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S1 Theoretical results and proofs for moment estimator

S1.1 A moment based estimator

We utilize the moment estimator of the latent covariance matrix as the initial value for MMLE
updating. Let µ∗ = [µ∗i ]1≤i≤p be the mean vector, Σ∗ =

[
σ∗ij
]
1≤i,j≤p be the covariance matrix and

α∗i = exp(µ∗i + σ∗ii/2) for 1 ≤ i ≤ p. From the first two moments of the PLN distribution, we have
E (Yij/Si) = α∗j ,

E
((
Y 2
ij − Yij

)
/S2

i

)
= (α∗j )

2exp
(
σ∗jj
)
,

E
(
YijYik/S

2
i

)
= α∗jα

∗
kexp

(
σ∗jk
)
,

(S1)

where 1 ≤ i ≤ n and 1 ≤ j 6= k ≤ p. Let α̃j = n−1
∑n
i=1 (Yij/Si) for 1 ≤ j ≤ p. Then, a

candidate moment estimator Σ̃m =
[
σ̃mij
]
1≤i,j≤p for the covariance matrix is

σ̃mjk =

{
log
(
n−1

∑n
i=1

[
{Yij (Yij − 1)} /S2

i

])
− 2 log (α̃j) , for 1 ≤ j = k ≤ p,

log
[
n−1

∑n
i=1

{
(YijYik) /S2

i

}]
− {log (α̃j) + log (α̃k)} , for 1 ≤ j 6= k ≤ p. (S2)

Also, we can get a moment estimator µ̃m = [µ̃mi ]1≤i≤p with µ̃mi = log(α̃i) − σ̃ii/2 for the mean
vector µ∗. Further, similar to the equations (2), (3) in the section 2.3 of the manuscript, we can get
the positive definite Σ̂m from initial value Σ̃m. Plugging in Σ̂m to the penalized D-trace loss, we can
get a moment based estimator called PLNet-MOM as follows,

Θ̂m = arg min
Θ�0

1

2
tr
(

Σ̂mΘ2
)
− tr (Θ) + λn ‖Θ‖1,off . (S3)

We show that PLNet-MOM Θ̂m is also consistent for Θ∗ in the next subsection.
∗Equal contribution. Corresponding author: Ruibin Xi (ruibinxi@math.pku.edu.cn)
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S1.2 Main results

Theorem S1 (Rate of convergence for Σ̂m) Under the boundedness condition in the manuscript,
for any positive integer m and 0 < ε < 6, there exist constants C1 depending only on m, such that
pr
(∥∥∥Σ̂m − Σ∗

∥∥∥
∞
> ε
)
< p2/

(
C1n

mε2m
)
.

Theorem S2 (Rate of convergence for Θ̂m) Under the irrepresentability condition and the bound-
edness condition in the mamuscript, for any positive integer m, there exists a constant C1 that only
depends on m, such that for some η > 2, if

n > C
−1/m
1 pη/mmax

[
12dkΓ, 12γ−1(kΣk

2
Γ + kΓ),

{
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

}
θ−1

min,

min
{
s1/2, d+ 1

}{
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

}
λ−1

min(Θ∗), 1/5

]2

,

and
λ = 12γ−1

(
kΣk

2
Γ + kΓ

)
C
−1/(2m)
1 pη/(2m)n−1/2,

then with probability 1− p2−η ,∥∥∥Θ̂m −Θ∗
∥∥∥
∞
≤
(
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

)
C
−1/(2m)
1 pη/(2m)n−1/2,∥∥∥Θ̂m −Θ∗

∥∥∥
F
≤ s1/2

(
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

)
C
−1/(2m)
1 pη/(2m)n−1/2,∥∥∥Θ̂m −Θ∗

∥∥∥
2
≤ min

{
s1/2, d+ 1

}(
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

)
C
−1/(2m)
1 pη/(2m)n−1/2.

Theorem S3 (Sign consistency for Θ̂m) Under all the conditions in Theorem S2, for some η > 2,
choosing the same n and λ in Theorem S2, then with probability 1− p2−η, Θ̂m recovers all zeros
and nonzeros in Θ∗.

S1.3 Proofs

S1.3.1 Lemmas

For any matrix Σ = [σij ]1≤i,j≤d, vec(Σ) is defined as

vec(Σ) = (σ11, σ21, . . . , σd1, σ12, σ22, . . . , σd2, . . . , σ1d, σ2d, . . . , σdd)
T ,

Lemma S1 We define

Θ̆m = arg min
A=AT

1

2
tr
(

Σ̂mA2
)
− tr (A) + λ ‖A‖1,off .

Then the following propositions hold:

(a) vec
(

Θ̆m
)
Gc

= 0, if

‖Σ̂m − Σ∗‖∞ < 1/ (12dkΓ) ,

6‖Σ̂m − Σ∗‖∞
(
kΣk

2
Γ + kΓ

)
≤ 0.5γmin {λ, 1} ;

(b) assuming the conditions in part (a), we also have∥∥∥Θ̆m −Θ∗
∥∥∥
∞
< λkΓ +

5

2
d (1 + λ) ‖Σ̂m − Σ∗‖∞k2

Γ.

Lemma S1 is the Lemma A1 (b) and (c) in D-trace method [5].
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Lemma S2 Under the boundedness condition in the manuscript, for any positive integer m, there
exists a km > 0 such that

E(Y mij ) ≤ km.

Lemma S3 m is a positive integer. Let {Wi, 1 ≤ i ≤ n} be a series of independent random
variables with E (Wi) = 0 and E

(
W k
i

)
≤ uk for all 1 ≤ i ≤ n, 1 ≤ k ≤ 2m. Then, there exists a

constant vm only depending on m, such that

pr

(∣∣∣∣∣n−1
n∑
i=1

Wi

∣∣∣∣∣ > ε

)
≤ vm/

(
nmε2m

)
.

Lemma S4 Under the boundedness condition in the manuscript, for any positive integer m and
0 < ε < 3, there exists a constant C0 depending only on m such that for 1 ≤ j, k ≤ p,

pr
(∣∣σ̃mjk − σ∗jk∣∣ > ε

)
≤ 1/

(
C0n

mε2m
)
.

S1.3.2 Proof of Lemma S2

Let Ck,m be the Stirling numbers of the second kind. From the moment results of Poisson distribution
[1], we have

E
(
Y mij |Xij

)
=

m∑
k=0

(SiXij)
k
Ck,m ≤

m∑
k=0

CkXk
ijCk,m.

From the moment generating function of the normal distribution, we have

E
(
Xm
ij

)
= exp

(
1

2
m2σjj +mµj

)
≤ exp

(
1

2
m2C +mC

)
.

Combining the above two inequalities, we have

E
(
Y mij
)

= E
(
E
(
Y mij |Xij

))
≤ E

(
m∑
k=0

CkXk
ijCk,m

)

=

m∑
k=0

CkE
(
Xk
ij

)
Ck,m ≤

m∑
k=0

Ckexp

(
1

2
k2C + kC

)
Ck,m.

(S4)

Let km =
∑m
k=0 C

kexp
(

1
2k

2C + kC
)
Ck,m and then the inequality (S4) leads to Lemma S2.

S1.3.3 Proof of Lemma S3

From Chebyshev inequality, we have

pr

(∣∣∣∣∣ 1n
n∑
i=1

Wi

∣∣∣∣∣ > ε

)
= pr

( n∑
i=1

Wi

)2m

> n2mε2m

 ≤ E

(
n∑
i=1

Wi

)2m

/
(
n2mε2m

)
.

(S5)
Combining the inequality (S5) and the Rosenthal inequality (S6) in [2] as follows,

E

(
n∑
i=1

Wi

)2m

≤ kmmax

[
n∑
i=1

E (Wi)
2m

,

{
E

(
n∑
i=1

W 2
i

)}m]
, (S6)

while km is a constant that only depends on m, we have

pr

(∣∣∣∣∣ 1n
n∑
i=1

Wi

∣∣∣∣∣ > ε

)
≤ kmmax

[
n∑
i=1

E (Wi)
2m

,

{
E

(
n∑
i=1

W 2
i

)}m]
/
(
n2mε2m

)
≤ kmmax {nu2m, (nu2)

m} /
(
n2mε2m

)
≤ kmmax {u2m, u

m
2 } /

(
nmε2m

)
.

(S7)

Let vm = kmmax {u2m, u
m
2 } in the inequality (S7) then Lemma S3 follows.
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S1.3.4 Proof of Lemma S4

For any 1 ≤ j, k ≤ p, notice that

αj = exp
(
µ∗j + σ∗jj/2

)
= E (Yij/Si) , α̃j = n−1

n∑
i=1

Yij/Si,

and let

uj = α2
jexp

(
σ∗jj
)

= E
((
Y 2
ij − Yij

)
/S2

i

)
, ũj = n−1

n∑
i=1

((
Y 2
ij − Yij

)
/S2

i

)
,

wjk = αjαkexp
(
σ∗jk
)

= E
(
YijYik/S

2
i

)
, w̃jk = n−1

n∑
i=1

(
YijYik/S

2
i

)
.

Since [Yij ]1≤i≤n ,
[(
Y 2
ij − Yij

)
/S2

i

]
1≤i≤n ,

[
YijYik/S

2
i

]
1≤i≤n are three sets of independent vari-

ables, all of which have finite mth moments for any positive integer m by Lemma S2. Then, by
Lemma S3, we have

pr (|α̃j − αj | > ε) ≤ v1m

nmε2m
, pr (|ũj − uj | > ε) ≤ v2m

nmε2m
, pr (|w̃jk − wjk| > ε) ≤ v3m

nmε2m
.

Now we can derive the convergence rate of σ̃mjk. Using the boundedness condition in the manuscript,
the parameters αj , uj , wjk are all in the interval [exp (−3C) , exp (4C)] for some constant C. Then,
for any ε < exp (−3C) /2, we have

pr (max {|α̃j − αj | , |ũj − uj | , |w̃ij′ − wij′ |} ≤ ε) > 1− (v1m + v2m + v3m) /
(
nmε2m

)
.

(S8)
Then with at least probability 1− (v1m + v2m + v3m) /

(
nmε2m

)
, we have

max {|α̃j − αj | , |ũj − uj | , |w̃ij′ − wij′ |} ≤ ε. (S9)

According to αj , uj , wjk ≥ exp (−3C) and ε < exp (−3C) /2 , we can derive from (S9) that

min {α̃j , ũj , w̃jk} > exp (−3C) /2. (S10)

For any j 6= k,
σ∗jj = log uj − 2 logαj , σ

∗
jk = logwjk − logαj − logαk. (S11)

From the Lagrange’s mean value theorem, we have, for any x, y ≥ exp (−3C) /2,

|log x− log y| = |x− y| /ξ ≤ 2 |x− y| /exp (−3C) , (S12)

while ξ is a number between x, y. Then combining (S9), (S10) and (S12), we have

max {|log α̃j − logαj | , |log ũj − log uj | , |log w̃jk − logwjk|} ≤ 2exp (3C) ε,

and thus
∣∣∣σ̃mjk − σ∗jk∣∣∣ ≤ 6exp (3C) ε using (S11). Then from the probability inequality (S8), for any

ε < exp (−3C) /2, we have

pr
(∣∣σ̃mjk − σ∗jk∣∣ ≤ 6exp (3C) ε

)
> 1− v1m + v2m + v3m

nmε2m
.

So, for any η = 6exp (3C) ε < 3 and C0 = {6exp (3C)}−2m
(v1m + v2m + v3m)

−1, we have

pr
(∣∣σ̃mjk − σ∗jk∣∣ > η

)
≤ {6exp (3C)}2m v1m + v2m + v3m

nmη2m
= 1/

(
C0n

mη2m
)
.

Then we finish the proof of lemma S4
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S1.3.5 Proof of Theorem S1

According to Lemma S4, for any 0 < ε < 3, pr
(∣∣∣σ̃mjk − σ∗jk∣∣∣ > ε

)
≤ 1/

(
C0n

mε2m
)
, we have

pr
(∥∥∥Σ̃m − Σ∗

∥∥∥
∞
> ε
)
≤ p2/

(
C0n

mε2m
)
.

Then, from

Σ̌m = arg min
A�0

∥∥∥A− Σ̃m
∥∥∥
∞
⇒
∥∥∥Σ̌m − Σ̃m

∥∥∥
∞
≤
∥∥∥Σ∗ − Σ̃m

∥∥∥
∞
,

we have ∥∥∥Σ̂m − Σ∗
∥∥∥
∞
≤
∥∥∥Σ̂m − Σ̌m

∥∥∥
∞

+
∥∥∥Σ̌m − Σ̃m

∥∥∥
∞

+
∥∥∥Σ̃m − Σ∗

∥∥∥
∞

= 2
∥∥∥Σ̌m − Σ̃m

∥∥∥
∞

+
∥∥∥Σ̃m − Σ∗

∥∥∥
∞
≤ 3

∥∥∥Σ̃m − Σ∗
∥∥∥
∞
,

Let C1 = 3−2mC0 and for any 0 < ε < 6, we have

pr
(∥∥∥Σ̂− Σ

∥∥∥
∞
> ε
)
≤ pr

(∥∥∥Σ̃− Σ
∥∥∥
∞
> ε/3

)
≤ p2/

(
C1n

mε2m
)
.

S1.3.6 Proof of Theorem S2, S3

We define
Θ̆m = arg min

A=AT

1

2
tr
(

Σ̂mA2
)
− tr (A) + λ ‖A‖1,off .

Let

ε = 1/max

[
12dkΓ, 12γ−1(kΣk

2
Γ + kΓ),

{
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

}
θ−1

min,

min
{
s1/2, d+ 1

}{
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

}
λ−1

min(Θ∗), 1/5

]
.

For η > 2, let nf = C
−1/m
1 pη/mε−2 and εf = C

−1/(2m)
1 pη/(2m)n−1/2. According to n > nf , we

have
εf = C

−1/(2m)
1 pη/(2m)n−1/2 < C

−1/(2m)
1 pη/(2m)n

−1/2
f = ε < 6,

while C1 is the constant in Theorem S1. Then, from Theorem S1, we have

pr
(
‖Σ̂m − Σ∗‖∞ > εf

)
< p2/

(
C1n

mε2mf
)

= p2−η,

and thus with a probability at least 1− p2−η ,

‖Σ̂m − Σ∗‖∞ ≤ εf < ε ≤ 1/max
{

12dkΓ, 12γ−1
(
kΣk

2
Γ + kΓ

)}
.

According to λ = 12γ−1
(
kΣk

2
Γ + kΓ

)
εf , we can get that

‖Σ̂m − Σ∗‖∞ < 1/ (12dkΓ) ,

6‖Σ̂m − Σ∗‖∞
(
kΣk

2
Γ + kΓ

)
≤ 0.5γmin {λ, 1} .

(S13)

Using Lemma S1 (a) with (S13), Θ̆m recovers all zeros in Θ∗. That is

vec
(

Θ̆m
)
Gc

= 0.

Using Lemma S1 (b) and according to the fact that λ = 12γ−1
(
kΣk

2
Γ + kΓ

)
εf <

12γ−1
(
kΣk

2
Γ + kΓ

)
ε ≤ 1 and ‖Σ̂m − Σ∗‖∞ ≤ εf , we have∥∥∥Θ̆m −Θ∗

∥∥∥
∞
< λkΓ +

5

2
d (1 + λ) ‖Σ̂m − Σ∗‖∞k2

Γ

≤
{

12γ−1
(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

}
εf .

(S14)
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Then we consider the s nonzeros in Θ∗ and vec
(

Θ̆m
)
Gc

= 0, we can easily get∥∥∥Θ̆m −Θ∗
∥∥∥
F
≤ s1/2

∥∥∥Θ̆m −Θ∗
∥∥∥
∞

< s1/2
{

12γ−1
(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

}
εf .

(S15)

Using ‖A‖2 ≤ ‖A‖F and ‖A‖2 � 0 while |Ajj | ≥
∑
k 6=j |Ajk| for all 1 ≤ j ≤ p∥∥∥Θ̆m −Θ∗

∥∥∥
2
≤ min

{
s1/2, d+ 1

}∥∥∥Θ̆m −Θ∗
∥∥∥
∞

< min
{
s1/2, d+ 1

}{
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

}
εf .

(S16)

From (S14) and combining εf < ε ≤ θmin/
(
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

)
, we have∥∥∥Θ̆m −Θ∗

∥∥∥
∞
< θmin,

which means that Θ̆m also recovers the nonzeros in Θ∗.

Finally, we check Θ̂m = Θ̆m to finish the proof. We just need to verify λmin

(
Θ̆m
)
> 0, that can be

obtained from
∥∥∥Θ̆m −Θ∗

∥∥∥
2
< λmin (Θ∗). So using (S16) and combining

εf < ε ≤ λmin (Θ∗) /
[
min

{
s1/2, d+ 1

}{
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

}]
,

we get the conclusion.

Above all, Θ̂m recovers all zeros and nonzeros in Θ∗ and meet all the convergence rates for Θ̆m in
(S14), (S15), (S16) with a probability at least 1− p2−η , then we finish the proof of Theorem S2 and
S3.

S2 Theoretical proofs for maximum marginal likelihood estimator (MMLE)

S2.1 Notation

For any constant d ≤ p, we say a random vector y = (y1, y2, ..., yd)
T follows the PLN dis-

tribution with parameters µ,Σ � 0 and known library size S, if there exists a random vector
x = (x1, x2, ..., xd)

T such that yj ∼ Poisson(S exp(xj)) independently for all j = 1, ..., d and
x ∼ N(µ,Σ), and we denote this ditribution by y ∼ PLN(S;µ,Σ). We also suppose that S is sam-
pled from a bounded support distribution with probability density function g(S) which is independent
with µ,Σ, then the joint distribution of y, S can be written as:

p(y, S;µ,Σ) =

∫
f(x;µ,Σ)P (y|x, S)g(S)dx,

where f(x;µ,Σ) =
(
1/
√

2π
)d

(det (Σ))
−1/2

exp
(
−(x− µ)TΣ−1(x− µ)/2

)
is the probability

density function of Gaussian ditribution N(µ,Σ), and

P (y|x, S) =

d∏
j=1

exp(xjyj)S
yj exp(−S exp(xj))/yj !

is the probability function of d indenpendent Poisson distributions Poisson(S exp(xj)).

Assuming yi ∼ PLN(Si;µ,Σ), Si (1 ≤ i ≤ n) are n independent samples from the bounded
distribution g(S). Then we can write the log-likelihood of y = (y1, ...,yn)T as follows,

log L(y,S;µ,Σ) =

n∑
i=1

log p(yi, Si;µ,Σ)

=

n∑
i=1

log

∫
f(x;µ,Σ)P (yi|x, Si) g(Si)dx.

(S17)
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For any symmetric matrix Σ = [σij ]1≤i,j≤d, vech(Σ) is defined as

vech(Σ) = (σ11, σ12, σ13, . . . , σ1d, σ22, σ23, . . . , σ2d, . . . , σ(d−1)(d−1), σ(d−1)d, σdd)
T ,

and vech2(Σ) is

vech2(Σ) = (σ11, 2σ12, 2σ13, . . . , 2σ1d, σ22, 2σ23, . . . , 2σ2d, . . . , σ(d−1)(d−1), 2σ(d−1)d, σdd)
T .

In order to simplify the notations, we define an operator T (f) that maps functions in x to functions
in y as

T (h) =

∫
h(x)f(x;µ,Σ)P (y|x, S)g(S)dx.

Also, we define I(x) ≡ 1 as a constant function. Then for any random vector y ∼ PLN(Si;µ,Σ),
we can define the gradiant (score function) of the log-likelihood as

S(y, S;µ,Σ) =
∂ log p(y, S;µ,Σ)

∂(µT0 , vech(Σ)T )T

=

((
∂ log p(y, S;µ,Σ)

∂µ

)T
,

(
∂ log p(y, S;µ,Σ)

∂vech(Σ)

)T)T
,

where
∂ log p(y, S;µ,Σ)

∂µ
=
T (Σ−1(x− µ))

T (I)
, (S18)

and

∂ log p(y, S;µ,Σ)

∂vech(Σ)
=
T (vech2(Σ−1(x− µ)(x− µ)TΣ−1))

2T (I)
− 1

2
vech2(Σ−1). (S19)

We also define the second order derivative of the log-likelihood as

H(y, S;µ,Σ) =
∂2 log p(y, S;µ,Σ)

∂(µT , vech(Σ)T )T∂(µT , vech(Σ)T )
.

Since the form of the H(y, S;µ,Σ) is very complicated, it is clear to divide it into several parts
to express the form. We define ej = (0, ...0, 1, 0..., 0)T is the jth column vector of d × d identity
matrix, then we have the following equations.

For the second order derivative of µ, for any j = 1, · · · , d, we have

∂2 log p(y, S;µ,Σ)

∂µj∂µT
=
T (eTj Σ−1(x− µ)(x− µ)TΣ−1 − eTj Σ−1)

T (I)

−
T (eTj Σ−1(x− µ))T ((x− µ)TΣ−1)

T 2(I)
.

(S20)

For the second order derivative of Σ, for any i 6= j ∈ {1, · · · , d}, we have

∂2 log p(y, S;µ,Σ)

∂σij∂vech(Σ)T
=− T (vech2(Σ−1ei(x− µ)TΣ−1(x− µ)TΣ−1ej)

T )

T (I)

−
T (vech2(Σ−1(x− µ)eTj Σ−1eTi Σ−1(x− µ))T )

T (I)

+
T (eTi Σ−1(x− µ)(x− µ)TΣ−1ejvech2(Σ−1(x− µ)(x− µ)TΣ−1))

2T (I)

− T (eTi Σ−1(x− µ)(x− µ)TΣ−1ej)

T (I)
· T (vech2(Σ−1(x− µ)(x− µ)TΣ−1))

2T (I)
+ vech2(Σ−1eie

T
j Σ−1).

(S21)
When i = j the derivative is half of the right hand of (S21).
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For the interaction term, for any j = 1, · · · , d, we have

∂2 log p(y, S;µ,Σ)

∂µj∂vech(Σ)T
=
T (vech2(eTj Σ−1(x− µ)Σ−1(x− µ)(x− µ)TΣ−1))

2T (I)

− T (vech2(Σ−1ej(x− µ)TΣ−1))

T (I)

−
T (eTj Σ−1(x− µ))

T (I)
· T (vech2(Σ−1(x− µ)(x− µ)TΣ−1))

2T (I)
.

(S22)

Let F be the densities of the given PLN family indexed by finite (d+ d(d+ 1)/2) parameters θ =
(µT , vech(Σ)T )T . Then we can simplify the notation p(y, S;µ,Σ), S(y, S;µ,Σ), H(y, S;µ,Σ)
using p(y, S; θ), S(y, S; θ), H(y, S; θ), respectively. We also define Hellinger distance d(·, ·) for
two distributions on F as

d(p1, p2) =

[∫ (
p

1/2
1 − p1/2

2

)2

dν

]1/2

=
∥∥∥p1/2

1 − p1/2
2

∥∥∥
L2

,

where ν is Lebesgue-Stieljes(L-S) measure and p1, p2 are two densities.

For any u > 0, call a finite set {(fLj , fUj ), j = 1, ..., N} a Hellinger u-bracketing of F if∥∥(fLj )1/2 − (fUj )1/2
∥∥

2
≤ u for j = 1, ..., N , and for any p(y, S; θ) ∈ F , there is a j such that

fLj ≤ p(y, S; θ) ≤ fUj . The bracketing Hellinger metric entropy of F , denoted by the function
H(·,F), is defined by H(u,F) = logarithm of the cardinality of the Hellinger u-bracketing of the
smallest size.

Under the bounded condition in the manuscript, θ∗ = ((µ∗)T , vech(Σ∗)T )T is restricted on
a bounded set O, while O = {θ∗|max1≤j,k≤p

{∣∣µ∗j ∣∣ , ∣∣∣σ∗jk∣∣∣} ≤ M3,M4 ≤ λmin(Σ∗) ≤
λmax(Σ∗) ≤ M5}. We also define bounded set Od = {θ|max1≤j,k≤p {|µj | , |σjk|} ≤ M3,M4 ≤
λmin(Σ) ≤ λmax(Σ) ≤M5} for any d-dimensional PLN parameters θ = (µT , vech(Σ)T )T , that is
O = Op.

In section 2.3 of the manuscript, for 1 ≤ j ≤ p, we estimate σ∗jj by maximizing the marginal
log-likelihood of Y·j , and for 1 ≤ j 6= k ≤ p, we estimate σ∗jk by maximizing the marginal
log-likelihood of (Y·j , Y·k). For the PLN model, the marginal distribution is also a PLN distribu-
tion, so the marginal distributions of Yij and (Yij , Yik) are both PLN distributions. Then from
equation (S17), we can write the marginal log-likelihood of Y·j as logL(Y·j ,S;µ, σ) with param-
eters (µ, σ)T ∈ O1, and the marginal log-likelihood of (Y·j ,Y·k) as L((Y·j ,Y·k),S;µ,Σ) with
parameters (µT , vech(Σ)T )T ∈ O2. Then for any 1 ≤ j 6= k ≤ p, we derive

σ̃jj = arg max
σ

[
max
µ

logL(Y·j ,S;µ, σ)

]
, (S23)

and

σ̃jk = arg max
Σ12

[
max

µ,Σ11,Σ22

logL((Y·j , Y·k),S;µ,Σ)

]
, (S24)

where (µ, σ)T are restricted on O1 and (µT , vech(Σ)T )T are restricted on O2. The explicit forms of
the first and second order partial derivatives of the marginal log-likelihood function are shown in the
equation (S18), (S19), (S20), (S21) and (S22).

S2.2 Proofs

S2.2.1 Lemmas

Lemma S5 There exist positive constants c1, c2, c3, such that, for any ε > 0, if∫ √2s

s2/28

H1/2

(
u/c2,F ∩

{∥∥∥p1/2
2 − p1/2

1

∥∥∥2

L2

≤ 2s2

})
du ≤ c3n1/2s2 (S25)
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for all s ≥ ε, then for the MLE θ̂ of the true parameter θ using n independent samples, we have

pr

(∥∥∥p1/2(y, S; θ̂)− p1/2(y, S; θ)
∥∥∥
L2

≥ ε
)
≤ 5 exp(−c1nε2)

.

Lemma S5 is the local version of Theorem 1 and 2 in [4]. Most of the following lemmas are verifing
the conditions of this Lemma in the PLN model.

Lemma S6 Suppose that S ∈ [M1,M2], |µ| ≤M3, and let

p1(y, S;µ, σ) = (y!)−1

∫
exp

(
−1

2
(x− µ)2/σ

)
exp (−S exp(x)) exp(xy)Sydx (S26)

be the 1-dimensional PLN probability density function. Then, for any log(y) ≥ | log(M1)| +
| log(M2)|+M3 + 1, we have a constant C, such that,

C/(
√
πy) exp

(
−1

2
(log(y))2/σ

)
≤ p1(y, S;µ, σ) ≤[

2 exp

(
1

2
log (y) (| log(M1)|+ | log(M2)|+M3 + 1) /σ

)
+ 1

]
exp

(
−1

2
(log(y))2/σ

)
/
√
πy.

Remark 1 In fact that for any (µT , vech(Σ)T )T ∈ Od and S ∈ [M1,M2], we have two constants
C1, C2 such that, C1p(y, S;µ,M4Id) ≤ p(y, S;µ,Σ) ≤ C2p(y, S;µ,M5Id), where Id is d × d
identity matrix. This is because

(M4/M5)
d/2

f(x;µ,M4Id)

=
(

1/
√

2π
)d

(M4/M5)
d/2

(det (M4Id))
−1/2

exp
(
−(x− µ)T (M4Id)

−1
(x− µ)/2

)
≤
(

1/
√

2π
)d

(det (Σ))
−1/2

exp
(
−(x− µ)TΣ−1(x− µ)/2

)
= f(x;µ,Σ)

≤
(

1/
√

2π
)d

(M5/M4)
d/2

(det (M5Id))
−1/2

exp
(
−(x− µ)T (M5Id)

−1
(x− µ)/2

)
= (M5/M4)

d/2
f(x;µ,M5Id).

p(y, S;µ,M4Id) and p(y, S;µ,M5Id) can be written as a product of 1-dimensional PLN densities,
so using Lemma S6 we can derive that there exists two functions flow(·) and fup(·)of y such that
flow(y) ≤ p(y, S; θ) ≤ fup(y), and

∫
flow(y)K(y)dy < ∞,

∫
fup(y)K(y)dy < ∞ for any

polynomial K(y) of y.

Lemma S7 (Dominating function) Let

u(y, S; θ) =
T
(
(x1 − µ1)4

)
T (I)

, (S27)

where y ∈ Nd from PLN distribution with parameters θ ∈ Od and known library size S ∈ [M1,M2],
x is the latent normal random vectors. Then there exists a polynomial function v(y) with a constant
C only depending on d and Mi, i = 1, ..., 5

v(y) = (4||y||2/m)
4

+ C,

such that Eθ(v(y)) <∞ and |u(y, S; θ)| ≤ v(y) for any p(y, S; θ) ∈ F satisfying conditions.

Remark 2 Applying the same proof as in Lemma S7, the polynomial (x1 − µ1)4 can be replaced
by any polynomial with respect to x − µ, e.g. xi − µi and (xi − µi)(xj − µj). Further, since
polynomial set is a multiplicative set, then for any two polynomial functions ψ1(x − µ), ψ2(x −
µ), T (ψ1(x− µ)) T (ψ2(x− µ)) /T 2(I) also have an polynomial upper bound and have a finite
expectation.

Lemma S7 and Remark 2 are previous results in [3].
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Remark 3 Suppose that y is a random vector from PLN distribution with parameters θ ∈ Od and
random S from g(S) with bounded support [M1,M2]. Then from Remark 2 and the forms of S and
H in the equation (S18), (S19), (S20), (S21) and (S22), we have for any 1 ≤ i, j ≤ d+ d(d+ 1)/2,
there exists two polynomial functions K1(y),K2(y) with Eθ[K1(y)] <∞, Eθ[K2(y)] <∞, such
that |Si(y, S; θ)| ≤ K1(y) and |Hi,j(y, S; θ)| ≤ K2(y).

Lemma S8 Suppose that y is a random vector from PLN distribution with parameters θ ∈ Od and
random S from g(S) with bounded support [M1,M2]. Then Eθ

(
S(y, S; θ)S(y, S; θ)T

)
is positive

defined and continuous for θ.

Lemma S9 For any θ, θ′ ∈ Od and S ∈ [M1,M2], let p1 = p(y, S; θ), p2 = p(y, S; θ′). Then for
some constant K > 0 which is independent of µ,Σ, there exists a constant C1, such that, for any
‖θ − θ′‖2 ≤ K, we have C1 ‖θ − θ′‖2 ≤ d(p1, p2)

Remark 4 According to the existence of the moment estimator, we can easily derive the identifiablity
of PLN model, so we have d(p1, p2) 6= 0 when p1 6= p2. So in the closed bouned domain D =
{(θ, θ′)| ‖θ − θ′‖2 ≥ K, θ, θ′ ∈ Od}, the continuous function d(p1, p2) has the minimum value
m > 0. Since ‖θ − θ′‖2 can be bounded by some constant M , then we have m ‖θ − θ′‖2 /M ≤
d(p1, p2) for (θ, θ′) ∈ D.So we can remove the constrain ‖θ − θ′‖2 ≤ K in Lemma S9 and have
C ′1 ‖θ − θ′‖2 ≤ d(p1, p2) for all θ, θ′ ∈ Od, where C ′1 = min {C1,m/M}.

Lemma S10 There exists a measurable function m(y) and a constant C2, such that
∫
m2(y)dν =

C2
2 < ∞, for any θ3, θ4 ∈ Od and S ∈ [M1,M2], let p3 = p(y, S; θ3), p4 = p(y, S; θ4), we have
|p1/2

3 − p1/2
4 | ≤ m(y) ‖θ3 − θ4‖2.

Lemma S11 Suppose that yi, i = 1, ..., n are n random d-dimensional vectors from the PLN
distribution with parameters θ ∈ Od and random variable Si from g(S) with bounded support
[M1,M2], let θ̂ is the MLE of θ restricted on Od. Then we have

pr
(∥∥∥θ̂ − θ∥∥∥

2
≥ ε
)
≤ 5 exp(−Cnε2),

where C is a constant independent with parameters.

S2.3 Proof of Lemma S6

Let µ′ = µ+ log(S) and t = x+ log(S), then |µ′| ≤ | log(M1)|+ | log(M2)|+M3 and

p1(y, S;µ, σ) = (y!)−1

∫
exp

(
−1

2
(t− µ∗)2/σ

)
exp (− exp(t)) exp(ty)dt.

The lower bound can be derived from previous result in [3], we only prove the upper bound here. We
divide the real line into 5 disjoint intervals and estimate the upper bound of this integration separately.
Let h(t, y) = exp (− exp(t)) exp(ty).

Part 1 (log(y)−1, log(y)+1]. Note that h(t) attains the maximum at t = log(y), and log(y) ≥ µ′+1
then ∫ log(y)+1

log(y)−1

exp

(
−1

2
(t− µ′)2

/σ

)
h(t, y)dt

≤ 2 exp (y log (y)− y) exp

(
−1

2
(log (y)− 1− µ′)2

/σ

)
.

Part 2 (log(y) + 1, 2 log(y)]. When t ≥ log(y) + 1, we note that h(t) attains the maximum at
t = log(y) + 1, then we have∫ 2 log(y)

log(y)+1

exp

(
−1

2
(t− µ′)2

/σ

)
h(t, y)dt

≤
∫ 2 log(y)

log(y)+1

h(t, y)dt

≤ (log (y)− 1) exp (y (log (y) + 1)− ey) .
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Part 3 (2 log(y),∞). When t ≥ 2 log(y), h(t) ≤ 1. Then we have∫ ∞
2 log(y)

exp

(
−1

2
(t− µ′)2/σ

)
h(t, y)dt

≤
∫ ∞

2 log(y)

exp

(
−1

2
(t− µ′)2/σ

)
dx ≤

√
2πσ.

Part 4 (0, log(y) − 1]. When t ≤ log(y) − 1, we note that h(t, y) attains the maximum at x =
log(y)− 1. Then we have ∫ log(y)−1

0

exp

(
−1

2
(t− µ′)2/σ

)
h(t, y)dt

≤ (log(y)− 1) exp (y(log(y)− 1)− y/e) .

Part 5 (−∞, 0]. When t ≤ 0, we note that h(t, y) ≤ 1. Similar to Part 3, we have∫ 0

−∞
exp

(
−1

2
(t− µ′)2/σ

)
h(t, y)dt ≤

√
2πσ.

By Stirling’s approximation, we have y! = exp(y log(y)− y)
(√

2πy
)

(1 + o(1)). Thus, combining
Part 1-5, we have√

2πyf(y, S;µ, σ)(1 + o(1)) ≤ 2 exp

(
−1

2
(log (y)− 1− µ′)2

/σ

)
+ (log (y)− 1) exp ((−e+ 2)y) .

+ (log(y)− 1) exp (−y/e) + exp(−y log(y) + y)
(

2
√

2πσ
)
.

(S28)
Then, it is clear that as y →∞,

√
πyf(y, S;µ, σ)/ exp

(
−1

2
(log (y))

2
/σ

)
≤ 2 exp (log(y)(µ′ + 1)) + o(1).

Combining with |µ∗| ≤ | log(M1)|+ | log(M2)|+M3, we can derive the upper bound.

S2.3.1 Proof of Lemma S8

Notice that if for any fixed positive S, Eθ
(
S(y, S; θ)S(y, S; θ)T

)
is positive definite, then we take

expectation for S, it is still positive definite, so we just need to prove the positive definiteness
for fixed S. We just need to prove that if Eθ

[
tT
(
S(y, S; θ)S(y, S; θ)T

)
t
]

= 0, then t = 0.
Since y is discrete random vector, so for any y taken values from non-negative integer, we have
tTS(y, S; θ) = 0. According to the definition of S(y, S; θ), we split t into two parts t = (tT1 , t

T
2 )T ,

where t1 with length d, and t2 with length d(d− 1)/2, then we have,

tT1
∂ log p(y, S; θ)

∂µ
+ tT2

∂ log p(y, S; θ)

∂vech(Σ)
= 0.

⇒
T
(
tT1 Σ−1(x− µ)

)
T (I)

+
T
(
tT2 vech2(Σ−1(x− µ)(x− µ)TΣ−1 − Σ−1)

)
2T (I)

= 0

⇒
∫
T
(
tT1 Σ−1(x− µ) + tT2 vech2(Σ−1(x− µ)(x− µ)TΣ−1 − Σ−1)/2

)
v(y)dy = 0,

(S29)

for any integrable function v(y). According the Fubini theorem, we have∫
T (u(x)) v(y)dy =

∫ ∫
u(x)f(x; θ)P (y|x, S)g(S)v(y)dydx

=g(S)Eθ(E(v(y)|x, S)u(x)).

(S30)

Using (S30), we can rewrite (S29) as

Eθ
(
E(v(y)|x, S)

(
tT1 Σ−1(x− µ) + tT2 vech2(Σ−1(x− µ)(x− µ)TΣ−1 − Σ−1)/2

))
= 0.
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Given positive S, using the moments of poisson distribution, for any non-negative integer vector n,
we can choose v(y) such that E(v(y)|x, S) = exp(nTx). So we have,

Eθ
(
exp(nTx)

(
tT1 Σ−1(x− µ) + tT2 vech2(Σ−1(x− µ)(x− µ)TΣ−1 − Σ−1)/2

))
= 0.

After calculation using the moment generating function of normal distribution, we have for all
non-negative integer vector n,

exp(nTΣn/2 + nTµ)(tT1 n + nTT2n) = 0,

where vech2(T2) = t2, that means tT1 n + nTT2n = 0. However, if tT1 n1 + nT1 T2n1 = 0, tT1 n2 +
nT2 T2n2 = 0 and tT1 (n1 + n2) + (n1 + n2)TT2(n1 + n2) = 0, then we have nT1 T2n2 = 0. That
means for any non-negative integer vector n1,n2, nT1 T2n2 = 0, So T2 must be zero, and then so does
t1. So we finish the proof of t = 0, and get the positive definiteness for Eθ

(
S(y, S; θ)S(y, S; θ)T

)
.

As for the continuity, since S(y, S; θ) is continuous for θ and has dominating functions with finite
expectation from Remark 3, so Eθ

(
S(y, S; θ)S(y, S; θ)T

)
is also continuous for θ. Thus we

complete the proof.

S2.3.2 Proof of Lemma S9

First we get the Taylor expansion of p1/2
2 on θ,

p
1/2
2 = p

1/2
1 + p

−1/2
1

(
∂p(y, S; θ)

∂θ

)T
(θ′ − θ) /2 + (θ′ − θ)T R(y, S; θ∗) (θ′ − θ) /2

= p
1/2
1 + p

1/2
1 S(y, S; θ)T (θ′ − θ) /2 + (θ′ − θ)T R(y, S; θ∗) (θ′ − θ) /2,

(S31)

where R(y, S; θ∗) = p1/2(y, S; θ∗)
[
S(y, S; θ∗)S(y, S; θ∗)T /4 +H(y, S; θ∗)/2

]
, θ∗ is between θ

and θ′. We define p∗ = p(y, S; θ∗) and δ = θ′ − θ, then we have,

d(p1, p2) =

[∫ (
p

1/2
1 − p1/2

2

)2

dν

]1/2

=

[∫ (
p

1/2
1 S(y, S; θ)T δ + p

1/2
∗ δTR(y, S; θ∗)δ

)2

dν

]1/2

/2

=

[∫
p1δ

TS(y, S; θ)S(y, S; θ)T δdν+∫
2p

1/2
1 p

1/2
∗ S(y, S; θ)T δδTR(y, S; θ∗)δdν+

∫
p∗δ

TR(y, S; θ∗)δδTR(y, S; θ∗)δdν

]1/2

/2

=: (I + II + III)1/2/2

(S32)

We define the minimum eigenvalue of Eθ
(
S(y, S; θ)S(y, S; θ)T

)
is Cmin, then

I = δTEθ
(
S(y, S; θ)S(y, S; θ)T

)
δ ≥ Cmin ‖δθ‖22 .

Since θ ∈ Od is defined on a compact set, then according to Lemma S8, there exists a positive
constant Clow > 0, such that Clow ≤ Cmin for any θ ∈ Od, then we have

I ≥ Clow ‖δθ‖22 . (S33)

For part II, using Cauchy inequallity, we have

|II| ≤ Eθ
[∣∣S(y, S; θ)T δδTR(y, S; θ∗)δ

∣∣]
+

∫
p∗
∣∣S(y, S; θ)T δδTR(y, S; θ∗)δ

∣∣ dν. (S34)
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Using Remark 3, there exist two polynomial functions K3(y),K4(y), such that∣∣S(y, S; θ)T δ
∣∣ ≤ ‖S(y, S; θ)‖1 ‖δ‖2 ≤ K3(y) ‖δ‖2 (S35)

and ∣∣δTR(y, S; θ∗)δ
∣∣ ≤ ‖R(y, S; θ∗)‖2 ‖δ‖

2
2 ≤ ‖R(y, S; θ∗)‖F ‖δ‖

2
2 ≤ K4(y) ‖δ‖22 . (S36)

Using the fact that any PLN distribution have any bounded moments, we can derive that the first part
of S34 can be bounded by C ‖δθ‖32 with a constant C. Then using Remark 1, we know the second
part of S34 satisfies∫

p∗
∣∣S(y, S; θ)T δδTR(y, S; θ∗)δ

∣∣ dν ≤ ∫ fup(y)K3(y)K4(y) ‖δ‖32 dν ≤ C
′ ‖δ‖32

with a constant C ′. Then we can derive

|II| ≤ (C + C ′) ‖δθ‖32 . (S37)

For III =
∫
p∗
[
δTR(y, S; θ∗)δδTR(y, S; θ∗)δ

]
dν, using (S36) and similar technique in II, we

have
III ≤ C ′′ ‖δθ‖42 (S38)

with a constant C ′′.

Since the dominating functions fup,K3,K4 are all independent from parameters, then the constants
C,C ′, C ′′ are all independent from parameters, Clow is also independent from parameters, so the
local constant K is also independent from parameters θ, θ′.

Combining above three inequalities (S33), (S37), (S38), we finish the proof.

S2.3.3 Proof of Lemma S10

Similar to Section S2.3.2, we have Taylor expansion of p1/2
4 on θ3,

p
1/2
4 = p

1/2
3 + p

−1/2
∗

(
∂p∗
∂θ∗

)T
(θ4 − θ3) /2, (S39)

where θ∗ is between θ3 and θ4, and p∗ = p(y, S; θ∗). Let δ = θ4 − θ3, we have,∣∣∣p1/2
4 − p1/2

3

∣∣∣ = p
1/2
∗
∣∣S(y, S; θ∗)T (δ)

∣∣ /2. (S40)

Using Lemma 3, similar to (S35), we have polynomial function K3(ysub), such that∣∣S(y, S; θ∗)T (δθ)
∣∣ ≤ K3(y) ‖δθ‖2 .

According to Remark 1, p∗ ≤ fup(y). So we have∣∣∣p1/2
4 − p1/2

3

∣∣∣ ≤ f1/2
up (y)K3(y) ‖δ‖2 .

Remark 1 also shows for any polynomial function K,
∫
fup(y)K(y)dy < ∞, so for polynomial

function K2
3 ,
∫
fup(y)K2

3 (y)dy <∞, so let m = f
1/2
up K3, we finish the proof.

S2.3.4 Proof of Lemma S11

We first check a basic result in our finite dimensional F : There exist constants c4, c5, such that,

H

(
u,F ∩

{∥∥∥p1/2
2 − p1/2

1

∥∥∥2

2
≤ 2s2

})
≤ c4 log(c5s/u). (S41)

We notice that the parameters which index in F ∩
{∥∥∥p1/2

2 − p1/2
1

∥∥∥2

2
≤ 2s2

}
can be covered by

Fθ,s =
{
θ′| ‖θ′ − θ‖22 ≤ 2s2/C2

1

}
using Lemma S9 and remark 4. Then it’s easy to check that we
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can cover Fθ,s using at most
(
2
√

2C2s/C1u
)d+d(d+1)/2

balls with radius u/2C2. For any ball B
with radius u/2C2, we define the centre of B as θ0, then using Lemma S10, for any θ′ ∈ B, we have∣∣∣p1/2(y, S; θ′)− p1/2(y, S; θ0)

∣∣∣ ≤ m(y)u/2C2.

So we can choose the minimum and maximum density in each ball as the

f
1/2
L = [p1/2(y, S; θ0)−m(y)u/2C2]+, f

1/2
U = p1/2(y, S; θ0) +m(y)u/2C2,

where [f ]+ takes value f when f > 0 and takes value 0 when f ≤ 0. Then we have∥∥∥f1/2
U − f1/2

L

∥∥∥2

2
≤
∫
m2(y)dyu2/C2

2 = u2, then we can derive (S41).

Next, according to the remark (ii) of Theorem 2 in [4], we can get that there exists a constant c′, such
that for all ε ≥ c′n−1/2, (S25) is satisfied, and we will prove it concretely next.

According to (S41), using Cauchy inequality
(∫ b

a
f1/2dx

)2

≤ (b− a)
∫ b
a
fdx, we just need to prove

there exists c′, such that for all s ≥ c′n−1/2,∫ √2s

s2/28

log(c2c5s/u)du ≤ ns3. (S42)

After calculating the left hand of (S42), we have∫ √2s

s2/28

log(c2c5s/u)du = log(c2c5s)(
√

2s− s2/28) + [u− u log u]|
√

2s
s2/28

= log(c2c5s)(
√

2s− s2/28) + (
√

2s− s2/28) + (s2/28 log(s2/28)−
√

2s log(
√

2s))

≤ −
√

2s log(
√

2)− s2/28(log(s)− log(s2/28)) + (
√

2s− s2/28) + log(c2c5)
√

2s

=
√

2 log(c2c5e/
√

2)s− s2/28 log(28e/s).
(S43)

Since we only need to consider the s such that
√

2s ≥ s2/28, which means log(28e/s) > 0,
combining (S42) and (S43), we just need ns2 ≥

√
2 log(c2c5e/

√
2), that equals to s ≥ c′n1/2, where

c′ =
(√

2 log(c2c5e/
√

2)
)1/2

. So we finish the proof of (S42).

Then using Lemma S5, we have

pr

(∥∥∥p1/2(y, S; θ̂)− p1/2(y, S; θ)
∥∥∥
L2

≥ ε
)
≤ 5 exp(−c1nε2),

for a constant c1 and any ε ≥ c′n−1/2. Notice that for 0 < ε < c′n1/2, we can have a constant c0 to
satisfy

pr

(∥∥∥p1/2(y, S; θ̂)− p1/2(y, S; θ)
∥∥∥
L2

≥ ε
)
≤ 5 exp(−c0nε2).

Choosing constant c = min{c0, c1}, we have for any ε > 0,

pr

(∥∥∥p1/2(y, S; θ̂)− p1/2(y, S; θ)
∥∥∥
L2

≥ ε
)
≤ 5 exp(−cnε2).

Defining h(θ̂, θ) =
∥∥∥p1/2(y, S; θ̂)− p1/2(y, S; θ)

∥∥∥
L2

, notice that θ, θ̂ ∈ Od, according to Lemma

S9 and remark 4, we have {
h(θ̂, θ) < ε

}
⊆
{∥∥∥θ̂ − θ∥∥∥

2
< ε/C1

}
,

so
pr
(∥∥∥θ̂ − θ∥∥∥

2
< ε/C1

)
≥ pr

(
h(θ̂, θ) < ε

)
≥ 1− 5 exp(−cnε2),

and then pr
(∥∥∥θ̂ − θ∥∥∥

2
≥ ε′

)
≤ 5 exp(−Cnε′2) for a constant C for all ε′ > 0. Then we finish our

proof.
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S2.3.5 Proof of Theorem 1 in the manuscript

Using the bounded condition in the manuscript and the Cauchy interlace theorem, we know that
all the parameters of 1-dimensional or 2-dimensional marginal distributions of PLN(S;µ∗,Σ∗) is
restricted on the bounded sets O1 and O2. So according to the definition of Σ̃ in equation (S23) and
(S24), using Lemma S11, we have pr

(∣∣σ̃ij − σ∗ij∣∣ ≥ ε) ≤ 5 exp(−Cnε2) for any i, j ∈ 1, ..., p and

ε > 0. Thus we have pr
(∥∥∥Σ̃− Σ∗

∥∥∥
∞
≥ ε
)
≤ 5p2 exp(−Cnε2) for any ε > 0. Similar to the proof

of Lemma S1, we have pr
(∥∥∥Σ̂− Σ∗

∥∥∥
∞
≥ ε
)
≤ Ap2 exp(−Bnε2) for any ε > 0 with constants

A,B, thus we finish the proof.

S2.3.6 Proof of Theorem 2, 3 in the manuscript

Similar to the proof of Theorem S2, S3, we define

Θ̆ = arg min
A=AT

1

2
tr
(

Σ̂A2
)
− tr (A) + λ ‖A‖1,off .

Let

ε = 1/max

[
12dkΓ, 12γ−1(kΣk

2
Γ + kΓ),

{
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

}
θ−1

min,

min
{
s1/2, d+ 1

}{
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

}
λ−1

min(Θ∗)

]
.

For η > 2, let nf = B−1(η log p+logA)ε−2 and εf = B−1/2(η log p+logA)1/2n−1/2. Combining
with Theorem S1, the rest of the proof is the same as in Section S1.3.6.

S3 Simulation

S3.1 Details of the simluation settings

We simulate count data from the PLN model. The library sizes are generated from a log-normal
distribution N

(
log 10, 0.12

)
. The mean vector µ of PLN model is set as µ = (−2.35, . . . ,−2.35)

T

or µ = (−3.2, . . . ,−3.2)
T , where the former corresponds to a low-dropout scenario (about 40

percent of the counts are zeros) and the latter to a high-dropout scenario (about 60 percent of the
counts are zeros).
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S3.2 Simulation results

S3.2.1 The area under the receiver operating characteristic curve (AUC)

Table S1: Comparisons of PLNet, VPLN, glasso, and PLNet-MOM in terms of the area under the
receiver operating characteristic curve (AUC) on simulation results for n = 500 . The results are
averages over 100 replicates with standard deviations in brackets.

Sample size n = 500 n = 500 n = 500
Dimension p = 100 p = 300 p = 500

Dropout Low High Low High Low High
Banded graph

PLNet 0.97 (0.01) 0.89 (0.02) 0.96 (0.01) 0.87 (0.01) 0.95 (0.01) 0.86 (0.01)
PLNet-MOM 0.93 (0.01) 0.85 (0.02) 0.92 (0.01) 0.84 (0.01) 0.91 (0.01) 0.83 (0.01)

VPLN 0.96 (0.01) 0.88 (0.01) 0.96 (0.01) 0.87 (0.01) 0.96 (0.01) 0.87 (0.01)
glasso 0.88 (0.01) 0.61 (0.02) 0.94 (0.01) 0.79 (0.01) 0.95 (0.01) 0.82 (0.01)

Random graph
PLNet 0.93 (0.02) 0.85 (0.03) 0.94 (0.01) 0.82 (0.02) 0.94 (0.01) 0.81 (0.02)

PLNet-MOM 0.91 (0.02) 0.83 (0.03) 0.91 (0.01) 0.8 (0.02) 0.91 (0.01) 0.79 (0.02)
VPLN 0.95 (0.02) 0.88 (0.03) 0.95 (0.01) 0.84 (0.03) 0.95 (0.01) 0.83 (0.03)
glasso 0.88 (0.03) 0.68 (0.03) 0.94 (0.01) 0.78 (0.02) 0.94 (0.01) 0.79 (0.02)

Scale-free Graph
PLNet 0.94 (0.04) 0.87 (0.03) 0.95 (0.01) 0.87 (0.01) 0.95 (0.01) 0.86 (0.02)

PLNet-MOM 0.91 (0.04) 0.85 (0.03) 0.91 (0.01) 0.83 (0.02) 0.9 (0.01) 0.82 (0.01)
VPLN 0.95 (0.01) 0.88 (0.03) 0.95 (0.01) 0.88 (0.01) 0.95 (0.01) 0.88 (0.02)
glasso 0.91 (0.02) 0.77 (0.07) 0.95 (0.01) 0.86 (0.01) 0.95 (0.01) 0.86 (0.01)

Blocked graph
PLNet 0.93 (0.02) 0.84 (0.04) 0.94 (0.02) 0.81 (0.03) 0.93 (0.02) 0.81 (0.02)

PLNet-MOM 0.9 (0.02) 0.82 (0.04) 0.91 (0.02) 0.79 (0.03) 0.9 (0.02) 0.79 (0.02)
VPLN 0.94 (0.02) 0.87 (0.03) 0.95 (0.02) 0.83 (0.03) 0.94 (0.02) 0.82 (0.02)
glasso 0.86 (0.02) 0.68 (0.03) 0.94 (0.02) 0.77 (0.03) 0.93 (0.02) 0.78 (0.02)

Table S2: Comparisons of PLNet, VPLN, glasso, and PLNet-MOM in terms of the area under the
receiver operating characteristic curve (AUC) on simulation results for n = 2000 . The results are
averages over 100 replicates with standard deviations in brackets.

Sample size n = 2000 n = 2000 n = 2000
Dimension p = 100 p = 300 p = 500

Dropout Low High Low High Low High
Banded graph

PLNet 1 (0.01) 1 (0.01) 1 (0.01) 1 (0.01) 1 (0.01) 1 (0.01)
PLNet-MOM 1 (0.01) 0.99 (0.01) 1 (0.01) 0.99 (0.01) 1 (0.01) 0.99 (0.01)

VPLN 1 (0.01) 0.99 (0.01) 1 (0.01) 0.99 (0.01) 1 (0.01) 0.99 (0.01)
glasso 0.97 (0.01) 0.53 (0.01) 1 (0.01) 0.87 (0.01) 1 (0.01) 0.93 (0.01)

Random graph
PLNet 1 (0.01) 0.98 (0.01) 1 (0.01) 0.98 (0.01) 1 (0.01) 0.98 (0.01)

PLNet-MOM 0.99 (0.01) 0.97 (0.01) 1 (0.01) 0.97 (0.01) 1 (0.01) 0.97 (0.01)
VPLN 0.99 (0.01) 0.98 (0.01) 1 (0.01) 0.98 (0.01) 1 (0.01) 0.98 (0.01)
glasso 0.94 (0.02) 0.65 (0.02) 1 (0.01) 0.87 (0.02) 1 (0.01) 0.92 (0.01)

Scale-free Graph
PLNet 0.98 (0.03) 0.98 (0.03) 1 (0.01) 0.99 (0.01) 1 (0.01) 0.99 (0.01)

PLNet-MOM 0.98 (0.03) 0.97 (0.03) 0.99 (0.01) 0.97 (0.01) 0.99 (0.01) 0.97 (0.01)
VPLN 0.97 (0.06) 0.96 (0.04) 0.99 (0.01) 0.98 (0.01) 0.99 (0.01) 0.98 (0.01)
glasso 0.89 (0.1) 0.78 (0.06) 0.99 (0.01) 0.92 (0.01) 0.99 (0.01) 0.95 (0.01)

Blocked graph
PLNet 0.99 (0.01) 0.97 (0.02) 1 (0.01) 0.98 (0.01) 1 (0.01) 0.98 (0.01)

PLNet-MOM 0.98 (0.01) 0.95 (0.03) 1 (0.01) 0.97 (0.02) 1 (0.01) 0.97 (0.01)
VPLN 0.99 (0.01) 0.97 (0.01) 1 (0.01) 0.98 (0.01) 1 (0.01) 0.98 (0.01)
glasso 0.91 (0.02) 0.65 (0.03) 0.99 (0.01) 0.86 (0.02) 1 (0.01) 0.91 (0.01)
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S3.2.2 The mean predicted networks tunned by BIC criterion

Figure S1: The mean networks predicted by PLNet, VPLN, glasso and PLNet-MOM for the random
graph with 100 nodes and n = 2000. False edges are colored in red and true edges are in blue. The
left panel is the true network matrix for reference.

Figure S2: The mean networks predicted by PLNet, VPLN, glasso and PLNet-MOM for the Scale-
free graph with 100 nodes and n = 2000. False edges are colored in red and true edges are in blue.
The left panel is the true network matrix for reference.

Figure S3: The mean networks predicted by PLNet, VPLN, glasso and PLNet-MOM for the Blocked
graph with 100 nodes and n = 2000. False edges are colored in red and true edges are in blue. The
left panel is the true network matrix for reference.
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S3.2.3 Time cost

Table S3: Comparisons of PLNet, VPLN, glasso, and PLNet-MOM in terms of CPU time (minute)
for n = 500. The results are averages over 100 replicates with standard deviations in brackets.

Sample size n = 500 n = 500 n = 500
Dimension p = 100 p = 300 p = 500

Dropout Low High Low High Low High
Banded graph

PLNet 0.83 (0.06) 0.51 (0.06) 7.69 (1.65) 7.23 (1.03) 53.05 (3.95) 40.65 (3.18)
PLNet-MOM 0.64 (0.04) 0.49 (0.08) 7.75 (0.74) 6.8 (0.58) 40.45 (2.57) 25.67 (1.78)

VPLN 1.72 (0.07) 1.32 (0.04) 10.24 (0.33) 9.04 (0.24) 30.94 (0.67) 25.92 (0.82)
glasso 0.04 (0.01) 0.04 (0.01) 0.65 (0.01) 0.93 (0.05) 225.67 (53.83) 210.47 (47.47)

Random graph
PLNet 0.74 (0.07) 0.56 (0.06) 9.71 (1.7) 8.31 (1.44) 40 (4.71) 37.88 (4.07)

PLNet-MOM 0.43 (0.04) 0.46 (0.07) 9.26 (1.32) 7.76 (0.87) 37.49 (5.85) 28.94 (5.82)
VPLN 1.73 (0.07) 1.57 (0.03) 12.43 (0.41) 9.58 (0.33) 28.12 (1.05) 27.8 (2.17)
glasso 0.03 (0.01) 0.04 (0.01) 0.48 (0.04) 0.68 (0.08) 217.91 (65.44) 203.17 (43.5)

Scale-free Graph
PLNet 0.42 (0.06) 0.51 (0.08) 9.79 (1.68) 8.16 (1.25) 41.59 (3.14) 53.23 (3.47)

PLNet-MOM 0.31 (0.09) 0.43 (0.1) 9.48 (1.36) 7.65 (1.16) 38.2 (4.07) 49.73 (6.19)
VPLN 1.5 (0.06) 1.61 (0.16) 12.43 (0.42) 9.27 (0.58) 27.16 (0.7) 29.99 (1.11)
glasso 0.03 (0.01) 0.07 (0.11) 0.44 (0.02) 0.53 (0.06) 210.67 (56.82) 251.6 (64.76)

Blocked graph
PLNet 0.45 (0.08) 0.42 (0.07) 11.03 (1.66) 8.24 (1.43) 55.13 (3.82) 50.26 (6.61)

PLNet-MOM 0.31 (0.03) 0.32 (0.04) 10.2 (1.4) 8.09 (1.1) 51.9 (6.02) 42.75 (5.61)
VPLN 1.57 (0.08) 1.35 (0.04) 12.01 (0.49) 9.47 (0.38) 32.28 (1.37) 32.78 (2.43)
glasso 0.03 (0.01) 0.03 (0.01) 0.46 (0.04) 0.59 (0.09) 212.82 (59.03) 223.43 (61.7)

Table S4: Comparisons of PLNet, VPLN, glasso, and PLNet-MOM in terms of CPU time (minute)
for n = 2000. The results are averages over 100 replicates with standard deviations in brackets.

Sample size n = 2000 n = 2000 n = 2000
Dimension p = 100 p = 300 p = 500

Dropout Low High Low High Low High
Banded graph

PLNet 0.51 (0.02) 0.66 (0.06) 15.59 (0.22) 11.84 (1.17) 65.86 (8.41) 46.93 (5.62)
PLNet-MOM 0.61 (0.05) 0.63 (0.05) 11.93 (0.77) 10.16 (0.81) 46.44 (3.66) 41.33 (3.64)

VPLN 7.67 (1.7) 6.26 (0.26) 73.21 (18.63) 56.19 (6.96) 312.78 (137.26) 157.38 (15.68)
glasso 0.06 (0.01) 0.08 (0.01) 0.8 (0.02) 1.14 (0.06) 3.37 (0.29) 5.44 (0.42)

Random graph
PLNet 0.39 (0.03) 0.44 (0.06) 14.18 (1.03) 10.68 (1.17) 70.48 (5.93) 46.95 (1.87)

PLNet-MOM 0.37 (0.06) 0.37 (0.06) 9.36 (1.19) 9.57 (1.28) 46.92 (8.44) 44.1 (3.85)
VPLN 5.99 (0.31) 5.17 (0.22) 62.57 (7.28) 57.63 (5.83) 166.45 (20) 166.18 (8.07)
glasso 0.06 (0.01) 0.07 (0.01) 0.65 (0.04) 0.8 (0.07) 2.19 (0.21) 3.12 (0.4)

Scale-free Graph
PLNet 0.37 (0.1) 0.45 (0.06) 10.25 (1.27) 8.79 (1.16) 49.97 (7.6) 42.72 (4.16)

PLNet-MOM 0.41 (0.11) 0.38 (0.08) 7.64 (0.98) 7.74 (0.89) 42.96 (5.89) 45.48 (6.31)
VPLN 12.93 (25.14) 6.39 (0.59) 66.16 (4.88) 58.62 (5.72) 188.59 (22.95) 154.42 (22.21)
glasso 0.07 (0.06) 0.08 (0.06) 0.61 (0.06) 0.69 (0.03) 1.98 (0.12) 2.64 (0.21)

Blocked graph
PLNet 0.41 (0.04) 0.44 (0.06) 13.48 (1.51) 9.97 (1.1) 68.83 (7.3) 45.94 (3)

PLNet-MOM 0.37 (0.02) 0.36 (0.03) 7.68 (1.22) 8.64 (1.34) 44.01 (7.92) 41.92 (5.41)
VPLN 7.27 (0.27) 6.26 (0.22) 62.42 (8.5) 57.81 (6.53) 176.25 (19.71) 161.61 (14.55)
glasso 0.06 (0.01) 0.06 (0.01) 0.61 (0.04) 0.71 (0.05) 2.24 (0.34) 2.92 (0.32)

Table S3,S4 show the computational time of the four algorithms under the computer configuration
of Linux OS, Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz and 10G RAM. The glasso method
is computationally the most efficient since its optimization problem is much simpler than that of
PLNet and VPLN. PLNet is computationally more efficient than VPLN, sometimes by a very large
amount. For example, when n = 2000, p = 100, for the scale-free graph under the low dropout
scenario, the mean computational time of PLNet is 0.37 minutes, which is only about 2.8% of the
VPLN’s computational time (12.93 minutes). Interestingly, we observe that VPLN generally takes
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much more time for large sample size cases (n = 2000, p = 100) than the small sample size cases
(n = 500, p = 100). In comparison, the computational efficiency of PLNet is roughly the same for
different sample size. VPLN is computationally less efficient since VPLN involves a series of glasso
optimizations as well as the variational approximation for each sample.

S4 Real data analysis

S4.1 Other densities results
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Figure S4: Heat maps of partial correlations between genes in the 4 GO modules given by PLNet (a)
and VPLN (b) (density = 3%). Red: Cytokine-mediated signaling pathway (Module M1); Orange:
Neutrophil-mediated immunity (Module M2); Green: Cellular protein metabolic process (Module
M3); Blue: Proteolysis (Module M4).
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Figure S5: Heat maps of partial correlations between genes in the 4 GO modules given by PLNet (a)
and VPLN (b) (density = 7%). Red: Cytokine-mediated signaling pathway (Module M1); Orange:
Neutrophil-mediated immunity (Module M2); Green: Cellular protein metabolic process (Module
M3); Blue: Proteolysis (Module M4).
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Table S5: The within-between connection ratios of the 4 modules in the networks estimated by PLNet
and VPLN tuned such that the network densities are around 3%.

Type Method Module 1 Module 2 Module 3 Module 4
Weighted PLNet 0.724 0.273 0.668 0.393

VPLN 0.648 0.413 0.505 0.276
Unweighted PLNet 0.567 0.211 0.522 0.308

VPLN 0.506 0.234 0.200 0.299

Table S6: The within-between connection ratios of the 4 modules in the networks estimated by PLNet
and VPLN tuned such that the network densities are around 7%.

Type Method Module 1 Module 2 Module 3 Module 4
Weighted PLNet 0.651 0.202 0.520 0.369

VPLN 0.606 0.362 0.433 0.243
Unweighted PLNet 0.483 0.083 0.333 0.308

VPLN 0.520 0.215 0.177 0.180
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