P(s; = s | s;-1 = s',a4-1 = a’) as
Pi(s|s',a’) and P'(s; = s | si-1 = 8',a,-1 = a’) as P, (s | s',a’). By the definition of rational transition
probability the statement holds at ¢ = 1 for any policy 7. Now, suppose the statement holds for ¢ — 1 for any
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policy 7. Then, we have

Z |]P’f(s,a) —IP’?’T(s,a)|

(s,a)eSxA
- ¥ \ﬁ(at —alsi=5) S (Pus|s,d)PL (s "))
(s,a)eSxA s’,a’
~m(ar=alsi=5) Y. (P(s] sﬂa')IE’f_’X(s',a')) |
< > wa=alsy=5)| Y (P(s|sd)PL(s,a)) - > (P/(s|s,a)PLi(s,d)) ‘
(s,a)eSxA s’,a’ s’ a’
= | X (B 15,V a)) = Y (Pl |8 a )P (s, a)]
seS  s’,a’ s’ a’
2|3 (B~ BB () + Y Pi(s |8 a) (BT (s'.a') - B (s',0)) |
seS s',a’ s’ a’
T T o + 1o T I A A
<Y X (B PP )]+ ¥ |3 Pi(s]s',a) (BT (s, a") - PR (s',a)) |
s’,a’ " seS s’,a’ seS
<ep Y. Pri(s',a)+1-(t-1)e,
=€, 1+ (t—-1)e,
<tep
The all of above inequalities hold for all 7. Therefore, the statement holds for all ¢ € N. O

Now, we prove the Lemma 2]

Proof of Lemma2] Lemma[2)is almost a corollary that stems from Lemmal[3] By the definition of visitation
probability, we have

Z |P”(3, a) - P’T’+(57 a)| = Z i 7 (IPT(S, a) - ]P):’W(S, a))

(s,a)eSxA (s,a)eSx.A 1t=0

< T S AP (s,a) - B (s,0))]

(s,a)eSxA h=0

7Y (BT (s,a) -y (s,0))]

gk

t=0  (s,a)eSxA
oo 1-— 2

< Z *ytt( 7) &
h=0 v

Let S = ¥.5°0 7', then vS = 352, v** 1t = 352, 48(¢ - 1). Then by subtracting those two equations, we have

(1-9)S=%29" = % Therefore we have S = ﬁ Finally, we have the following inequality

€ = €p

A2
Z |P”(s,a)—P”’T(s,a)|§ Y 2'(1 7)
(s,a)eSxA (1-7) v
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Proof of LemmalI| First, note that we have assumed the image of the function R is closed and dense as
[~ Rmax, Rmax]- Then, in the progress of projecting all (s, a) into the reward, we define the probability of
reward as P(R = 7) = Yy (5q)esxa " (5,a)1[R(s,a) = r]. we use short notation for P(R = r) as Px.
Now, since d” (s, a) is the visitation probability of visiting (s, a), then this could be converted to P(R = r)
by d"(R = R™'(s,a)) where R™! is many to one function.

Now, since R is the many-to-one function, we can define independent block the S,.A as the set Z(r) :=
{(s,a) € S x A|R(s,a) =r}. Note that if 1 # 7o, then Z(71) n Z(r2) = 0. Then, if h satisfies the set Z to
in be permutation-invariant. Namely, if R(s1,a) = R(s2,a), then R(h(s1)) = R(h(s2), a) holds then there
exists a one-to-one mapping function b : [~ Ryax, Rmax] = [~ Rmax, Fmax ] such that

R(s,a) = h(R(h(s),a))

holds. The proof can be divided into two folds. The existence of such a function and its one-to-one mapping
function exists. We first prove the existence of such function h. This is because for any state and action s, a,
suppose its reward value is 7. Then suppose g(s) = s’. Then since image of function R is closed and dense,
there exists 1’ € [—Ruax, Rmax] such that R(s’,;a) = r’ holds. Then, one can say the function r = h(r")
exists. Now, we prove the one-to-one mapping property. suppose for two state and action pair (s1,a;) and
(s2,a2) and let s7 = h(s}) and s) = h(s5). Now, suppose R(s],a) # R(s5,a) holds. Then, due to the
property of A, then it should also satisfy R(s1,a) # R(s2,a). Therefore, this concludes that & is the one-to-
one mapping, and the following holds

d"(R(g(s),a) =r)=d"(h(R(g(s),a)) = h(r))
=d"(R(s,a) = h(r))
=P(R = h(r))

holds. we denote P (R = h(r)) as P, (g). Then, let’s define two different functions 2" and ~~ such that we
want to claim that

w—( f dIPR): f dPy-(ry, and w+( f dIP’R): f dProry  (12)
_Rm,aw _R7naw _R7naw _RTnaw

holds for any w™,w™. Since the proof for either is similar, we prove the case for the existence of h~ under
w” distortion.

Now, recall that for 0 < z < b, w™ («) < x holds and for b < « < 1, w™(z) > x holds and w™ (z) is monotically
increasing function. Define 7, € [ - Rppax, 0] such that b := f_g;mx dPz holds, and for notation simplicity we

deonte F~(r) = [}, dPg. Then, one can say —Rpax < 7 < 73, w(F (7)) < F(r) holds and. Then we can

max

always find a unique ratio 0 < y(r) < 1 that depends on 7 such that w™(F(r)) = [jé;li dP,. holds where

= IO

This leads to set h(r) = y(r)r = w™ (F(r)) that satisfies and also one-to-one mapping. In the same
manner, we can also identify h(r) = vy(r)r = w™(F(r)) where r, < r < 0 holds for v(r) > 1. Then,
this completes that the function h : r - w™ (F(r)) satisfies a one-to-one function and Equation (12). This
completes the proof. O O
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Proof of Theorem|I] By the definition of optimal policy and the value function definition at the time 7" = 1,
we have the optimal policy at time 0 as follows.

7" = argmax Vg(s)
™

=argmax Qo(s,a)
aec,

= argmax R(s,a)
ae

7" = argmax V; (s)
acA

= arg max Q (s, a)
acA

=argmaxu(R(s,a))
acA

for any fixed s € S, let’s assume a* is the argument that maximizes the 12(s, a). Since u is the non-decreasing
convex function, a* is still the same argument that maximizes the u(R(s, a)). Therefore, 7* = 7" holds.
O

Proof of Theorem 2] We prove by backward induction. First by theorem |1} 7}, = W;’T holds. Now suppose
:’ll holds for all ¢/ = ¢ + 1,---,T. Now, we prove the statement holds for ¢. To prove 7} = m; ot
it is sufficient to show if Q7 (s,a) > QT (s,a’), then Q:’”* (s,a) = Qt’”* (s,a’) also holds for any actions

a,a’ € A. First, the gap Q7 (s,a) — QT (s,a) could be expressed as

that 7/, =

Q7 (5,0) = Q7 (s,0) = Ri(s,0) = Ry(s,a') + {(P(s1]s,a) = P(sa]s, ")) (ViTi(51) = Vi (s2)) |
= (P(s1]s,a) = P(s]s,")) (ViT1(51) = Vi1 (s2))
and Q:’”* (s,a) - Q;’“* (s,a) as
I (s,0) = Q] (s,0) = R[(s,0) = R[(5,0") + {(P" (s1]s, @) = P'(sals,a")) (ViT1(51) = Vi1 (s2) )}
= (P'(s1ls,0) = P'(sals,0")) (V7T (s1) = VT (52))
= (w(P' (s1]5,0)) = w(P'(sals,0"))) (Vi (51) = VT (52))
the reward during ¢ € [1,T - 1] is zero by our problem formulation assumption in section ??. Now, without

loss of generality, we assume V;7;(s1) > V;7) (s2). Then, due to our assumption that 7rj, = 77" holds for
t' =t+1,--, T, we also have V:J (s1) > V;TJ (s2). Also, noticing that weight function w is also increasing
function, then P(s1|s,a) > P(s2|s, a) also guarantees w(P(s1]s,a)) > w(P(s2|s,a)) holds. Therefore, we
can claim if Q7 (s,a) — QF(s,a) > 0 holds, then Qt’”*(&a) - Z”T*(s,a) > 0 also holds. Then, this
leads to claim that arg max Q7 (s,a) = argmax Q]™ (s, a), which implies 77 = 7. This completes the
proof. O O

Proof of Theorem[3] Assume that Theorem [3| does not hold. Given 7' = 2, we have Vj(s) =
maxgeq Ro(s,a) = Ro(s) for each state s. At time ¢ = 1, assume R (s1) < Ro(s2) < Ra(s3). The
condition Q1™ (s,a1) > Q1™ (s, ag) is then expressed as:
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w(P(s1]8,a1))ra(s1)+ (w(P(s2]s,a1)+P(s1]|s,a1))—w(P(s1]8,a1)))Ra(s2)
+(1-w(P(s2]s,a1)+P(s1]|s,a1))) Rs(s3)

>w (P (s1]8,a2))Ro(s1)+ (w(P(s2]s,a2)+P(s1]s,a2))—w(P(s1]5,a2)))Ra(s2)
+(1-w(P(s2]s,a2)+P(s1]s,a2)))Rs(s3)

which simplifies to:

(w(P(s1]s,a1)) —w(P(s1]s,a2))) (Ra2(s1) — R3(s3))
+((w(P(s2|s,a1)+P(s1]s,a1))—w(P(s1]s,a1)))
—(w(P(s2]s,a2) + P(s1]s,a2)) —w(P(s1]s,a2)))) (R2(s2) - R3(s3)) 20

For the non-distorted case, the analogous expression is:

(P (s1]s,a1) = P(s1]s,a2)) (R2(s1) - R3(s3))
+ (P(SQ | s,al) —P(SQ | S,CLQ)) (R2 (82) - R3 (83)) >0

For arbitrary reward functions, Rs, the equality of the two cases under any weighting function w leads to:

w (P (s1]s,a1)) —w(P(s51]8,a2))

w(P(s2|s,a1)+P(s1]s,a1))—w(P(s1]s,a1))—(w(P(s2]s,a2)+P(s1]8,a2))—w(P(s1]8,a2))
:P(51 | s,a1) — P (s1]s,a2)
P(sy]s,a1) - P(s2]s,a2)

where w(p) = p is the only solution, contradicting the distortion required by Deﬁnition O

Proof of Theoremd| The proof of Theorem [4]is divided into three-fold.
1. Proof of asymptotic convergence

We first prove Equation (3) of Theorem []in this part 1, then we prove Equation () of Theorem []in part
3 of this proof. Note that the empirical distribution function F},(r) generate Stielgies measure which takes
mass 7 each of the sample points on U*(R;).

or equivalently, show that

n-1

: + +
im 57w (Rpp) (w'(

i=1

n-1+1 n-—1t

) —w'(

)) == [0+°° w(P(U > t))dt,w.p. 1 (13)

where n denotes the number of positive reward among |S||.A|. Let £% and &7 denote the %th quantile of
u*(X) and u~ (X)), respectively.
> ) ,

(14)

For the convergence proof, we first concentrate on finding the following probability,

(e (o () (=) Bt o (5w (57)
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for any given € > 0. It is easy to check that

S (B - (o (T (P

i=1

P(

D= et () s ()

<r(U]

i=1

W (Rp) (w0 -

-1 sn—-i-1

<3 Pl (B - (w ";i)—

n-—t-—

= % P (Rp) ~€0) - (w

“(

<> Pt (R - €0 ()

>£)
n

€
—). (16)

- P<|<u+<R ) -

The right-hand side of Inequality could be expressed as follows.

+ et €
P(u (R > n(l_a))
_ + + € €
_P(u (R[’L])_§% > 7n(17a))+P(U+(R['L])_£% <_7n(1*0¢)).

We focus on the term P(u*(R[i]) -&t > n%“) Now, let us define an event A; = I(y+(x,)s¢" + )

where t = 1,...,n. Since the Cumulative distribution is non-decrasing function, we have the follocving,
n N
+ + € _ ¢
Pt - > 15 ‘P(ZAt >”'(1‘n<m>))

—P(ZAt— [1- F (€] + = ))]>n-[F*(§§+Tl(fm)—2])~

Using the fact that EA; =1 - F* (&% + ﬁ) in conjunction with Hoeffding’s inequality, we obtain

P(Y A= [L= PG + )] > e [P + i) - 2] < an

where §; = F* (&% + )~ L _Since F'*(x) is Lipschitz, we have that 8, < Lp+- (1% )- Hence, we obtain

—2n-Lp+ 55 _ —2n*.L*e

P(u*(Rp)) - &5 > . C )<e e ‘ (18)
n -«
In a similar fashion, one can show that
P(u(Rpy) - €L < =) e e 19)
n -«

Combining (T8) and (T9), we obtain
P(lu

€ y<2.e2 Lrre WieNn(0,1)
-
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Plugging the above in (16)), we obtain

el Lon—i Lon—i-1. o i Lon—i-1
P(;u (Rpap) - (w*( - ) —w( - ))—;fﬁ-(w( - ) —w( - )| >e€)
<on.e 2" Eer (20)

. — @, . - a»
Notice that Y7 2n - e72""Lr+€ < oo since the sequence 2n - e 727" Lr+

1
sequence -7, Vk > 1.

will decrease more rapidly than the

By applying the Borel Cantelli lemma, we have that Ve > 0
n-1

- Tt

n

S () () -

i=1

n- n-1-1

P(

)

>€) =0,

which implies

n—-1

n—i n-i-1. " n—i n—i-1,, no+oo
> u (Rp) - (w (——) —w™( ) =2 & (Wi (——) —w'( ) 5 0wp 1,
i=1 n n i=1 " n n
which proves (13).

Also, the remaining part, conducting the proof of convergence of w™ and v~ ,i.e.

n-1 _ _ +oo
Jim 5 () ()~ () 5 [T (0> it @)
i=1

also follows simliar manner. we omit the proof for this.
2. Proof of value function lower bound
By the definition, we have the following

V(50 = Vit (50)] fi w (P (us(R > 7)))dr - LO w (By(u™(R > 1)))dr

0 0
- [mw:(Pr(u;(R>T)))dr—f wl (B (v (R > r)))dr

oo

_ ([.o() w (P (u™ (R >7)))dr - LO w; (Pr(u” (R > T)))dr)

0 0
[oo w, (Pr(uy (R >7)))dr - [oo wy (P.(u” (R >7)))dr

v

Term (I)

0 0
| L e [ e @

Term (II)

We first under bound the term (I). For notation simplicity, we let g(r) = P.(uv" (R > r))) and g.(r) =
P.(u; (R >r))). Then we have the following

Term (I) = /:me w; (g« (1)) - w:(g(r))‘
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Now, since w; («) is monotonically increasing in z € [0, a] and monotonically decreasing in z € [a, 1], we
could say for any x,y € [0,1], 2 # y that

Welr) 20 ) (y(z) > min (D) (2) = min {(w7)'(0), (D) (1)}
xr -y z€[0,1]

where z € (x,y). The first equality holds due to the mean value theorem. Therfore it holds that
0
Term (= | [ wi(9.) = wi (9(r)]
0
[, min (D)), (@) (D} (9.) - 9()|
. - —\/ —\/ 0
= min {(w) (0, (@) (WY [ (9.0 - 9(0)

>

Now, recall the definition of g, () and g(r), then we have the following

u;x (g« (r) —g(r))dr

= [Er-p, [u;(R) —u" (R)]|

Now, let us denote the intersection of v~ (R) and y = R + Cps as R = —Ryps. We can say if the blackswan
happens, then its reward is bounded between [—Ryax, —Rps |- Then we have the following,

[ ) =g = B, [2(R) - (R)]

_ ‘ERNPW [1[R < -Rps] (us(R) —u” (R))]

~Erep, [1[R 2 -Rps] (-u;(R) +u™ (R))] ’

> [Er-p, [1[R < -Rps] (u;(R) —u (R))] ‘
Term L1
- ‘ERNPW [1[R 2> ~Rps] (~u; (R) +u (R))] ’
Term 12
> e, 1R <=0 (%) - ()|

To lower bound the Term I-1, let’s denote the minimum reachability of blackswan events as e}ff“ + 0. Then
we have
Rmax - Rbs min . — _
Term [-1 > ————— ¢ min u (R)-u, (R
R O A [u™(R) —u, (R)]
Rmax - Rbs min | — —
> Riebs |u” (—Rps) — uy, (—Rps)| 22)
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Rbs — _

T I-2< ; -

erm -2 < — €bs RE[rfll%bs,O] [u™(R) — u, (R)|
Ry, _ _

< 7 LR |u”(=Rps) — u, (—Rps)| (23)

max

Therefore, we have the following equation,

(Rmax - Rbs) Ggém - RbSGbs

Term I >
Rmax

[u™(=Rps) = u, (—Rps)|

Also, since the function u; (r) is convex, and u} (—Rmax) < —Rmax + Cps holds. Therefore, we could say
uy(r) < %r. This leads us to come up with u} (—Rps) < %(—Rbs). Therefore, we have a gap

max ax

lowerbound as

— — R S
™ (=Rbs) = 02 (~Rs)| 2 (R = Cs) 35 b

— (Rps — Chs)

_ (Rmax - Rbs)cbs
Rmax

The above inequality could be minimized as

Term I > (Rmax _ Rbs) eg;in _ Rbsﬁbs (Rmax - Rbs)cbs
- Rmax anax
((Rmax B Rbs) Gg;in - Rbsebs) (Rmax - Rbs)cbs

R2

max

Now, let’s upper bound Term 2. Before, recall that the definition of g(r) = P,.(u~(R) > r)) and note that
by the definition of black swans, we have u™(R) > R + Cps holds for R € [-Rpax, —Rps). Therefore,
we can say for all 7 € [—Ruyax, —Rps),g9(r) = 1 holds. Therefore, for all r € [-Ryax, —Rps ], we have
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wi(g(r)) —w (g(r)) =w; (1) —w (1) =1-1=0

[0 w; (g(r)) —w (g(r))dr

Rmax+Chs

L e - ur e

UR w; (9(r)) —w (g(r))dr

0
< L~ - d
</ oo o) —g(r)ar
0
(L -1 f d
( ) _Rmax"'cbs g(r) "
— Rmax_cbs
L —1). tmax T s
S ( ) 2Rmax Ebk
0
(L -1 f 1-P, (U (R) < r)d
( ) el (U (R) <r)dr
0
(L -1 f 1-P, (U~ (R) <r)d
( ) ol (U (R) <r)dr
0
(L -1) ((RmaX—Cbs)— [ ]P’,.(u_(R)<r)dr)
7Rmax+cbs

= (L™~ ) |((Ruasx — Cs) — Erep, [u"(R)1[~Ruax + Chs < R < 0]])]

24
Note that if —R,,, + Cps < —Rps, then
Rmax_cs_Rs min Rs —
1R+ Co < R < 0] Bz, [0 (R)] > ( b ity 2P, ) (- Runa +Ch) (29)
2Rmax 2Rmax
and if —R.x + Cps < —Ryps, then
- Rmax - Cbs —
1[=Rona + Cps < R < 0] - B, [u”(R)] (Tebs) (= Rupa + Cha) 26)

Therefore, combining the Equations (24)), 23)), (26), we conclude that

((Rmax - Rbs) egéin - Rbsebs) (Rmax - Rbs)cbs
R2

max

TermII < C -

where C € [0,1] is a constant. This completes the proof.
3. Value function upper bound

For the proof of Equation (@) of Theorem 4] we utilized the following Lemma [4 which provides a concen-
tration inequality on the distance between empirical distribution and true distribution.
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Since v (R) is bounded above by u* (Rumax) and w*(p) is Lipschitz with constant L* (= (w*)’(a)), we
have the following inequality,

fomuﬁ(P(u*(X)) >x)dx—[0°°w+(1-ﬁg(x))dx‘

ut (Rumax) u* (Rmax) .
- f w (P(u* (X)) > 2)dz - f w(1- By (x))da
0 0

u" (Rmax) .
< f Lt |P(u*(X) < z) - E (2)|de
0

<L*u" (Rmax) sup |P(u*(X) <2) - F/ (2)].

Now, plugging in the DKW inequality, we obtain

P (U W (PG (X)) > o)z = [ wt (1= B (2))da] > 6/2)
0 0
<P (L+u+(Rmax) sup|(P(u*(X) <) - Ef (z)| > 6/2) < 2 BT (R ? 27
zeR
Along similar manner, we have
(‘ f (P (X)) > n)dr - [ w (1= By (@)da] > 6/2) <2 EEE R . (28)
0

Combining (27) and (28)), we obtain
PV VM1|>6)<P(‘f wt(P(ut (X)) > 2)dz - [Ooow+(1—Ft+(m))dx >e/2)
+P(U “(P(u (X)) > )dz - foww_(l—ﬁt_(x))dx‘>e/2)

<detaez,

where ¢ = max{|L*u" (Rmax )|, |L” v (—Rmax )|}

O O

Proof of Theorem@ For a given optimal policy ., define the normalized occupancy measure as d,, =
(1-79) 25207 P ((s¢,a¢) = (s,a)). Note that d, represents the stationary distribution. Additionally, glven
the assumption that the reward function R : S x A — R is a bijection, it follows that the distribution
dx,(R7'(s,a)) and P, are identical. This indicates that the occurrence of black swan events can be entirely
characterized by the reward values, rather than the specific state-action pairs.

Now, we define the event Ey := {R € [~ Rmax, —Rbs |} where R ~ P,.. The probability of event Fys happens
is bounded as follows

P(Ebs) = F(_Rbs) - F(_Rmax)

= F(_Rbs)
(5 (gR)e)
[pi‘?“,p?;a"]

33



Under review as a conference paper at ICLR 2025

min

Note that we have assumed the 0 < P,.(r = R(s,a)) < € and its minimum reachable probability as e}
for all reward. now, for given trajectory, the reward instance is given as (r1,73,...74, ...) where 7, ~ P,., the
probability that the agent first visit the black swan event at step h would be defined as

P (71, Thet § EpssTh € Eps) = (1= P(Eps)) " P(Eys)

< (1 _pmin)h_lpmax

Therefore, its probability is bounded as follows,

(1 - pmax)hilpmin <P (7'1; 5 Th-1 ¢ Ebsv Th € Ebs) < (]- - pmin)hilpmax
Now, to ensure that the blackswan probability to be lower bounded than §, we need the following conditions,
d < (1 _pmax)hilpmin
1Og6 < (h - 1) 1Og (1 _pmax) + 1ogpmin

Therefore, we have
h > 10g (§/pmin)/log(1 = Prmaz) + 1.

Therefore, we can conclude that if & = Q(log (§/pmin)/108(1 = Pimaz)), then the agent’s probability to meet
the black swan is at least d.

O O

G HELPFUL LEMMAS

Lemma 4. (Dvoretzky-Kiefer-Wolfowitz (DKW) inequality)
Let F,(u) = % Yim1 Le(u(x:))<u) denote the empirical distribution of ar.v. U, withu(X1), ..., u(Xy) being
sampled from the r.v u(X). The, for any n and ¢ > 0, we have

P(sup|F,(z) - F(z)| > €) < 2¢72n"
reR
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