000 001 002 GENERALIZATION THROUGH VARIANCE: HOW NOISE SHAPES INDUCTIVE BIASES IN DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

How diffusion models generalize beyond their training set is not known, and is somewhat mysterious given two facts: the optimum of the denoising score matching (DSM) objective usually used to train diffusion models is the score function of the training distribution; and the networks usually used to learn the score function are expressive enough to learn this score to high accuracy. We claim that a certain feature of the DSM objective—the fact that its target is not the training distribution's score, but a noisy quantity only equal to it in expectation—strongly impacts whether and to what extent diffusion models generalize. In this paper, we develop a mathematical theory that partly explains this 'generalization through variance' phenomenon. Our theoretical analysis exploits a physics-inspired path integral approach to compute the distributions typically learned by a few paradigmatic underand overparameterized diffusion models. We find that the distributions diffusion models effectively learn to sample from resemble their training distributions, but with 'gaps' filled in, and that this inductive bias is due to the covariance structure of the noisy target used during training. We also characterize how this inductive bias interacts with feature-related inductive biases.

025 026 027

1 INTRODUCTION

028 029

030 031 032 033 034 035 036 037 038 Diffusion models [\(Sohl-Dickstein et al., 2015;](#page-10-0) [Song & Ermon, 2019;](#page-11-0) [Ho et al., 2020;](#page-9-0) [Yang et al.,](#page-11-1) [2023\)](#page-11-1) have proven effective at producing high-quality samples (e.g., images) *like* those from some training distribution, but not overwhelmingly so. This ability to generalize is somewhat surprising for two reasons. First, the optimum of the denoising score matching (DSM) objective usually used to train them is the score function of the training distribution [\(Vincent, 2011;](#page-11-2) [Song & Ermon, 2019\)](#page-11-0), and sampling using this score only reproduces training examples (see Appendix [A\)](#page-13-0). Second, the network architectures usually used for score function approximation are highly expressive. Two near-SOTA models developed by [Karras et al.](#page-10-1) [\(2022\)](#page-10-1) have ∼ 56 million (CIFAR-10, trained on 200 million samples) and \sim 296 million parameters (ImageNet-64, trained on 2500 million samples), respectively. Sufficiently expressive models can fit even random noise [\(Zhang et al., 2017\)](#page-12-0).

039 040 041 042 043 044 045 046 047 048 049 A body of empirical work bears on the question of when and to what extent diffusion models generalize. Training data is more likely to be memorized when training sets are small [\(Somepalli et al.,](#page-11-3) [2023a;](#page-11-3) [Stein et al., 2023;](#page-11-4) [Dar et al., 2024;](#page-9-1) [Kadkhodaie et al., 2024\)](#page-10-2), contain duplicates [\(Somepalli](#page-11-3) [et al., 2023a;](#page-11-3) [Carlini et al., 2023;](#page-8-0) [Somepalli et al., 2023b\)](#page-11-5), or feature low 'complexity' [\(Somepalli](#page-11-5) [et al., 2023b;](#page-11-5) [Stein et al., 2023\)](#page-11-4). The specific training examples more likely to be memorized are either highly duplicated or outliers [\(Carlini et al., 2023\)](#page-8-0). Whether generalization happens also strongly depends on model capacity, with [Yoon et al.](#page-11-6) [\(2023\)](#page-11-6) and [Zhang et al.](#page-12-1) [\(2024\)](#page-12-1) observing a sharp transition from memorization to generalization as the number of training examples used somewhat outstrips model capacity. However, the relationship between model performance (e.g., FID score) and model size, given a fixed number of training examples, is not monotonic; [Karras et al.](#page-10-3) [\(2024\)](#page-10-3) observe that their ImageNet models strictly improve (and hence generalize better) as model size increases.

050 051 052 053 At present, there is arguably no theory that describes when diffusion models generalize and characterizes how the associated inductive biases depend on details like training set structure, the choice of forward/reverse processes, and model architecture. Most existing theoretical work focuses on orthogonal questions: given a *known ground truth*, can one mathematically guarantee that in some limit (e.g., a large or infinite number of samples from the ground truth distribution) diffusion mod**054 055 056 057 058** els recover the ground truth, and bound how score approximation error impacts agreement [\(Bortoli,](#page-8-1) [2022;](#page-8-1) [Chen et al., 2023a;](#page-9-2)[c;](#page-9-3) [Han et al., 2024\)](#page-9-4)? The question we are interested in is qualitatively different: given $M \geq 1$ examples from a data distribution p_{data} , how do samples from a model trained on those examples differ from them? For example, does the model effectively interpolate training data? If so, when, and what details does this depend on?

- In this paper, we argue that six factors substantially impact how diffusion models generalize.
	- 1. Noisy objective. The target of the DSM objective is not the score of the training distribution, but a noisy quantity *only equal to it in expectation*. This quantity, which we call the 'proxy score', introduces additional randomness to training, and has extremely high variance at low noise levels (infinite variance, in fact, at zero noise). Intuitively, this makes score function estimates, especially at low noise levels, inaccurate (this is well-known; [Kar](#page-10-1)[ras et al.](#page-10-1) [\(2022\)](#page-10-1) remark on this when they discuss their choice of loss weighting). Moreover, this variance is not uniform in state space, but higher in 'boundary regions', e.g., regions of state space close to multiple training examples. This provides a useful inductive bias.
- **068 069 070 071** 2. Forward process. Details of the forward process (e.g., when noise is added, asymmetry in how noise is added along different directions of state space) affect generalization through their influence on the covariance structure of the proxy score.
	- 3. Nonlinear score-dependence. The learned distribution depends nonlinearly on the learned score function through the dynamics of the reverse process. This implies that the average learned distribution is *not* the training distribution, even if the score estimator is unbiased.
		- 4. Model capacity. Models generalize better when they are somewhat underparameterized.
	- 5. Model features. Feature-related inductive biases interact with, and can enhance, inductive biases due to the covariance structure of the proxy score.
		- 6. Training set structure. Nontrivial generalization (e.g., interpolation) is substantially more likely when a large number of training examples are near each other in state space; outliers are less likely to be meaningfully generalized.

082 083 084 085 086 Hence, details of training (1, 2), sampling (3), model architecture (4, 5), and the training set (6) all interact to determine the details of generalization. Other aspects, like learning dynamics, also almost certainly play a role, but we mostly neglect them here. The first factor is particularly important, and without it we will see that diffusion models do not generalize well; for this reason, we refer to the phenomenon enabled by (1) and affected by $(2-6)$ as **generalization through variance**.

087 088 089 090 091 092 093 094 We support this claim using physics-inspired theory. The Martin-Siggia-Rose (MSR) path integral description of stochastic dynamics [\(Martin et al., 1973\)](#page-10-4), which has also been exploited to characterize random neural networks [\(Crisanti & Sompolinsky, 2018\)](#page-9-5) and learning dynamics [\(Mignacco](#page-10-5) [et al., 2020;](#page-10-5) [Bordelon & Pehlevan, 2022;](#page-8-2) [2023\)](#page-8-3), plays a pivotal role in our analysis. First, we use the MSR path integral to derive the generic form of 'generalization through variance', and then we discuss in specific, analytically tractable cases of interest (e.g., linear models, lazy infinite-width neural networks) how the details change and the role of each of the aforementioned factors. To keep our theoretical analysis tractable, we focus on unconditional, non-latent models.

095

096

2 PRELIMINARIES

097 098 099 100 101 Data distribution. Let $p_{data}(x_0)$ denote a data distribution on \mathbb{R}^D . We are especially interested in the case that p_{data} consists of a discrete set of $1 \leq M < \infty$ examples (e.g., images), so that $p_{data}(\bm{x}_0) = \sum_{m=1}^{M} \delta(\bm{x}_0 - \bm{\mu}_m)/M$, where δ is the Dirac delta function. However, we do not restrict ourselves to this case.

102 103 Forward/reverse diffusion. Training a diffusion model involves learning to convert samples from some other distribution $p_{noise}(\boldsymbol{x}_T)$ (e.g., a normal distribution) to samples from $p_{data}(\boldsymbol{x}_0)$ via

 $\dot{x}_t = -\beta_t x_t + G_t \eta_t$ $t = 0 \rightarrow t = T$ forward process, p_{data} to p_{noise} (1)

$$
\begin{array}{c}\n104 \\
105 \\
106\n\end{array}
$$

 $\dot{x}_t = -\beta_t x_t - D_t s(x_t, t)$ $t = T \rightarrow t = \epsilon$ reverse process, p_{noise} to p_{data} (2)

107 where $\eta_t \in \mathbb{R}^K$ is Gaussian white noise, $G_t \in \mathbb{R}^{D \times K}$ is a nonnegative matrix that controls the noise amplitude, $\bm{D}_t := \bm{G}_t \bm{G}_t^T/2$ is the corresponding diffusion tensor, $\beta_t \geq 0$ controls decay to the

111 112

109 110 Table 1: Popular forward processes in our parameterization. For these, $G_t := g_t I_D$ and $S_t = \sigma_t^2 I_D$.

β_t	g_t	α_t	σ_t	end time	
VP-SDE	$\beta_{min} + \beta_d t$	$\sqrt{2\beta_t}$	$e^{-\int_0^t \beta_{t'} dt'}$	$\sqrt{1 - e^{-2 \int_0^t \beta_{t'} dt'}}$	1
EDM	0	$\sqrt{2t}$	1	t	T

113 114 115

116 117 118 119 origin, $\epsilon > 0$ is a parameter that helps ensure numerical stability, and $s(x, t) := \nabla_x \log p(x|t)$ is the score function. We allow G_t to be a matrix so we can study how asymmetries affect generalization later. The forward process' marginals are $p(x|t) := \int p(x|x_0, t)p_{data}(x_0) dx_0$. The transition probabilities are $p(x|x_0, t) = \mathcal{N}(x; \alpha_t x_0, S_t)$, where $\alpha_t := e^{-\int_0^t \beta_{t'} dt'}$ and $S_t := \int_0^t 2D_{t'} \alpha_{t'}^2 dt'$.

120 121 122 123 124 The forward process assumed here is fairly general, and includes popular choices like the VP-SDE [\(Song et al., 2021\)](#page-11-7) and EDM formulation [\(Karras et al., 2022\)](#page-10-1) (Table 1). This choice of reverse process is called the probability flow ODE (PF-ODE), and has been shown to have both practical [\(Song et al., 2021\)](#page-11-7) and theoretical [\(Chen et al., 2023b\)](#page-9-6) advantages. Since $s(x, t)$ is required to run the reverse process but is a priori unknown, "training" a model means approximating $s(x, t)$.

Denoising score matching. One could in principle use a naive mean-squared-error objective

$$
J_0(\boldsymbol{\theta}) := \mathbb{E}_{t,\boldsymbol{x}}\left\{\frac{\lambda_t}{2} \|\hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x},t) - \boldsymbol{s}(\boldsymbol{x},t)\|_2^2\right\} = \int \frac{\lambda_t}{2} \|\hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x},t) - \boldsymbol{s}(\boldsymbol{x},t)\|_2^2 p(\boldsymbol{x}|t) p(t) \,d\boldsymbol{x}dt \quad (3)
$$

to learn a parameterized score estimator $\hat{s}_{\theta}(x, t)$. Here, $\lambda_t > 0$ is a positive weighting function and $p(t)$ is a time-sampling distribution. The DSM objective [\(Vincent, 2011;](#page-11-2) [Song & Ermon, 2019\)](#page-11-0)

$$
J_1(\boldsymbol{\theta}) := \mathbb{E}_{t,\boldsymbol{x}_0,\boldsymbol{x}}\left\{\frac{\lambda_t}{2}\|\hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x},t)-\tilde{\boldsymbol{s}}(\boldsymbol{x},t;\boldsymbol{x}_0)\|_2^2\right\} = \int \frac{\lambda_t}{2} \|\hat{\boldsymbol{s}}_{\boldsymbol{\theta}}-\tilde{\boldsymbol{s}}\|_2^2 p(\boldsymbol{x},\boldsymbol{x}_0,t) \,d\boldsymbol{x} d\boldsymbol{x}_0 dt \quad (4)
$$

134 135 136 where $p(x, x_0, t) := p(x|x_0, t)p_{data}(x_0)p(t)$, is usually used instead. While the folklore justifying this choice is that the score function is not known, this is not true; both J_0 and J_1 are optimized when \hat{s}_{θ} equals the score of the training distribution (see Appendix [A\)](#page-13-0), which is known.

137 138 139 We will argue that the real difference between J_0 and J_1 is that J_1 generalizes better, and that this is in part because the **proxy score** $\tilde{s}(x,t;x_0) := \nabla_x \log p(x|x_0,t) = S_t^{-1}(\alpha_t x_0 - x)$ is used as the target instead of the true score. It is a 'noisy' version of the true score (see Appendix [B\)](#page-15-0), since

$$
\mathbb{E}_{\mathbf{x}_0|\mathbf{x},t}[\tilde{\mathbf{s}}(\mathbf{x},t;\mathbf{x}_0)] = \mathbf{s}(\mathbf{x},t) \quad \text{Cov}_{\mathbf{x}_0|\mathbf{x},t}[\tilde{s}_i,\tilde{s}_j] = S_{t,ij}^{-1} + \partial_{ij}^2 \log p(\mathbf{x}|t) \,. \tag{5}
$$

141 142 143 144 145 146 147 Although the proxy score is equal to the score of the training distribution in expectation, neural networks trained on J_1 empirically learn a different distribution and generalize better. We claim that this fact is closely related to the *covariance structure* of the proxy score. Two relevant observations about its form are as follows. First, it is large at small times, since $S_t \to 0$ as $t \to 0$. Second, it is large where the log-likelihood $\log p(x|t)$ has substantial curvature. In the typical case, where p_{data} consists of a discrete set of M examples, regions of high curvature precisely correspond to the location of training examples and the boundaries between them (Fig. 1).

148 149 In what follows, we assume training involves $P \gg 1$ independent samples from $p(x, x_0, t)$ (note that P is different than M, the number of points in discrete p_{data}).

150

140

151 152 153 154 155 156 157 158 Generalization and inductive biases. In a typical supervised learning setting, one trains a model on one set of data and tests it on another, and defines 'generalization error' as performance on the held-out data. Here, we are interested in a different type of problem: *given* a model trained on samples from $p(x, x_0, t)$, *to what extent* does the learned distribution differ from p_{data} , and what are the associated inductive biases? Of particular interest in whether models do three things: (i) interpolation (filling in gaps in the training data), (ii) extrapolation (extending patterns in the training data), and (iii) feature blending (generating samples which include both feature X and feature Y even when training examples only involve one of the two features).

159 160 161 In our setting, a subtle but important point is that there is generally no ground truth. For example, the smooth distribution that CIFAR-10 or MNIST images are drawn from does not exist, except in a 'Platonic' sense; we are interested in the extent to which diffusion models learn a distribution plausibly *like* a smoothed version of the training distribution.

162

Figure 1: Visualization of proxy score variance for four example 2D data distributions. Each distribution is supported on six point masses (red dots). Note that as t changes (left: small t , right: large t), boundary regions at different scales are emphasized.

3 APPROACH: COMPUTING TYPICAL LEARNED DISTRIBUTIONS

176 177 178 179 180 181 The distribution $q(x_0|\theta)$ learned by a diffusion model depends on the learned score \hat{s}_{θ} nonlinearly through PF-ODE dynamics; importantly, we are less interested in how well the score is estimated, and more interested in how estimation errors impact q . The learned score can be viewed as a random variable, since it depends on the P samples $x^{(i)}$, $x_0^{(i)}$, $t^{(i)} \sim p(x, x_0, t)$ used during training. In order to theoretically understand how diffusion models generalize, we aim to obtain an analytic expression for the 'typical' learned distribution by averaging q over sample realizations.

182 183 184 How do we do the required averaging? One of our major contributions is to introduce a theoretical approach for averaging $q(x_0)$ over variation due to \hat{s} . Below, we describe our approach.

185 Writing PF-ODE dynamics in terms of a path integral. How does one average over the result of an ODE given that, in the case of PF-ODE dynamics, there is generally no closed-form expression for the result? To address this issue, we use a novel **stochastic path integral** representation of PF-ODE dynamics that makes the required average easy to do. If $q(x_0|x_T; \theta)$ denotes the distribution of PF-ODE outputs given a score estimator $\hat{s}_{\theta}(x, t)$ and a fixed noise seed x_T ,

$$
q(\boldsymbol{x}_0|\boldsymbol{x}_T;\boldsymbol{\theta}) = \int \mathcal{D}[\boldsymbol{p}_t] \mathcal{D}[\boldsymbol{x}_t] \, \exp\left\{ \int_{\epsilon}^T i \boldsymbol{p}_t \cdot [\dot{\boldsymbol{x}}_t + \beta_t \boldsymbol{x}_t + \boldsymbol{D}_t \hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)] \, dt \right\} \tag{6}
$$

where the integral is over all possible paths from x_T to x_0 . (To avoid technical issues, we assume a particular time discretization in all calculations. See Appendix [C.](#page-17-0)) This type of path integral is a time-reversed version of the Martin-Siggia-Rose (MSR) path integral [\(Martin et al., 1973\)](#page-10-4).

Averaging over possible sample realizations. Because the argument of the exponential depends linearly on the score, the required ensemble average is now easy to do. Using $|\cdots|$ to denote it,

$$
[q(\boldsymbol{x}_0|\boldsymbol{x}_T)] = \int \mathcal{D}[\boldsymbol{p}_t] \mathcal{D}[\boldsymbol{x}_t] \exp\left\{M_1 - \frac{1}{2}M_2 + \cdots\right\}
$$
(7)

$$
M_1 := \int_{\epsilon}^T i \mathbf{p}_t \cdot [\dot{\mathbf{x}}_t + \beta_t \mathbf{x}_t + \mathbf{D}_t s_{avg}(\mathbf{x}_t, t)] dt \quad M_2 := \int_{\epsilon}^T \int_{\epsilon}^T \mathbf{p}_t^T \mathbf{V}(\mathbf{x}_t, t; \mathbf{x}_{t'}, t') \mathbf{p}_{t'} dt dt'
$$

204 205 206 207 where $s_{avg}(x_t, t) := [\hat{s}_{\theta}(x_t, t)]$ is the ensemble's average score estimator, and $V(x_t, t; x_{t'}, t') :=$ $D_t \text{Cov}_{\theta}[\hat{s}(x_t, t), \hat{s}(x_{t'}, t')] D_{t'}$ measures ensemble variance. Assuming higher-order terms can be neglected—and hence that the estimator distribution is approximately Gaussian—one can show (see Appendix [C\)](#page-17-0) that sampling from $[q(x_0|x_T)]$ is equivalent to integrating an (Ito-interpreted) SDE:

208 209 210 Proposition 3.1 (Effective SDE description of typical learned distribution). *Sampling from* $[q(x_0|x_T)]$ *is equivalent to integrating the (Ito-interpreted) SDE*

$$
\dot{\boldsymbol{x}}_t = -\beta_t \boldsymbol{x}_t - \boldsymbol{D}_t \boldsymbol{s}_{avg}(\boldsymbol{x}_t, t) + \boldsymbol{\xi}(\boldsymbol{x}_t, t) \qquad t = T \to t = \epsilon \tag{8}
$$

212 213 *with initial condition* x_T *, where* $s_{avg}(x_t, t) := [\hat{s}_{\theta}(x_t, t)]$ *and where the noise term* $\xi(x_t, t)$ *has* $\emph{mean zero and autocorrelation}$ $\bm{V}(\bm{x}_t, t; \bm{x}_{t'}, t') := \bm{D}_t Cov_{\bm{\theta}}[\hat{\bm{s}}(\bm{x}_t, t), \hat{\bm{s}}(\bm{x}_{t'}, t')] \bm{D}_{t'}.$

214

211

215 If \hat{s} is unbiased and M is finite, then the noise term is solely responsible for the difference between true PF-ODE dynamics (which reproduces training examples) and a model's 'typical' sampling

Figure 2: Samples from naive score model (green, EDM) compared to comparable kernel density estimate model (blue) for the four distributions depicted in Fig. 1. The naive score model does not add probability mass uniformly about training data (red), but adds more mass to boundary regions.

dynamics—i.e., generalization occurs if and only if $V \neq 0$. This makes characterizing V, which we call the *V-kernel* since it reflects ensemble variance, crucially important for understanding how diffusion models generalize. Our remaining theoretical work is to complete two tasks: first, to compute s_{avg} and V for a few paradigmatic and theoretically tractable architectures; and second, to study how their precise forms affect $[q(x_0)]$.

4 DIFFUSION MODELS THAT MEMORIZE TRAINING DATA STILL GENERALIZE

It is instructive to first consider an extreme case: do diffusion models generalize in the complete *absence* of any model-related inductive biases? Perhaps surprisingly, the answer is yes. In this section, we make this point using a toy model in which training and sampling are interleaved.

Suppose that the PF-ODE is integrated backward in time from an initial point x_T (e.g., using firstorder Euler updates). At each time step, suppose one samples R times from $p(x_0|x_t, t)$ and constructs the 'naive' score estimator $\hat{s}(x_t, t) := \sum_{r=1}^R \tilde{s}(x_t, t; x_{0t}^{(r)})/R$. Then suppose this estimator is used as the score in that step's PF-ODE update. Assume this process continues (with R new samples drawn at each time step) until $t = \epsilon$. Despite this approach using the proxy score directly (so that training data is 'memorized'), one obtains a nontrivial V-kernel, and hence generalization:

Proposition 4.1 (Naive score estimator generalizes). *Consider the result of integrating the PF-ODE (Eq.* 2*)* from $t = T$ to $t = \epsilon$ *using* $R \ge 1$ *independent proxy score samples at each time step, i.e.,*

$$
\dot{\boldsymbol{x}}_t = -\beta_t \boldsymbol{x}_t - \boldsymbol{D}_t \left(\sum_{r=1}^R \frac{\tilde{\boldsymbol{s}}(\boldsymbol{x}_t, t; \boldsymbol{x}_{0t}^{(r)})}{R} \right) \qquad \boldsymbol{x}_{0t}^{(r)} \sim p(\boldsymbol{x}_0 | \boldsymbol{x}_t, t) := \frac{p(\boldsymbol{x}_t | \boldsymbol{x}_0, t) p_{data}(\boldsymbol{x}_0)}{p(\boldsymbol{x}_t | t)}.
$$

Then $[q(x_0|x_T)]$ *is described by an effective SDE (Eq. [8\)](#page-3-0)* with $s_{avg} = s$ *and V-kernel*

$$
V_{ij}(\boldsymbol{x}_t, t; \boldsymbol{x}_{t'}, t') := \frac{1}{R} \sum_{a,b} D_{t,ia} \left[S_{t,ab}^{-1} + \partial_{ab}^2 \log p(\boldsymbol{x}_t|t) \right] D_{t,bj} \; \delta(t-t') \; . \tag{9}
$$

See Appendix [D](#page-20-0) for details and Fig. 2 for illustrative examples. Notably, the effective SDE is noisier when the covariance of the proxy score is high, e.g., in boundary regions between training examples. We will see in the next section that this is also true for less trivial models, but that the proxy score's covariance interacts with feature-related biases in order to determine the SDE's overall noise term.

263 264 265

5 FEATURE-RELATED INDUCTIVE BIASES ENHANCE GENERALIZATION

266 267 268 269 Model architecture is known to produce certain inductive biases, with spectral bias being a wellknown example [\(Rahaman et al., 2019;](#page-10-6) [Bordelon et al., 2020;](#page-8-4) [Canatar et al., 2021\)](#page-8-5). How do modelfeature-related inductive biases affect the V-kernel? We answer this question below in two interesting but tractable cases: linear models, and (lazy regime) infinite-width neural networks. To ease notation, let $\mathbf{z} := (\mathbf{x}, t)$ and $C_{ij}(\mathbf{z}) := \text{Cov}_{\mathbf{x}_0|\mathbf{x},t}[\tilde{s}_i(\mathbf{x}, t; \mathbf{x}_0), \tilde{s}_j(\mathbf{x}, t; \mathbf{x}_0)].$

270 271 5.1 THE V-KERNEL OF EXPRESSIVE LINEAR MODELS

272 Consider a linear score estimator

273

279

$$
\hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x},t) = \boldsymbol{w}_0 + \boldsymbol{W}\boldsymbol{\phi}(\boldsymbol{x},t) \,, \tag{10}
$$

274 275 276 277 278 where the F feature maps $\phi := (\phi_1, ..., \phi_F)^T$ are linearly independent, smooth functions from $\mathbb{R}^D \times (0,T]$ to $\mathbb R$ that are square-integrable with respect to the measure $\lambda_t p(x,t)$. The parameters to be estimated are $\theta := \{w_0, W\}$, with $w_0 \in \mathbb{R}^D$ and $W \in \mathbb{R}^{D \times F}$. Note that this estimator is linear in its features, but not necessarily in x or t . The weights that optimize Eq. [4](#page-2-0) are (see Appendix [E\)](#page-21-0)

$$
\mathbf{W}^* = -\mathbf{J}^T \mathbf{\Sigma}_{\phi}^{-1} \qquad \mathbf{w}_0^* = \mathbf{J}^T \mathbf{\Sigma}_{\phi}^{-1} \langle \phi \rangle + \langle \tilde{s} \rangle \tag{11}
$$

280 281 where we define $\langle \cdots \rangle := \mathbb{E}_{x,x_0,t}[\lambda_t \cdots]/\mathbb{E}_t[\lambda_t]$ and matrices

$$
\bm{J} := \;-\left\langle\left[\bm{\phi}(\bm{x},t)-\langle\bm{\phi}\rangle\right]\left[\tilde{\bm{s}}(\bm{x},t;\bm{x}_0)-\langle\tilde{\bm{s}}\rangle\right]^T\right\rangle \qquad \bm{\Sigma}_{\bm{\phi}} := \; \left\langle\left[\bm{\phi}(\bm{x},t)-\langle\bm{\phi}\rangle\right]\left[\bm{\phi}(\bm{x},t)-\langle\bm{\phi}\rangle\right]^T\right\rangle \,.
$$

When averaged over x_0 sample realizations, the estimator $\hat{s}_*(x,t) = w_0^* + W^* \phi(x,t)$ is unbiased as long as the set of feature maps is sufficiently expressive. Interestingly, this is true regardless of the x or t samples used, provided $F \leq P$. The following result characterizes $[q(x_0)]$ for linear models: Proposition 5.1 (Expressive linear models asymptotically generalize). *Suppose the parameters of an expressive linear score estimator (Eq. [10\)](#page-5-0) with* F *features are perfectly optimized according to*

the DSM objective (Eq. [4\)](#page-2-0) using $P \geq F$ *independent samples from* $p(x, x_0, t)$ *, and define matrices* 2

$$
\tilde{C}_{ij} := \int \frac{\lambda_{t''}^2}{\mathbb{E}_t[\lambda_t]^2} [\phi(\boldsymbol{z}'') - \langle \phi \rangle] [\phi(\boldsymbol{z}'') - \langle \phi \rangle]^T C_{ij}(\boldsymbol{z}'') p(\boldsymbol{z}'') d\boldsymbol{z}''. \tag{12}
$$

Provided that the limit exists and is finite, in the $P \rightarrow \infty$ *limit (where* F *may scale with* P) we have

$$
V_{ij}(z; z') = \lim_{P \to \infty} \frac{1}{P} \sum_{a,b} D_{t,ia} [\phi(z) - \langle \phi \rangle]^T \Sigma_{\phi}^{-1} \tilde{C}_{ab} \Sigma_{\phi}^{-1} [\phi(z') - \langle \phi \rangle] D_{t',bj} . \tag{13}
$$

On the other hand, if the number of features F does not scale with $P, V \equiv 0$. See Appendix [E](#page-21-0) for the details of our argument.

297 298 299 300 The V-kernel for linear models differs from the naive score's V-kernel (Eq. [9\)](#page-4-0) via the presence of feature-related factors. In particular, the effective SDE is noisier *where features take atypical values*. One expects that these factors can either enhance or compete with noise due to the covariance structure (e.g., noise should be higher if features take atypical values in boundary regions).

5.2 THE V-KERNEL OF LAZY INFINITE-WIDTH NEURAL NETWORKS

304 305 306 307 308 309 310 Neural networks in the neural tangent kernel (NTK) regime [\(Jacot et al., 2018;](#page-9-7) [Bietti & Mairal,](#page-8-6) [2019\)](#page-8-6) provide another interesting but tractable model. Such networks exhibit 'lazy' learning [\(Chizat](#page-9-8) [et al., 2019\)](#page-9-8) in the sense that weights do not move much from their initial values. Moreover, it is known that they interpolate training data in the absence of parameter regularization or early stopping [\(Bordelon et al., 2020\)](#page-8-4). If they precisely interpolated their samples, we would expect to recover a V-kernel like the one we computed in Sec. [4;](#page-4-1) more generally, we expect something similar modified by the spectral inductive biases associated with the architecture [\(Canatar et al., 2021\)](#page-8-5).

311 312 313 314 For simplicity, we consider fully-connected networks whose hidden layers all have width N , which is taken to infinity together with P (see Appendix [F](#page-25-0) for details). The associated NTK has a Mercer decomposition with respect to the measure $\lambda_t p(x, t)/\mathbb{E}[\lambda_t]$, so K can be written in terms of F orthonormal features $\{\phi_i\}$:

$$
K(\boldsymbol{x},t;\boldsymbol{x}',t')=\sum_{k}\lambda_{k}\phi_{k}(\boldsymbol{x},t)\phi_{k}(\boldsymbol{x}',t')\qquad \int\frac{\lambda_{t}}{\mathbb{E}[\lambda_{t}]}\phi_{k}(\boldsymbol{x},t)\phi_{\ell}(\boldsymbol{x},t)\ p(\boldsymbol{x},t)\ dxdt=\delta_{k\ell}.\tag{14}
$$

318 We assume training involves full-batch gradient descent on P samples from $p(x, x_0, t)$, so that the learned score function after training for an amount of 'time' τ has the closed-form solution

$$
\hat{\mathbf{s}}(\mathbf{z}) = \hat{\mathbf{s}}_0(\mathbf{z}) + [\tilde{\mathbf{S}} - \hat{\mathbf{S}}_0]^T (\mathbf{I} - e^{-\mathbf{\Lambda}_T \mathbf{K} \tau / P}) \mathbf{K}^{-1} \mathbf{k}(\mathbf{z})
$$

321 322 323 where \hat{s}_0 is the network's initial output, $\tilde{S} \in \mathbb{R}^{D \times P}$ contains proxy score samples, $\hat{S}_0 \in \mathbb{R}^{D \times P}$ contains the network's initial outputs given the samples, $K \in \mathbb{R}^{P \times P}$ is the kernel Gram matrix, $\Lambda_T \in \mathbb{R}^{P \times P}$ is a diagonal matrix containing the weighting function $\lambda_t/\mathbb{E}[\lambda_t]$ evaluated on samples, and $k(x, t)$ is an input-dependent vector whose *i*-th component is $K(\boldsymbol{x}^{(i)}, t^{(i)}; \boldsymbol{x}, t)$. We have:

316 317

319 320

315

Proposition 5.2 (Lazy neural networks asymptotically generalize). *Suppose the parameters of a fully-connected, infinite-width neural network characterized by a rank* F *NTK are optimized ac-cording to the DSM objective (Eq. [4\)](#page-2-0) using* P *independent samples from* $p(x, x_0, t)$ *, and define*

$$
\tilde{C}_{ij} := \int \frac{\lambda_{t''}^2}{\mathbb{E}[\lambda_t]^2} \phi(z'') \phi(z'')^T C_{ij}(z'') p(z'') dz''.
$$
\n(15)

Provided that the limit exists and is finite, in the $P \rightarrow \infty$ *limit (where* F *may scale with* P) we have

$$
V_{ij}(z; z') = \lim_{P \to \infty} \frac{1}{P} \sum_{a,b} D_{t,ia} \phi(z)^T (I_F - e^{-\mathbf{\Lambda}\tau}) \tilde{C}_{ab} (I_F - e^{-\mathbf{\Lambda}\tau}) \phi(z') D_{t',bj} . \tag{16}
$$

In the infinite training time ($\tau \to \infty$) *limit, we recover the Sec.* [4](#page-4-1) *result with a prefactor* $\kappa \propto F/P$:

$$
V_{ij}(z; z') = \kappa \sum_{a,b} D_{t,ia} C_{ab} D_{t,bj} \, \delta(z - z') \,. \tag{17}
$$

See Appendix [F](#page-25-0) for the full details of our argument. Interestingly, although the network is not assumed to be in the feature-learning regime, this result interpolates between our pure memorization (Prop. [4.1\)](#page-4-2) and linear model (Prop. [5.1\)](#page-5-1) results as we change the value of the training time τ .

6 DISCUSSION

346 347 348 349 350 We used a novel path-integral approach to quantitatively characterize the 'typical' distribution learned by diffusion models, and find that generalization is influenced by a combination of factors related to training (the DSM objective and forward process; Sec. [2](#page-1-1) and [4\)](#page-4-1), sampling (the learned distribution depends nonlinearly on score estimates; Sec. [3\)](#page-3-1), model architecture (Sec. [5\)](#page-4-3), and the data distribution. Below, we use our theory to comment on various previous observations.

351 352 353 354 355 356 357 358 359 360 361 362 DSM produces noisy estimators, but stable distributions. Various forms of score 'mislearning' are well-known. At small times, scores are hard to learn due to the noisiness of the proxy score target, leading authors like [Karras et al.](#page-10-1) [\(2022\)](#page-10-1) to suggest a $p(t)$ that emphasizes intermediate noise scales. [Chao et al.](#page-8-7) [\(2022\)](#page-8-7) discuss how score estimation errors affect conditional scores. [Xu et al.](#page-11-8) [\(2023\)](#page-11-8) explicitly study the variance-near-mode-boundaries issue we discussed, and propose a strategy for mitigating it. On the other hand, it is well-known that despite noisy score estimates, diffusion models generally produce smooth output distributions (see, e.g., [Luzi et al.](#page-10-7) [\(2024\)](#page-10-7)). Moreover, two diffusion models trained on non-overlapping subsets of a data set are often highly similar [\(Kadkhodaie et al.,](#page-10-2) [2024\)](#page-10-2). These facts are due to noisy score estimates contributing to sample generation through the PF-ODE, which effectively 'averages' over estimator noise. Our theory is consistent with these observations: even the interleaved training-sampling procedure discussed in Sec. [4](#page-4-1) produces a wellbehaved, smooth distribution.

363 364 365 366 367 368 369 370 DSM produces a boundary-smearing inductive bias. This has been previously pointed out by authors like [Xu et al.](#page-11-8) [\(2023\)](#page-11-8). Where we differ from previous authors is in considering this issue a potential strength. Integrating the PF-ODE using the true score reproduces training examples, so it is in some sense beneficial to 'mislearn' the score. This particular kind of mislearning is useful for several ways of generalizing point clouds, including interpolation, extrapolation, and feature blending. Moreover, producing this inductive bias is an interesting way diffusion models differ from something like kernel density estimation: boundary regions *across different noise scales* are smeared out, with different scales linked via PF-ODE dynamics, which may provide better generalization than convolving the training distribution with any single kernel.

371

372 373 374 375 376 377 Architecture-related inductive biases play a role. As we showed in Sec. [5,](#page-4-3) feature/architecturerelated inductive biases interact with DSM's boundary-smearing bias in order to determine how diffusion models generalize. This appears to be consistent, for example, with the [Kadkhodaie et al.](#page-10-2) [\(2024\)](#page-10-2) finding that diffusion models effectively exhibit 'adaptive geometric harmonic priors'; their finding is specifically in the context of score estimation using a convolutional neural network (CNN) architecture. It is plausible that this choice encourages a harmonic inductive bias, since CNNs more generally exhibit inductive biases related to spatial translation invariance.

 Generalization through variance harmful and helpful. It is important to note that this kind of generalization is not always helpful. A trivial example is that unconditional models trained on MNIST digit images tend to learn to produce non-digits as output in the absence of label information (see, e.g., [Bortoli et al.](#page-8-8) [\(2021\)](#page-8-8)). More generally, blending modes may or may not be desirable, since it can produce (e.g.) images very qualitatively different from those of the training distribution.

 Other forms of generalization are possible. Factors we did not study, like learning dynamics, most likely also partly determine how diffusion models generalize. For example, the use of stochastic gradient descent introduces additional randomness that disfavors converging on sharp local optima [\(Smith & Le, 2018;](#page-10-8) [Smith et al., 2020\)](#page-10-9). It would be interesting to utilize recent theoretical tools [\(Bordelon & Pehlevan, 2023\)](#page-8-3) to characterize how learning dynamics impacts generalization, especially in the rich [\(Geiger et al., 2020;](#page-9-9) [Woodworth et al., 2020\)](#page-11-9) rather than lazy learning regime.

 Comment on memorization. Determining whether diffusion models memorize data [\(Somepalli](#page-11-3) [et al., 2023a;](#page-11-3) [Carlini et al., 2023\)](#page-8-0), and if so how to address the issue [\(Vyas et al., 2023\)](#page-11-10), has become a significant technical and societal issue. Our theory suggests that since generalization through variance happens primarily in boundary regions, diffusion models are unlikely to substantially generalize outliers. Since conditional models involve distributions of much higher effective dimension, one may expect that more training examples are 'outlier-like', and hence memorization should happen more often; this is consistent with the observations of [Somepalli et al.](#page-11-5) [\(2023b\)](#page-11-5). Our theory also suggests why duplications increase memorization: the existence of a strong boundary between modes, which requires modes to have comparable probability mass, is degraded.

 Limitations of theoretical approach. Our theory is simplified in at least two ways. First, only a simple formulation of training (via DSM) and sampling (via the PF-ODE) from diffusion models is considered. There exist alternatives to DSM, like sliced score matching [\(Song et al., 2020\)](#page-11-11), and alternative ways of sampling, including using auxiliary momentum-like variables [\(Dockhorn et al.,](#page-9-10) [2022b\)](#page-9-10). Also, our theoretical analysis neglects variation due to numerical integration schemes, even though these may matter in practice [\(Liu et al., 2022;](#page-10-10) [Karras et al., 2022;](#page-10-1) [Dockhorn et al., 2022a\)](#page-9-11).

 Second, we study only unconditional models for simplicity. This means that in particular do not consider diffusion coupled to attention layers, which enables the text-conditioning behind many of the most striking diffusion-model-related successes [\(Rombach et al., 2022;](#page-10-11) [Blattmann et al., 2023\)](#page-8-9).

 Finally, we do not consider realistic architectures (like U-nets) and rich learning dynamics due to theoretical tractability. However, these challenges are not unique to the current setting. Despite our contribution's simplicity, we hope that it nonetheless provides a foundation for others to more rigorously understand the inductive biases and generalization capabilities of diffusion models.

-
-
-
-
-
-
-
-
-
-
-

432 433 REFERENCES

- **434 435 436 437 438 439** Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact computation with an infinitely wide neural net. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL [https://proceedings.neurips.cc/paper_files/paper/2019/](https://proceedings.neurips.cc/paper_files/paper/2019/file/dbc4d84bfcfe2284ba11beffb853a8c4-Paper.pdf) [file/dbc4d84bfcfe2284ba11beffb853a8c4-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2019/file/dbc4d84bfcfe2284ba11beffb853a8c4-Paper.pdf).
- **440 441 442 443 444** Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alche-Buc, E. Fox, and R. Garnett (eds.), ´ *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL [https://proceedings.neurips.cc/paper_files/paper/2019/](https://proceedings.neurips.cc/paper_files/paper/2019/file/c4ef9c39b300931b69a36fb3dbb8d60e-Paper.pdf) [file/c4ef9c39b300931b69a36fb3dbb8d60e-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2019/file/c4ef9c39b300931b69a36fb3dbb8d60e-Paper.pdf).
- **445 446 447 448** Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 22563–22575, June 2023.
- **449 450 451 452 453 454 455** Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution in wide neural networks. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 32240–32256. Curran Associates, Inc., 2022. URL [https://proceedings.neurips.cc/paper_files/paper/2022/file/](https://proceedings.neurips.cc/paper_files/paper/2022/file/d027a5c93d484a4312cc486d399c62c1-Paper-Conference.pdf) [d027a5c93d484a4312cc486d399c62c1-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2022/file/d027a5c93d484a4312cc486d399c62c1-Paper-Conference.pdf).
- **456 457 458 459** Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution in wide neural networks*. *Journal of Statistical Mechanics: Theory and Experiment*, 2023(11): 114009, nov 2023. doi: 10.1088/1742-5468/ad01b0. URL [https://dx.doi.org/10.](https://dx.doi.org/10.1088/1742-5468/ad01b0) [1088/1742-5468/ad01b0](https://dx.doi.org/10.1088/1742-5468/ad01b0).
- **460 461 462 463 464** Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning curves in kernel regression and wide neural networks. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 1024–1034. PMLR, 13–18 Jul 2020. URL [https:](https://proceedings.mlr.press/v119/bordelon20a.html) [//proceedings.mlr.press/v119/bordelon20a.html](https://proceedings.mlr.press/v119/bordelon20a.html).
	- Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL [https:](https://openreview.net/forum?id=MhK5aXo3gB) [//openreview.net/forum?id=MhK5aXo3gB](https://openreview.net/forum?id=MhK5aXo3gB). Expert Certification.
- **469 470 471 472** Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrodinger ¨ bridge with applications to score-based generative modeling. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=9BnCwiXB0ty>.
- **473 474 475 476** Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks. *Nature Communications*, 12(1):2914, May 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-23103-1. URL <https://doi.org/10.1038/s41467-021-23103-1>.
- **477 478 479 480 481 482** Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja ` Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In *32nd USENIX Security Symposium (USENIX Security 23)*, pp. 5253–5270, Anaheim, CA, August 2023. USENIX Association. ISBN 978-1-939133-37-3. URL [https://www.usenix.org/](https://www.usenix.org/conference/usenixsecurity23/presentation/carlini) [conference/usenixsecurity23/presentation/carlini](https://www.usenix.org/conference/usenixsecurity23/presentation/carlini).
- **483 484 485** Chen-Hao Chao, Wei-Fang Sun, Bo-Wun Cheng, Yi-Chen Lo, Chia-Che Chang, Yu-Lun Liu, Yu-Lin Chang, Chia-Ping Chen, and Chun-Yi Lee. Denoising likelihood score matching for conditional score-based data generation. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=LcF-EEt8cCC>.
- **486 487 488 489 490 491** Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and distribution recovery of diffusion models on low-dimensional data. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 4672–4712. PMLR, 23–29 Jul 2023a. URL <https://proceedings.mlr.press/v202/chen23o.html>.
- **492 493 494 495 496 497** Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probability flow ode is provably fast. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 68552–68575. Curran Associates, Inc., 2023b. URL [https://proceedings.neurips.cc/paper_files/paper/2023/file/](https://proceedings.neurips.cc/paper_files/paper/2023/file/d84a27ff694345aacc21c72097a69ea2-Paper-Conference.pdf) [d84a27ff694345aacc21c72097a69ea2-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2023/file/d84a27ff694345aacc21c72097a69ea2-Paper-Conference.pdf).
- **498 499 500 501 502** Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru Zhang. Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions. In *The Eleventh International Conference on Learning Representations*, 2023c. URL [https://openreview.](https://openreview.net/forum?id=zyLVMgsZ0U_) [net/forum?id=zyLVMgsZ0U_](https://openreview.net/forum?id=zyLVMgsZ0U_).
- **503 504 505 506 507** Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alche-Buc, E. Fox, and ´ R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL [https://proceedings.neurips.cc/paper_files/](https://proceedings.neurips.cc/paper_files/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf) [paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf).
- **508 509 510** A. Crisanti and H. Sompolinsky. Path integral approach to random neural networks. *Phys. Rev. E*, 98:062120, Dec 2018. doi: 10.1103/PhysRevE.98.062120. URL [https://link.aps.org/](https://link.aps.org/doi/10.1103/PhysRevE.98.062120) [doi/10.1103/PhysRevE.98.062120](https://link.aps.org/doi/10.1103/PhysRevE.98.062120).
- **511 512 513 514 515 516 517** Salman Ul Hassan Dar, Arman Ghanaat, Jannik Kahmann, Isabelle Ayx, Theano Papavassiliu, Stefan O. Schoenberg, and Sandy Engelhardt. Investigating data memorization in 3d latent diffusion models for medical image synthesis. In *Deep Generative Models: Third MICCAI Workshop, DGM4MICCAI 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings*, pp. 56–65, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN 978- 3-031-53766-0. doi: 10.1007/978-3-031-53767-7 6. URL [https://doi.org/10.1007/](https://doi.org/10.1007/978-3-031-53767-7_6) [978-3-031-53767-7_6](https://doi.org/10.1007/978-3-031-53767-7_6).
- **518 519 520 521** Tim Dockhorn, Arash Vahdat, and Karsten Kreis. GENIE: Higher-order denoising diffusion solvers. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022a. URL [https://openreview.net/forum?](https://openreview.net/forum?id=LKEYuYNOqx) [id=LKEYuYNOqx](https://openreview.net/forum?id=LKEYuYNOqx).

- **523 524 525** Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with criticallydamped langevin diffusion. In *International Conference on Learning Representations*, 2022b. URL <https://openreview.net/forum?id=CzceR82CYc>.
	- Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and lazy training in deep neural networks. *Journal of Statistical Mechanics: Theory and Experiment*, 2020 (11):113301, nov 2020. doi: 10.1088/1742-5468/abc4de. URL [https://dx.doi.org/10.](https://dx.doi.org/10.1088/1742-5468/abc4de) [1088/1742-5468/abc4de](https://dx.doi.org/10.1088/1742-5468/abc4de).
- **530 531 532** Yinbin Han, Meisam Razaviyayn, and Renyuan Xu. Neural network-based score estimation in diffusion models: Optimization and generalization. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=h8GeqOxtd4>.
- **533 534 535** Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.
- **536 537 538 539** Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018. URL [https://proceedings.neurips.cc/paper_](https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf) [files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf).

562

- **545 546 547 548** Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=k7FuTOWMOc7>.
- **549 550 551** Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing and improving the training dynamics of diffusion models, 2024.
- **552 553** Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on manifolds. *arXiv preprint arXiv:2202.09778*, 2022.
- **555 556 557 558** Lorenzo Luzi, Paul M Mayer, Josue Casco-Rodriguez, Ali Siahkoohi, and Richard Baraniuk. Boomerang: Local sampling on image manifolds using diffusion models. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL [https://openreview.net/](https://openreview.net/forum?id=NYdThkjNW1) [forum?id=NYdThkjNW1](https://openreview.net/forum?id=NYdThkjNW1).
- **559 560 561** P. C. Martin, E. D. Siggia, and H. A. Rose. Statistical dynamics of classical systems. *Phys. Rev. A*, 8:423–437, Jul 1973. doi: 10.1103/PhysRevA.8.423. URL [https://link.aps.org/doi/](https://link.aps.org/doi/10.1103/PhysRevA.8.423) [10.1103/PhysRevA.8.423](https://link.aps.org/doi/10.1103/PhysRevA.8.423).
- **563 564 565 566 567 568** Francesca Mignacco, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborová. Dynamical mean-field theory for stochastic gradient descent in gaussian mixture classification. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 9540–9550. Curran Associates, Inc., 2020. URL [https://proceedings.neurips.cc/paper_files/paper/2020/](https://proceedings.neurips.cc/paper_files/paper/2020/file/6c81c83c4bd0b58850495f603ab45a93-Paper.pdf) [file/6c81c83c4bd0b58850495f603ab45a93-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/6c81c83c4bd0b58850495f603ab45a93-Paper.pdf).
- **569 570 571 572 573** Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 5301–5310. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/rahaman19a.html>.
	- Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. Highresolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022.
- **578 579 580** Haozhe Shan and Blake Bordelon. A theory of neural tangent kernel alignment and its influence on training, 2022.
- **581 582 583 584 585** Samuel Smith, Erich Elsen, and Soham De. On the generalization benefit of noise in stochastic gradient descent. In Hal Daume III and Aarti Singh (eds.), ´ *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 9058–9067. PMLR, 13–18 Jul 2020. URL [https://proceedings.mlr.press/v119/](https://proceedings.mlr.press/v119/smith20a.html) [smith20a.html](https://proceedings.mlr.press/v119/smith20a.html).
- **588 589** Samuel L. Smith and Quoc V. Le. A bayesian perspective on generalization and stochastic gradient descent. In *International Conference on Learning Representations*, 2018. URL [https://](https://openreview.net/forum?id=BJij4yg0Z) openreview.net/forum?id=BJij4yg0Z.
- **590 591 592 593** Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), *Proceedings of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL <https://proceedings.mlr.press/v37/sohl-dickstein15.html>.

- **594 595 596 597** Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion art or digital forgery? investigating data replication in diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6048–6058, June 2023a.
- **598 599 600 601 602** Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Understanding and mitigating copying in diffusion models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023b. URL [https://openreview.net/forum?id=](https://openreview.net/forum?id=HtMXRGbUMt) [HtMXRGbUMt](https://openreview.net/forum?id=HtMXRGbUMt).
- **603 604 605 606 607** Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alche-Buc, E. Fox, and R. Gar- ´ nett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL [https://proceedings.neurips.cc/paper/2019/file/](https://proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf) [3001ef257407d5a371a96dcd947c7d93-Paper.pdf](https://proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf).
- **608 609 610 611 612** Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach to density and score estimation. In Ryan P. Adams and Vibhav Gogate (eds.), *Proceedings of The 35th Uncertainty in Artificial Intelligence Conference*, volume 115 of *Proceedings of Machine Learning Research*, pp. 574–584. PMLR, 22–25 Jul 2020. URL [https://proceedings.](https://proceedings.mlr.press/v115/song20a.html) [mlr.press/v115/song20a.html](https://proceedings.mlr.press/v115/song20a.html).
- **613 614 615 616 617** Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations*, 2021. URL [https://openreview.net/](https://openreview.net/forum?id=PxTIG12RRHS) [forum?id=PxTIG12RRHS](https://openreview.net/forum?id=PxTIG12RRHS).
- **618 619 620 621 622** George Stein, Jesse C. Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Leigh Ross, Valentin Villecroze, Zhaoyan Liu, Anthony L. Caterini, Eric Taylor, and Gabriel Loaiza-Ganem. Exposing flaws of generative model evaluation metrics and their unfair treatment of diffusion models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=08zf7kTOoh>.
- **623 624** Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural Computation*, 23(7):1661-1674, 2011. doi: 10.1162/NECO_{-a-0}0142.
- **626 627 628 629 630 631** Nikhil Vyas, Sham M. Kakade, and Boaz Barak. On provable copyright protection for generative models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning Research*, pp. 35277–35299. PMLR, 2023. URL [https://proceedings.mlr.press/](https://proceedings.mlr.press/v202/vyas23b.html) [v202/vyas23b.html](https://proceedings.mlr.press/v202/vyas23b.html).
- **632 633 634 635 636** Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay Golan, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In Jacob Abernethy and Shivani Agarwal (eds.), *Proceedings of Thirty Third Conference on Learning Theory*, volume 125 of *Proceedings of Machine Learning Research*, pp. 3635–3673. PMLR, 09–12 Jul 2020. URL <https://proceedings.mlr.press/v125/woodworth20a.html>.
- **637 638 639** Yilun Xu, Shangyuan Tong, and Tommi S. Jaakkola. Stable target field for reduced variance score estimation in diffusion models. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=WmIwYTd0YTF>.
- **640 641 642 643 644** Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and applications. *ACM Comput. Surv.*, 56(4), nov 2023. ISSN 0360-0300. doi: 10.1145/3626235. URL <https://doi.org/10.1145/3626235>.
- **645 646 647** TaeHo Yoon, Joo Young Choi, Sehyun Kwon, and Ernest K. Ryu. Diffusion probabilistic models generalize when they fail to memorize. In *ICML 2023 Workshop on Structured Probabilistic Inference & Generative Modeling*, 2023. URL [https://openreview.net/forum?id=](https://openreview.net/forum?id=shciCbSk9h) [shciCbSk9h](https://openreview.net/forum?id=shciCbSk9h).

 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning requires rethinking generalization. In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=Sy8gdB9xx>. Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Peng Wang, Liyue Shen, and Qing Qu. The emergence of reproducibility and consistency in diffusion models. In *Forty-first International Conference on Machine Learning*, 2024. URL [https://openreview.net/forum?id=](https://openreview.net/forum?id=HsliOqZkc0) [HsliOqZkc0](https://openreview.net/forum?id=HsliOqZkc0).

702 703 A OPTIMIZING OBJECTIVE REPRODUCES TRAINING DISTRIBUTION

In this appendix, we characterize the optima of the naive and DSM objectives introduced in Sec. [2,](#page-1-1) and in particular show that one (naively) theoretically expects diffusion models to reproduce the training distribution in the absence of expressivity-related constraints.

A.1 DENOISING SCORE MATCHING PRESERVES OPTIMA OF NAIVE OBJECTIVE

First, we reestablish the well-known fact that the optima of the naive objective

$$
J_0(\boldsymbol{\theta}) := \frac{1}{2} \mathbb{E}_{t,\boldsymbol{x}} \left\{ \lambda_t \| \hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x},t) - \boldsymbol{s}(\boldsymbol{x},t) \|_2^2 \right\} = \int \frac{\lambda_t}{2} \| \hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x},t) - \boldsymbol{s}(\boldsymbol{x},t) \|_2^2 \ p(\boldsymbol{x}|t) p(t) \ d\boldsymbol{x} dt \tag{18}
$$

and DSM objective

722

725 726

$$
J_1(\boldsymbol{\theta}) := \frac{1}{2} \mathbb{E}_{t, \boldsymbol{x}_0, \boldsymbol{x}} \left\{ \lambda_t \| \hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x}, t) - \tilde{\boldsymbol{s}}(\boldsymbol{x}, t; \boldsymbol{x}_0) \|_2^2 \right\}
$$

=
$$
\int \frac{\lambda_t}{2} \| \hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x}, t) - \tilde{\boldsymbol{s}}(\boldsymbol{x}, t; \boldsymbol{x}_0) \|_2^2 p(\boldsymbol{x} | \boldsymbol{x}_0, t) p_{data}(\boldsymbol{x}_0) p(t) d\boldsymbol{x} d\boldsymbol{x}_0 dt
$$
 (19)

719 720 721 are the same [\(Vincent, 2011;](#page-11-2) [Song & Ermon, 2019;](#page-11-0) [Song et al., 2021\)](#page-11-7). Assume that $x, x_0 \in \mathbb{R}^D$ and that $\boldsymbol{\theta} \in \mathbb{R}^F$. The gradient of J_0 with respect to $\boldsymbol{\theta}$ is

$$
\frac{\partial J_0}{\partial \theta} = \int \lambda_t \frac{\partial \hat{s}_{\theta}(x, t)^T}{\partial \theta} \left[\hat{s}_{\theta}(x, t) - s(x, t) \right] \, p(x|t) p(t) \, dx dt \tag{20}
$$

723 724 where $\partial \hat{s}_{\theta}(x, t)/\partial \theta$ is the $D \times F$ Jacobian matrix of the score estimator. The gradient of J_1 is

$$
\frac{\partial J_1}{\partial \theta} = \int \lambda_t \frac{\partial \hat{s}_{\theta}(x,t)^T}{\partial \theta} \left[\hat{s}_{\theta}(x,t) - \tilde{s}(x,t;x_0) \right] p(x|x_0,t) p_{data}(x_0) p(t) dx dx_0 dt. \tag{21}
$$

727 728 At this point, we make two observations about the gradient of J_1 . First, the term on the left does not depend on x_0 , so we can marginalize over x_0 . Explicitly,

$$
\int \lambda_t \frac{\partial \hat{s}_{\theta}(x,t)^T}{\partial \theta} \hat{s}_{\theta}(x,t) p(x|x_0,t) p_{data}(x_0) p(t) dx dx_0 dt = \int \lambda_t \frac{\partial \hat{s}_{\theta}(x,t)^T}{\partial \theta} \hat{s}_{\theta}(x,t) p(x|t) p(t) dx dt.
$$

Second the term on the right only depends on x_0 , through the proxy score target. Moreover

Second, the term on the right only depends on x_0 through the proxy score target. Moreover,

$$
\int \tilde{s}(\boldsymbol{x},t;\boldsymbol{x}_{0}) p(\boldsymbol{x}|\boldsymbol{x}_{0},t) p_{data}(\boldsymbol{x}_{0}) d\boldsymbol{x}_{0} = \int \nabla_{\boldsymbol{x}} \log p(\boldsymbol{x}|\boldsymbol{x}_{0},t) p(\boldsymbol{x}|\boldsymbol{x}_{0},t) p_{data}(\boldsymbol{x}_{0}) d\boldsymbol{x}_{0}
$$
\n
$$
= \int \nabla_{\boldsymbol{x}} p(\boldsymbol{x}|\boldsymbol{x}_{0},t) p_{data}(\boldsymbol{x}_{0}) d\boldsymbol{x}_{0}
$$
\n
$$
= \nabla_{\boldsymbol{x}} \int p(\boldsymbol{x}|\boldsymbol{x}_{0},t) p_{data}(\boldsymbol{x}_{0}) d\boldsymbol{x}_{0}
$$
\n
$$
= \nabla_{\boldsymbol{x}} p(\boldsymbol{x}|t)
$$
\n
$$
= s(\boldsymbol{x},t) p(\boldsymbol{x}|t).
$$
\n(22)

741 742 743 Hence, the gradient of J_0 is the same as the gradient of J_1 , so they have the same optima. If the score approximator is arbitrarily expressive and smooth in its parameters, we in particular have that the true score (a global minimum of J_0) is an optimum of the DSM objective.

744 This optimum is *also* the global minimum of J_1 . Note that J_1 can be written as

$$
\begin{aligned}\n\mathbb{E}_{t,x_0,x} & \left\{ \frac{\lambda_t}{2} \|\hat{\mathbf{s}}_{\theta}(\mathbf{x},t) - \mathbf{s}(\mathbf{x},t) + \mathbf{s}(\mathbf{x},t) - \tilde{\mathbf{s}}(\mathbf{x},t;\mathbf{x}_0)\|_2^2 \right\} \\
&= \mathbb{E}_{t,x_0,x} \left\{ \frac{\lambda_t}{2} \left(\|\hat{\mathbf{s}}_{\theta}(\mathbf{x},t) - \mathbf{s}(\mathbf{x},t)\|_2^2 + 2[\hat{\mathbf{s}}_{\theta}(\mathbf{x},t) - \mathbf{s}(\mathbf{x},t)] \cdot [\mathbf{s}(\mathbf{x},t) - \tilde{\mathbf{s}}(\mathbf{x},t;\mathbf{x}_0)] + \|\mathbf{s}(\mathbf{x},t) - \tilde{\mathbf{s}}(\mathbf{x},t;\mathbf{x}_0)\|_2^2 \right) \right\} \\
\text{The first term is precisely equal to } J_0. \text{ The second term vanishes, since (as shown by Eq. 22)\n\end{aligned}
$$

The first term is precisely equal to J_0 . The second term vanishes, since (as shown by Eq. [22\)](#page-13-1)

$$
\mathbb{E}_{\boldsymbol{x}_0|\boldsymbol{x},t}[\tilde{s}(\boldsymbol{x},t;\boldsymbol{x}_0)] = s(\boldsymbol{x},t).
$$
 (23)

.

752 Hence, we have that

$$
\tfrac{753}{754}
$$

751

$$
J_1 = J_0 + \frac{1}{2} \mathbb{E}_{t,\boldsymbol{x}} \left\{ \lambda_t \text{ tr}(\text{Cov}_{\boldsymbol{x}_0|\boldsymbol{x},t}(\tilde{\boldsymbol{s}})) \right\} \,. \tag{24}
$$

755 In words: J_1 is equal to J_0 up to a $\boldsymbol{\theta}$ -independent term that is a weighted combination of proxy score variances.

756 757 A.2 TRAINING DISTRIBUTION REPRODUCTION

In practice, the training set consists of $1 \leq M < \infty$ examples (e.g., images) which together define

$$
p_{data}(\boldsymbol{x}_0) = \frac{1}{M} \sum_{m=1}^{M} \delta(\boldsymbol{x}_0 - \boldsymbol{\mu}_m).
$$
 (25)

The corresponding 'corrupted' distribution, given our choice of forward process (see Sec. [2\)](#page-1-1), is

$$
p(\boldsymbol{x}|t) = \frac{1}{M} \sum_{m=1}^{M} \mathcal{N}(\boldsymbol{x}; \alpha_t \boldsymbol{\mu}_m, \boldsymbol{S}_t).
$$
 (26)

.

767 768 769 770 Usually, model updates utilize batches of samples from $p(x, x_0, t)$ [\(Song et al., 2021;](#page-11-7) [Karras et al.,](#page-10-1) [2022\)](#page-10-1). As training proceeds, the model sees an ever larger number P of samples from this distribution, making the empirical objective

$$
J_1(\boldsymbol{\theta}; P) := \frac{1}{P} \sum_{n=1}^P \frac{\lambda(t^{(n)})}{2} \|\hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x}^{(n)}, t^{(n)}) - \tilde{\boldsymbol{s}}(\boldsymbol{x}^{(n)}, t^{(n)}; \boldsymbol{x}_0^{(n)})\|_2^2 ,
$$
 (27)

774 775 777 where the *n* superscripts index different (independent) samples from $p(x, x_0, t)$ = $p(x|x_0, t)p_{data}(x_0)p(t)$. For P sufficiently large, by the central limit theorem, we expect the empirical objective to be extremely close to the true objective, and hence share its global minimum. But the global minimum is the true score, i.e.,

$$
\boldsymbol{s}(\boldsymbol{x},t) = \sum_{m=1}^{M} \boldsymbol{S}_t^{-1} (\alpha_t \boldsymbol{\mu}_m - \boldsymbol{x}) \frac{\mathcal{N}(\boldsymbol{x}; \alpha_t \boldsymbol{\mu}_m, \boldsymbol{S}_t)}{\sum_{m'} \mathcal{N}(\boldsymbol{x}; \alpha_t \boldsymbol{\mu}_{m'}, \boldsymbol{S}_t)}
$$

Since integrating the PF-ODE using this score produces samples from $p_{data}(x_0)$ —as $t \rightarrow 0$, $S_t \rightarrow 0_D$, so the asymptotic 'force' pushing x_t towards an example becomes infinitely strong—we expect expressive diffusion models trained on the DSM objective using a large number of samples to reproduce training examples.

784 785

771 772 773

776

786 787

788 789

790

791 792

793 794

795 796

797

798

799 800

801

802

803 804

805

806

807

810 811 B COVARIANCE OF PROXY SCORE

In this appendix, we compute the covariance of the proxy score $\tilde{s}(x, t; x_0) := \nabla_x \log p(x|x_0, t)$ with respect to $p(x_0|x, t)$. We also show how this covariance is connected to Fisher information, and explicitly compute it in the case that $p_{data}(x_0)$ is an isotropic Gaussian mixture.

B.1 COMPUTING COVARIANCE OF PROXY SCORE

818 Note that

819 820 821

$$
\frac{\partial^2}{\partial x_i \partial x_j} p(\boldsymbol{x}|\boldsymbol{x}_0, t) = \left[-S_{t, ij}^{-1} + \tilde{s}_i \tilde{s}_j \right] p(\boldsymbol{x}|\boldsymbol{x}_0, t).
$$
\n(28)

Using this fact, we can write

$$
\begin{split}\n\text{Cov}_{\mathbf{x}_{0}|\mathbf{x},t}(\tilde{s}_{i},\tilde{s}_{j}) &= \int \tilde{s}_{i}\tilde{s}_{j} \ \frac{p(\mathbf{x}|\mathbf{x}_{0},t)p_{data}(\mathbf{x}_{0})}{p(\mathbf{x}|t)} \ d\mathbf{x}_{0} - s_{i}s_{j} \\
&= \int \frac{1}{p(\mathbf{x}|t)} \left[S_{t,ij}^{-1} + \frac{\partial^{2}}{\partial x_{i}\partial x_{j}} \right] \ p(\mathbf{x}|\mathbf{x}_{0},t)p_{data}(\mathbf{x}_{0}) \ d\mathbf{x}_{0} - s_{i}s_{j} \\
&= \int \frac{1}{p(\mathbf{x}|t)} \left[S_{t,ij}^{-1} + \frac{\partial^{2}}{\partial x_{i}\partial x_{j}} \right] p(\mathbf{x}|t) \ \frac{p(\mathbf{x}|\mathbf{x}_{0},t)p_{data}(\mathbf{x}_{0})}{p(\mathbf{x}|t)} \ d\mathbf{x}_{0} - s_{i}s_{j} \tag{29} \\
&= S_{t,ij}^{-1} + \frac{1}{p(\mathbf{x}|t)} \frac{\partial^{2} p(\mathbf{x}|t)}{\partial x_{i}\partial x_{j}} - s_{i}s_{j} \\
&= S_{t,ij}^{-1} + \frac{\partial^{2}}{\partial x_{i}\partial x_{j}} \log p(\mathbf{x}|t) \ .\n\end{split}
$$

B.2 CONNECTION TO FISHER INFORMATION

By definition, if $p(x_0|x, t)$ is viewed as a distribution with parameter vector x, and t is viewed as a hyperparameter, the Fisher information \mathcal{I}_F is defined as

$$
\mathcal{I}_F(\boldsymbol{x}|t) := \int \frac{\partial \log p(\boldsymbol{x}_0|\boldsymbol{x},t)}{\partial x_i} \cdot \frac{\partial \log p(\boldsymbol{x}_0|\boldsymbol{x},t)}{\partial x_j} p(\boldsymbol{x}_0|\boldsymbol{x},t) d\boldsymbol{x}_0 \n= \int \left[\frac{\partial \log p(\boldsymbol{x}|\boldsymbol{x}_0,t)}{\partial x_i} - \frac{\partial \log p(\boldsymbol{x}|t)}{\partial x_i} \right] \left[\frac{\partial \log p(\boldsymbol{x}|\boldsymbol{x}_0,t)}{\partial x_j} - \frac{\partial \log p(\boldsymbol{x}|t)}{\partial x_j} \right] p(\boldsymbol{x}_0|\boldsymbol{x},t) d\boldsymbol{x}_0 \n= \int [\tilde{s}_i - s_i] [\tilde{s}_j - s_j] p(\boldsymbol{x}_0|\boldsymbol{x},t) d\boldsymbol{x}_0 \n= \text{Cov}_{\boldsymbol{x}_0|\boldsymbol{x},t} (\tilde{s}_i, \tilde{s}_j).
$$
\n(30)

847 848 849

B.3 EXPLICIT COVARIANCE FOR ISOTROPIC GAUSSIAN MIXTURE TRAINING DISTRIBUTION

Suppose that $p(x_0)$ and $p(x|t)$ are

$$
p_{data}(\boldsymbol{x}_0) = \frac{1}{M} \sum_{m} \mathcal{N}(\boldsymbol{x}_0; \boldsymbol{\mu}_m, \sigma_0^2 \boldsymbol{I})
$$
\n
$$
p(\boldsymbol{x}|t) = \frac{1}{M} \sum_{m} \mathcal{N}(\boldsymbol{x}; \alpha_t \boldsymbol{\mu}_m, \alpha_t^2 \sigma_0^2 \boldsymbol{I} + \boldsymbol{S}_t).
$$
\n(31)

Note that the delta mixture case is an example ($\sigma_0^2 = 0$). Define the softmax distribution

$$
p(m|\boldsymbol{x},t) := \frac{\mathcal{N}(\boldsymbol{x}; \alpha_t \boldsymbol{\mu}_m, \alpha_t^2 \sigma_0^2 \boldsymbol{I} + \boldsymbol{S}_t)}{\sum_{m'} \mathcal{N}(\boldsymbol{x}; \alpha_t \boldsymbol{\mu}_{m'}, \alpha_t^2 \sigma_0^2 \boldsymbol{I} + \boldsymbol{S}_t)}
$$
(32)

on $\mathcal{M} = \{1, ..., M\}$. The first and second derivatives of $p(x|t)$ can be written in terms of expectations with respect to this distribution, since

$$
\frac{1}{p(\boldsymbol{x}|t)}\frac{\partial p(\boldsymbol{x}|t)}{\partial \boldsymbol{x}} = \sum_{m} (\alpha_t^2 \sigma_0^2 \boldsymbol{I} + \boldsymbol{S}_t)^{-1} (\alpha_t \boldsymbol{\mu}_m - \boldsymbol{x}) p(m|\boldsymbol{x}, t) = (\alpha_t^2 \sigma_0^2 \boldsymbol{I} + \boldsymbol{S}_t)^{-1} (\alpha_t \langle \boldsymbol{\mu} \rangle_{\mathcal{M}} - \boldsymbol{x})
$$

 and the Hessian matrix $(H_{ij} := \partial_{ij}^2 p(\boldsymbol{x}|t))$ is H $\frac{\boldsymbol{\Pi}}{p(\boldsymbol{x}|t)} = \sum_{\boldsymbol{x}}$ m $\left[-(\alpha_t^2 \sigma_0^2 \boldsymbol{I} + \boldsymbol{S}_t)^{-1} + (\alpha_t^2 \sigma_0^2 \boldsymbol{I} + \boldsymbol{S}_t)^{-1} (\alpha_t \boldsymbol{\mu}_m - \boldsymbol{x}) (\alpha_t \boldsymbol{\mu}_m - \boldsymbol{x})^T (\alpha_t^2 \sigma_0^2 \boldsymbol{I} + \boldsymbol{S}_t)^{-1}\right] p(m|\boldsymbol{x},t)$ $=-(\alpha_{t}^{2}\sigma_{0}^{2} \boldsymbol{I}+\boldsymbol{S}_{t})^{-1}+(\alpha_{t}^{2}\sigma_{0}^{2} \boldsymbol{I}+\boldsymbol{S}_{t})^{-1}\mathbb{E}_{\mathcal{M}}\left\{ (\alpha_{t}\boldsymbol{\mu}-\boldsymbol{x})(\alpha_{t}\boldsymbol{\mu}-\boldsymbol{x})^{T}\right\} (\alpha_{t}^{2}\sigma_{0}^{2} \boldsymbol{I}+\boldsymbol{S}_{t})^{-1}$ $\hspace{-.5cm}=-(\alpha_t^2\sigma_0^2\boldsymbol{I}+\boldsymbol{S}_t)^{-1}+(\alpha_t^2\sigma_0^2\boldsymbol{I}+\boldsymbol{S}_t)^{-1}\left[\alpha_t^2\text{Cov}_{\mathcal{M}}(\boldsymbol{\mu})+(\alpha_t\langle \boldsymbol{\mu}\rangle_{\mathcal{M}}-\boldsymbol{x}) (\alpha_t\langle \boldsymbol{\mu}\rangle_{\mathcal{M}}-\boldsymbol{x})^T\right](\alpha_t^2\sigma_0^2\boldsymbol{I}+\boldsymbol{S}_t)^{-1}~.$ Then we have $\partial^2 \log p(\boldsymbol{x}|t)$ $\frac{\log p(\bm{x}|\iota)}{\partial x_i \partial x_j} = -(\alpha_t^2 \sigma_0^2 \bm{I} + \bm{S}_t)^{-1} + \alpha_t^2 (\alpha_t^2 \sigma_0^2 \bm{I} + \bm{S}_t)^{-1} \text{Cov}_{\mathcal{M}}(\bm{\mu}) (\alpha_t^2 \sigma_0^2 \bm{I} + \bm{S}_t)^{-1}$ (33) and hence that $\text{Cov}_{\bm{x}_0|\bm{x},t}(\tilde{\bm{s}}) = \bm{S}_t^{-1} - (\alpha_t^2 \sigma_0^2 \bm{I} + \bm{S}_t)^{-1} + \alpha_t^2 (\alpha_t^2 \sigma_0^2 \bm{I} + \bm{S}_t)^{-1} \text{Cov}_{\mathcal{M}}(\bm{\mu}) (\alpha_t^2 \sigma_0^2 \bm{I} + \bm{S}_t)^{-1} \;.$ For a delta mixture training distribution, since $\sigma_0^2 = 0$, the covariance simplifies to $\text{Cov}_{\bm{x}_0|\bm{x},t}(\tilde{s}) = \alpha_t^2 \bm{S}_t^{-1} \text{ Cov}_{\mathcal{M}}(\bm{\mu}) \bm{S}_t^{-1}$ (34)

918 919 C PATH-INTEGRAL REPRESENTATION OF LEARNED DISTRIBUTION

920 922 924 In this appendix, we derive a path-integral description of the 'typical' distribution learned by diffusion models. We do this in three stages. First, we derive a path-integral description of the PF-ODE. Next, we derive a path-integral description of a more general kind of stochastic process. Finally, we show that averaging the path-integral representation of the PF-ODE over sample realizations produces a path integral whose dynamics correspond to those of the aforementioned stochastic process.

926 C.1 WARM-UP: DERIVING A PATH-INTEGRAL REPRESENTATION OF THE PF-ODE

A general ODE can be written as

921

923

925

927 928 929

934

$$
\dot{\boldsymbol{x}}_t = \boldsymbol{f}(\boldsymbol{x}_t, t) \tag{35}
$$

930 931 932 933 where $x_t \in \mathbb{R}^D$ and $t \in [0, T]$. We will assume that f is smooth to avoid technical issues. If we discretize time, and slightly abuse notation by using t and T to refer to integer-valued indices instead of real-valued times, we can write the trajectory as $\{x_T, x_{T-1}, ..., x_1, x_0\}$ and the corresponding updates in the form

$$
x_t = x_{t+1} - f(x_{t+1}, t+1) \Delta t \,. \tag{36}
$$

935 936 937 938 Note that our discretization corresponds to a first-order Euler update scheme. In the small Δt limit, this specific choice does not matter, even if it matters in practice; we use it to slightly simplify our argument. Conditional on the initial point x_T , the probability of reaching another point x_0 after T backwards-time steps is

$$
p(\boldsymbol{x}_0|\boldsymbol{x}_T) = \int \delta(\boldsymbol{x}_0 - \boldsymbol{x}_1 + \boldsymbol{f}(\boldsymbol{x}_1,1)\Delta t) \cdots \delta(\boldsymbol{x}_{T-1} - \boldsymbol{x}_T + \boldsymbol{f}(\boldsymbol{x}_T,T)\Delta t) \ d\boldsymbol{x}_1 \cdots d\boldsymbol{x}_{T-1}
$$
(37)

where δ is the Dirac delta function. Here, we will employ a well-known integral representation of the Dirac delta function:

$$
\delta(\boldsymbol{x} - \boldsymbol{x}') = \int \frac{d\boldsymbol{p}}{(2\pi)^D} \, \exp\left\{-i\boldsymbol{p} \cdot (\boldsymbol{x} - \boldsymbol{x}')\right\} \tag{38}
$$

where \boldsymbol{p} is integrated over all of \mathbb{R}^D . Our expression for $p(\boldsymbol{x}_0|\boldsymbol{x}_T)$ becomes

$$
p(\boldsymbol{x}_0|\boldsymbol{x}_T) = \int \frac{d\boldsymbol{p}_0}{(2\pi)^D} \frac{d\boldsymbol{x}_1 d\boldsymbol{p}_1}{(2\pi)^D} \cdots \frac{d\boldsymbol{x}_{T-1} d\boldsymbol{p}_{T-1}}{(2\pi)^D} \exp\left\{\sum_{t=0}^{T-1} -i \boldsymbol{p}_t \cdot [\boldsymbol{x}_t - \boldsymbol{x}_{t+1} + \boldsymbol{f}(\boldsymbol{x}_{t+1}, t+1) \Delta t] \right\}.
$$
\n(39)

Schematically, we can write this path integral as a 'sum over paths'

$$
p(\boldsymbol{x}_0|\boldsymbol{x}_T) = \int \mathcal{D}[\boldsymbol{p}_t] \mathcal{D}[\boldsymbol{x}_t] \, \exp\left\{\int_0^T -i\boldsymbol{p}_t \cdot [-\dot{\boldsymbol{x}}_t + \boldsymbol{f}(\boldsymbol{x}_t, t)] \, dt\right\} \,, \tag{40}
$$

although explicitly using this form is unnecessary for our purposes. (This is good, since remaining in discrete time allows us to avoid various thorny mathematical issues.) For the particular choice of f associated with the PF-ODE, we have discrete and schematic forms

$$
p(\boldsymbol{x}_0|\boldsymbol{x}_T) = \int \frac{d\boldsymbol{p}_0}{(2\pi)^D} \frac{d\boldsymbol{x}_1 d\boldsymbol{p}_1}{(2\pi)^D} \cdots \frac{d\boldsymbol{x}_{T-1} d\boldsymbol{p}_{T-1}}{(2\pi)^D} e^{\sum_{t=0}^{T-1} -i\boldsymbol{p}_t \cdot [\boldsymbol{x}_t - \boldsymbol{x}_{t+1} - (\beta_{t+1}\boldsymbol{x}_{t+1} + \boldsymbol{D}_{t+1}\boldsymbol{s}(\boldsymbol{x}_{t+1}, t+1))\Delta t]}
$$

$$
p(\boldsymbol{x}_0|\boldsymbol{x}_T) = \int \mathcal{D}[\boldsymbol{p}_t] \mathcal{D}[\boldsymbol{x}_t] \exp\left\{\int_0^T i\boldsymbol{p}_t \cdot [\dot{\boldsymbol{x}}_t + \beta_t \boldsymbol{x}_t + \boldsymbol{D}_t \boldsymbol{s}(\boldsymbol{x}_t, t)] \, dt\right\}.
$$

964 965 966

967

968

- **969**
- **970**

972 973 C.2 DERIVING A PATH-INTEGRAL REPRESENTATION OF A MORE GENERAL PROCESS

974 975 976 977 Consider a more general type of backwards, discrete-time stochastic process. Once again, suppose that a variable $x_t \in \mathbb{R}^D$ evolves backwards in time from an initial point x_T . But this time, suppose that the transition between x_{t+1} and x_t depends upon some set of K independent standard normal random variables $\{\xi_k\}$. In particular, suppose that discrete-time updates have the form

$$
x_{tj} = x_{t+1,j} - f_j(\mathbf{x}_{t+1}, t+1)\Delta t + \sum_{k=1}^{K} G_{jk}(\mathbf{x}_{t+1}, t+1) \xi_k \Delta t, \qquad (41)
$$

981 982 984 i.e., updates are the same as before except for the new noise term. In general, the noise term is quite complicated; G is a $D \times K$ matrix which can depend explicitly on both the current state and the current time. The process described by the above updates is generally not Markov, since noise added at different time steps can depend on some of the same ξ_k variables, and hence the amount of noise added at one time step can be correlated with the amount of noise added at some other time step.

What is the distribution of x_0 , the result of T steps of this process, conditional on a starting point x_T ? We know that each update depends only on the previous state and the noise variables, so

$$
p(\boldsymbol{x}_0|\boldsymbol{x}_T) = \int p(\boldsymbol{x}_0|\boldsymbol{x}_1,\{\xi_k\})p(\boldsymbol{x}_1|\boldsymbol{x}_2,\{\xi_k\})\cdots p(\boldsymbol{x}_{T-1}|\boldsymbol{x}_T,\{\xi_k\})p(\{\xi_k\})\,d\boldsymbol{x}_1\cdots d\boldsymbol{x}_{T-1}d\{\xi_k\}.
$$

In particular, conditional on the previous state and the noise variables, updates are deterministic. This allows us to write the above transition probability as

$$
\int \left[\prod_{j=1}^{D} \prod_{t=0}^{T-1} \delta \left(x_{t,j} - x_{t+1,j} + f_j(x_{t+1}, t+1) \Delta t + \sum_{k=1}^{K} G_{jk}(x_{t+1}, t+1) \xi_k \Delta t \right) \right] p(\{\xi_k\}) dx_1 \cdots dx_{T-1} d\{\xi_k\}.
$$

Using the same integral representation of the Dirac delta function that we used above, this becomes

$$
\int e^{\sum_{t,j} - ip_{t,j}\left[x_{t,j}-x_{t+1,j}+f_j(x_{t+1},t+1)\Delta t + \sum_{k=1}^K G_{jk}(x_{t+1},t+1)\xi_k\Delta t\right]} p(\{\xi_k\}) \frac{dp_0}{(2\pi)^D} \frac{dx_1dp_1}{(2\pi)^D} \cdots \frac{dx_{T-1}dp_{T-1}}{(2\pi)^{D}} d\{\xi_k\}.
$$

Although this appears to be extremely complicated, it can be considerably simplified by doing the integral over the noise variables. Since the noise variables are all independent and standard normal,

$$
p(\{\xi_k\}) = \frac{1}{(2\pi)^{k/2}} \exp\left\{-\frac{\xi_1^2}{2} - \dots - \frac{\xi_K^2}{2}\right\} \,. \tag{42}
$$

1003 1004 1005 1006 Hence, the integral over the noise variables is a typical Gaussian integral with a linear term. We can save time by recognizing the integral as essentially computing the characteristic function of a standard normal; more precisely, we have

$$
I_{k} = \int \exp\left\{-i\xi_{k} \sum_{t=0}^{T-1} \sum_{j=1}^{D} p_{t,j} G_{jk}(\boldsymbol{x}_{t+1}, t+1) \Delta t\right\} \frac{e^{-\xi_{k}^{2}/2}}{\sqrt{2\pi}} d\xi_{k}
$$

=
$$
\exp\left\{-\frac{1}{2} \sum_{t=0}^{T-1} \sum_{t'=0}^{T-1} \sum_{j=1}^{D} \sum_{j'=1}^{D} p_{t,j} G_{jk}(\boldsymbol{x}_{t+1}, t+1) G_{j'k}(\boldsymbol{x}_{t'+1}, t'+1) p_{t',j'} \Delta t \Delta t\right\}
$$
(43)

1013 for each ξ_k . Putting everything together, we find that $p(x_0|x_T)$ can be written

$$
\int e^{\sum_{t,j} - ip_{t,j}[x_{t,j} - x_{t+1,j} + f_j(\boldsymbol{x}_{t+1}, t+1)\Delta t] - \frac{1}{2}\sum_{t,t',j,j'}\sum_{k=1}^K p_{t,j}G_{jk}(\boldsymbol{x}_{t+1}, t+1)G_{j'k}(\boldsymbol{x}_{t'+1}, t'+1)p_{t',j'}\Delta t \Delta t} \frac{d\{\boldsymbol{x}_t\}d\{\boldsymbol{p}_t\}}{(2\pi)^{DT}}
$$

1016 1017 1018 where we have used the shorthand $d\{x_t\}d\{p_t\} := dp_0 dx_1 dp_1 \cdots dx_{T-1} dp_{T-1}$. This is our final answer, although it is more enlightening to write it in its schematic continuous-time form. We obtain

$$
p(\boldsymbol{x}_0|\boldsymbol{x}_T) = \int \mathcal{D}[\boldsymbol{p}_t] \mathcal{D}[\boldsymbol{x}_t] \exp \left\{ \int_0^T -i \boldsymbol{p}_t \cdot \left[-\dot{\boldsymbol{x}}_t + \boldsymbol{f}(\boldsymbol{x}_t, t) \right] dt - \frac{1}{2} \int_0^T \int_0^T \boldsymbol{p}_t^T \boldsymbol{V}(\boldsymbol{x}_t, t; \boldsymbol{x}_{t'}, t') \boldsymbol{p}_{t'} dt dt' \right\}
$$

1022 where we have defined the state- and time-dependent $D \times D$ V-kernel $V_{ij}(\mathbf{x}_t, t; \mathbf{x}_{t'}, t')$ via

$$
V_{ij}(\boldsymbol{x}_t, t; \boldsymbol{x}_{t'}, t') := \sum_{k=1}^K G_{ik}(\boldsymbol{x}_t, t) G_{jk}(\boldsymbol{x}_{t'}, t') ,
$$
\n(44)

or equivalently via $V(x_t, t; x_{t'}, t') := G(x_t, t) G^T(x_{t'}, t')$. Note that it is positive semidefinite.

1019 1020 1021

1023 1024 1025

1014 1015

978 979 980

983

1026 1027 C.3 AVERAGING LEARNED DISTRIBUTION OVER SAMPLE REALIZATIONS

1028 1029 1030 1031 What is the 'typical' distribution learned by an ensemble of diffusion models which differ only in the samples each used during training? In this subsection, we show that the net effect of averaging over sample realizations is to contribute a noise term to the PF-ODE. The path-integral representation we obtain is of the class we discussed in the previous subsection.

1032 1033 Suppose a diffusion model is associated with a parameterized score approximator $\hat{s}_{\theta}(x, t)$. The distribution learned by the diffusion model is then

$$
\frac{1034}{1035}
$$

1036 1037

$$
q(\boldsymbol{x}_0|\boldsymbol{x}_T;\boldsymbol{\theta}) = \int \mathcal{D}[\boldsymbol{p}_t] \mathcal{D}[\boldsymbol{x}_t] \, \exp\left\{\int_0^T i \boldsymbol{p}_t \cdot [\dot{\boldsymbol{x}}_t + \beta_t \boldsymbol{x}_t + \boldsymbol{D}_t \hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)] \, dt \right\} \,, \tag{45}
$$

1038 1039 1040 1041 where we have used the schematic form of the PF-ODE path-integral representation for clarity. (Moving to discrete time does not affect our arguments, but only makes notation more cumbersome.) Averaging over sample realizations is mathematically equivalent to computing the characteristic function of the score approximator. The sample-averaged q , $\mathbb{E}_{\theta}[q(x_0|\bm{x}_T;\theta)] = [q(x_0|\bm{x}_T)]$, is

$$
[q(\boldsymbol{x}_0|\boldsymbol{x}_T)] = \int \mathcal{D}[\boldsymbol{p}_t] \mathcal{D}[\boldsymbol{x}_t] \, \exp\left\{\int_0^T i \boldsymbol{p}_t \cdot [\dot{\boldsymbol{x}}_t + \beta_t \boldsymbol{x}_t] \, dt \right\} \mathbb{E}_{\boldsymbol{\theta}} \left[e^{\int_0^T i \boldsymbol{p}_t^T \boldsymbol{D}_t \hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) \, dt}\right]. \tag{46}
$$

1045 1046 Assuming the score approximator ensemble is well-behaved, its characteristic function can be written as a cumulant expansion. Here, we have

$$
\begin{array}{c}\n1047 \\
1048 \\
1049\n\end{array}
$$

1050 1051

1057 1058

1042 1043 1044

> $\log \mathbb{E}_{\boldsymbol{\theta}}\left[e^{\int_0^T i \boldsymbol{p}_t^T \boldsymbol{D}_t \hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t) \; dt}\right]$ $=$ \int_1^T $\int_0^T i \boldsymbol{p}_t \boldsymbol{D}_t [\hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t)] \; dt - \frac{1}{2}$ 2 \int_0^T 0 \int_0^T 0 $\bm{p}_t^T \bm{D}_t \text{Cov}_{\bm{\theta}}\left[\hat{\bm{s}}_{\bm{\theta}}(\bm{x}_t, t), \hat{\bm{s}}_{\bm{\theta}}(\bm{x}_{t'}, t')\right] \bm{D}_{t'} \bm{p}_{t'} + \cdots$ (47)

1052 1053 1054 where the dots indicate higher-order cumulants and $[\hat{s}_{\theta}(x_t, t)]$ indicates the ensemble-averaged score approximator. In this work, we neglect the higher-order terms. Often, they are suppressed by some factor (e.g., the number of model parameters divided by the number of samples).

1055 1056 We obtain dynamics of the class described in the previous subsection. Here, the $D \times D$ V-kernel is

$$
V_{ij}(\boldsymbol{x}_t, t; \boldsymbol{x}_{t'}, t') := \sum_{a,b} D_{t,ia} \text{Cov}_{\boldsymbol{\theta}}[\hat{s}_a(\boldsymbol{x}_t, t), \hat{s}_b(\boldsymbol{x}_{t'}, t')] D_{t',bj},
$$
\n(48)

1059 1060 or equivalently $\bm{V}(\bm{x}_t, t; \bm{x}_{t'}, t') := \bm{D}_t \text{Cov}_{\bm{\theta}} \left[\hat{s}_{\bm{\theta}}(\bm{x}_t, t), \hat{s}_{\bm{\theta}}(\bm{x}_{t'}, t')\right] \bm{D}_{t'}$.

1061

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1080 1081 D NAIVE SCORE ESTIMATORS GENERALIZE: DETAILS

1082 1083 1084 1085 In this appendix, we show that integrating the PF-ODE using naive score estimates yields a specific kind of generalization (Prop. [4.1\)](#page-4-2). Suppose that we are integrating the PF-ODE from some initial point x_T using T first-order Euler updates (or some other integration scheme; the choice does not matter in the continuous-time limit), so that

$$
x_t = x_{t+1} + (\beta_{t+1} x_{t+1} + D_{t+1} s(x_{t+1}, t+1)) \Delta t.
$$
 (49)

1089 1090 But suppose that we do not have direct access to the score function. Instead, assume that at each time step we draw R samples $x_{0,t+1}^{(r)} \sim p(x_0|x_{t+1}, t+1)$, compute the naive score estimator

1091 1092

$$
\hat{s}(\boldsymbol{x}_{t+1}, t+1) = \frac{1}{R} \sum_{r} \boldsymbol{S}_{t+1}^{-1} (\alpha_{t+1} \boldsymbol{x}_{0,t+1}^{(r)} - \boldsymbol{x}_{t+1}), \qquad (50)
$$

1093 1094 1095 and use this quantity as the score function for that time step's update. We are interested in studying the extent to which this scheme produces a distribution different from $p_{data}(\mathbf{x}_0)$.

1096 1097 1098 Using the result from Appendix [C,](#page-17-0) the typical learned distribution $[q(x_0|x_T)]$ is characterized by the average and V-kernel of \hat{s} . If R is somewhat larger than 1, by the central limit theorem \hat{s} is approximately Gaussian, so higher-order terms in the cumulant expansion (Eq. [47\)](#page-19-0) can be neglected.

1099 1100 Since \hat{s} is just an average of (independent) proxy scores, this score estimator is unbiased, i.e., $|\hat{s}|$ = s. The V-kernel is

$$
\boldsymbol{V}(\boldsymbol{x}_t, t; \boldsymbol{x}_{t'}, t') := \boldsymbol{D}_t \text{Cov}_{\boldsymbol{\theta}} [\hat{\boldsymbol{s}}(\boldsymbol{x}_t, t), \hat{\boldsymbol{s}}(\boldsymbol{x}_{t'}, t')] \boldsymbol{D}_{t'} = \boldsymbol{D}_t \text{Cov}_{\boldsymbol{\theta}} [\hat{\boldsymbol{s}}(\boldsymbol{x}_t, t), \hat{\boldsymbol{s}}(\boldsymbol{x}_t, t)] \boldsymbol{D}_t \ \delta(t - t')
$$

1103 since samples generated at different time steps are independent of one another. Moreover,

$$
Cov_{\theta}[\hat{s}(\boldsymbol{x}_t, t)] = \frac{1}{R} Cov_{\theta}[\tilde{s}(\boldsymbol{x}_t, t)]
$$
\n(51)

1107 since the estimator is a sum of independent and identically distributed proxy scores. Finally,

$$
V_{ij}(\boldsymbol{x}_t, t; \boldsymbol{x}_{t'}, t') = \frac{1}{R} \sum_{a,b} D_{t,ia} \text{Cov}_{\theta}[\tilde{s}_a(\boldsymbol{x}_t, t), \tilde{s}_b(\boldsymbol{x}_t, t)] D_{t,bj} \ \delta(t - t')
$$

$$
= \frac{1}{R} \sum_{a,b} D_{t,ia} \left[S_{t,ab}^{-1} + \partial_{ab}^2 \log p(\boldsymbol{x}_t|t) \right] D_{t,bj} \ \delta(t - t')
$$
 (52)

1108 1109

1101 1102

1104 1105 1106

1087 1088

1134 1135 E LINEAR SCORE ESTIMATOR: DETAILS

1136 1137 1138 1139 1140 In this appendix, we compute the sample-realization-averaged distribution learned by a linear score estimator (Prop. [5.1\)](#page-5-1). Whether it generalizes or not depends strongly on whether the number of features F scales with the number of samples P used during training. First, we must compute the optimum of the DSM objective for a linear model. Then we will determine the average and V-kernel of the optimal linear score estimator.

1142 E.1 DEFINITION OF LINEAR SCORE MODEL

1144 Consider a linear score estimator

$$
\hat{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x},t) = \boldsymbol{w}_0 + \boldsymbol{W}\boldsymbol{\phi}(\boldsymbol{x},t) \qquad \hat{s}_i(\boldsymbol{x},t) = w_{0i} + \sum_{j=1}^F W_{ij}\phi_j(\boldsymbol{x},t) , \qquad (53)
$$

1148 1149 1150 where the feature maps $\phi = (\phi_1, ..., \phi_F)^T$ are linearly independent, smooth functions from $\mathbb{R}^D \times$ [0, T] to R that are square-integrable with respect to the measure $\lambda_t p(x, t)$ for all t. The parameters to be estimated are $\boldsymbol{\theta} := \{w_0, \boldsymbol{W}\}\$, with $\boldsymbol{w}_0 \in \mathbb{R}^D$ and $\boldsymbol{W} \in \mathbb{R}^{D \times F}$.

1152 E.2 OPTIMUM OF DSM OBJECTIVE FOR LINEAR SCORE MODEL

1154 For this estimator, the DSM objective reads

$$
J_1(\boldsymbol{\theta}) = \int \frac{\lambda_t}{2} ||\boldsymbol{w}_0 + \boldsymbol{W}\phi(\boldsymbol{x},t) - \tilde{\boldsymbol{s}}(\boldsymbol{x},t;\boldsymbol{x}_0)||_2^2 p(\boldsymbol{x}|\boldsymbol{x}_0,t) p_{data}(\boldsymbol{x}_0) p(t) d\boldsymbol{x} d\boldsymbol{x}_0 dt.
$$
 (54)

1157 1158 Note,

1141

1143

1145 1146 1147

1151

1153

1155 1156

1159 1160

$$
\frac{\partial \hat{s}_i}{\partial w_{0a}} = \delta_{ia} \qquad \qquad \frac{\partial \hat{s}_i}{\partial W_{ab}} = \delta_{ia} \phi_b . \tag{55}
$$

1161 Using these to take the gradient of the DSM objective, we have

$$
\frac{\partial J_1}{\partial w_{0a}} = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}_0, t} \left\{ \lambda_t \left[w_{0a} + \sum_{j=1}^F W_{aj} \phi_j(\boldsymbol{x}, t) - \tilde{s}_a(\boldsymbol{x}, t; \boldsymbol{x}_0) \right] \right\}
$$
\n(56)

$$
\frac{\partial J_1}{\partial W_{ab}} = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}_0, t} \left\{ \lambda_t \left[w_{0a} + \sum_{j=1}^F W_{aj} \phi_j(\boldsymbol{x}, t) - \tilde{s}_a(\boldsymbol{x}, t; \boldsymbol{x}_0) \right] \phi_b(\boldsymbol{x}, t) \right\} .
$$

1169 Setting these equal to zero, we have

$$
\mathbb{E}_{\boldsymbol{x},\boldsymbol{x}_0,t} \left\{ \lambda_t \right\} w_{0a} + \sum_{j=1}^F W_{aj} \mathbb{E}_{\boldsymbol{x},\boldsymbol{x}_0,t} \left\{ \lambda_t \phi_j(\boldsymbol{x},t) \right\} = \mathbb{E}_{\boldsymbol{x},\boldsymbol{x}_0,t} \left\{ \lambda_t \tilde{s}_a(\boldsymbol{x},t;\boldsymbol{x}_0) \right\}
$$

$$
\begin{array}{c} 1172 \\ 1173 \end{array}
$$

1177

1179 1180 1181

1187

1170 1171

$$
\mathbb{E}_{\mathbf{x},\mathbf{x}_0,t} \left\{ \lambda_t \phi_b(\mathbf{x},t) \right\} w_{0a} + \sum_{j=1}^F W_{aj} \mathbb{E}_{\mathbf{x},\mathbf{x}_0,t} \left\{ \lambda_t \phi_j(\mathbf{x},t) \phi_b(\mathbf{x},t) \right\} = \mathbb{E}_{\mathbf{x},\mathbf{x}_0,t} \left\{ \lambda_t \tilde{s}_a(\mathbf{x},t;\mathbf{x}_0) \phi_b(\mathbf{x},t) \right\} .
$$
\n(57)

1178 The first row tells us that

$$
w_{0a} = \frac{1}{\mathbb{E}_t[\lambda_t]} \mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}_0, t} \left\{ \lambda_t \tilde{s}_a(\boldsymbol{x}, t; \boldsymbol{x}_0) \right\} - \frac{1}{\mathbb{E}_t[\lambda_t]} \sum_{j=1}^F W_{aj} \mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}_0, t} \left\{ \lambda_t \phi_j(\boldsymbol{x}, t) \right\} , \tag{58}
$$

1182 1183 1184 or equivalently that the optimal bias term satisfies $w_0^* = \langle \tilde{s} \rangle - W^* \langle \phi \rangle$, where we have used $\langle \cdots \rangle$ to denote averages with respect to $\lambda_t p(\mathbf{x}, \mathbf{x}_0, t)/\mathbb{E}[\lambda_t]$, and where we have defined the vectors

1184
\n1185
\n
$$
\langle \tilde{s} \rangle := \frac{\mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}_0, t} [\lambda_t \tilde{s}(\boldsymbol{x}, t; \boldsymbol{x}_0)]}{\mathbb{E}_t[\lambda_t]} = \frac{1}{\mathbb{E}_t[\lambda_t]} \int \lambda_t \, \tilde{s}(\boldsymbol{x}, t; \boldsymbol{x}_0) \, p(\boldsymbol{x}, \boldsymbol{x}_0, t) \, d\boldsymbol{x} d\boldsymbol{x}_0 dt \tag{59}
$$

$$
\langle \phi \rangle := \frac{\mathbb{E}_{\bm{x},t}[\lambda_t \phi(\bm{x},t)]}{\mathbb{E}_t[\lambda_t]} = \frac{1}{\mathbb{E}_t[\lambda_t]} \int \lambda_t \phi(\bm{x},t) \ p(\bm{x},t) \ dx dt \ .
$$

1188 1189 Using the first row result, the second row can be written as

$$
\begin{array}{ll}\n\text{(190)} \\
\text{(191)} \\
\text{(192)} \\
\text{(192)} \\
\text{(193)} \\
\text{(194)} \\
\text{(195)} \\
\text{(196)} \\
$$

1193 and hence the second row can be written in terms of matrices

$$
\mathbf{\Sigma}_{\boldsymbol{\phi}} := \frac{\mathbb{E}_{\boldsymbol{x},t} \left\{ \lambda_t \left[\boldsymbol{\phi}(\boldsymbol{x},t) - \langle \boldsymbol{\phi} \rangle \right] [\boldsymbol{\phi}(\boldsymbol{x},t) - \langle \boldsymbol{\phi} \rangle]^T \; \right\} }{\mathbb{E}_t[\lambda_t]}
$$

1195 1196

1194

$$
\begin{array}{c} 1197 \\ 1198 \\ 1199 \end{array}
$$

$$
= \frac{1}{\mathbb{E}_t[\lambda_t]} \int \lambda_t \left[\phi(\mathbf{x}, t) - \langle \phi \rangle \right] \left[\phi(\mathbf{x}, t) - \langle \phi \rangle \right]^T p(\mathbf{x}, t) \, d\mathbf{x} dt
$$
\n
$$
\mathbf{J} := -\frac{\mathbb{E}_{\mathbf{x}, \mathbf{x}_0, t} \left\{ \lambda_t \left[\phi(\mathbf{x}, t) - \langle \phi \rangle \right] \left[\tilde{s}(\mathbf{x}, t; \mathbf{x}_0) - \langle \tilde{s} \rangle \right]^T \right\}}{\mathbb{E}_t[\lambda_t]}
$$
\n
$$
= -\frac{1}{\sqrt{\mathbb{E}_t[\lambda_t]} \left\{ \lambda_t \left[\phi(\mathbf{x}, t) - \langle \phi \rangle \right] \left[\tilde{s}(\mathbf{x}, t; \mathbf{x}_0) - \langle \tilde{s} \rangle \right]^T p(\mathbf{x}, \mathbf{x}_0, t) \right\}} d\mathbf{x} d\mathbf{x
$$

1200 1201 1202

1203 1204 1205

1210

$$
= -\frac{1}{\mathbb{E}_t[\lambda_t]} \int \lambda_t \left[\boldsymbol{\phi}(\boldsymbol{x},t) - \langle \boldsymbol{\phi} \rangle \right] \left[\tilde{\boldsymbol{s}}(\boldsymbol{x},t;\boldsymbol{x}_0) - \langle \tilde{\boldsymbol{s}} \rangle \right]^T p(\boldsymbol{x},\boldsymbol{x}_0,t) \, d\boldsymbol{x} d\boldsymbol{x}_0 dt \,.
$$

In particular,

$$
\boldsymbol{W}^* \boldsymbol{\Sigma}_{\phi} = -\boldsymbol{J}^T \implies \boldsymbol{W}^* = -\boldsymbol{J}^T \boldsymbol{\Sigma}_{\phi}^{-1} \,, \tag{61}
$$

1206 1207 1208 where we have assumed that Σ_{ϕ} is invertible. This ought to be true, since the feature maps are independent and $p(x|t)$ is a smooth distribution supported on all of \mathbb{R}^D (especially since we are technically only considering t as small as ϵ , the nonzero lower bound, for regularization purposes).

1209 The optimal score is

$$
\hat{s}_*(\boldsymbol{x},t) = \boldsymbol{w}_0^* + \boldsymbol{W}^* \boldsymbol{\phi}(\boldsymbol{x},t) = \boldsymbol{J}^T \boldsymbol{\Sigma}_{\boldsymbol{\phi}}^{-1} \left[\langle \boldsymbol{\phi} \rangle - \boldsymbol{\phi}(\boldsymbol{x},t) \right] + \langle \tilde{s} \rangle. \tag{62}
$$

1211 1212 1213 1214 As a side comment, omitting the bias term just removes the mean corrections from the definitions of J and Σ_{ϕ} , as well as the $\langle \phi \rangle$ and $\langle \tilde{s} \rangle$ offsets. Without it, the optimal score is $\hat{s}_*(x,t)$ = $W^*\phi(x,t) = -J^T\Sigma_\phi^{-1}\phi(x,t)$, where J and Σ_ϕ are instead defined to be

$$
\Sigma_{\phi} := \frac{\mathbb{E}_{\mathbf{x},t} \left\{ \lambda_t \phi(\mathbf{x},t) \phi(\mathbf{x},t)^T \right\}}{\mathbb{E}_t[\lambda_t]} \nJ := -\frac{\mathbb{E}_{\mathbf{x},\mathbf{x}_0,t} \left\{ \lambda_t \phi(\mathbf{x},t) \tilde{s}(\mathbf{x},t;\mathbf{x}_0)^T \right\}}{\mathbb{E}_t[\lambda_t]}.
$$
\n(63)

1219 1220 $\mathbb{E}_t[\lambda_t]$ In the rest of this appendix, we will assume that the bias term is present.

1222 E.3 OPTIMUM OF DSM OBJECTIVE GIVEN A FINITE NUMBER OF SAMPLES

1224 1225 Assume we have access to $P \gg 1$ samples $x^{(n)}, x_0^{(n)}, t^{(n)} \sim p(x, x_0, t)$, and that we estimate the parameters of the linear score model using naive sample mean estimators

$$
\begin{array}{c} 1226 \\ 1227 \end{array}
$$

1221

1223

$$
\begin{aligned}\n\bar{\lambda}_t &:= \frac{1}{P} \sum_n \lambda^{(n)} \\
\hat{b} &:= \frac{1}{\bar{\lambda}_t} \frac{1}{P} \sum_n \lambda^{(n)} \tilde{s}(\mathbf{x}^{(n)}, t^{(n)}; \mathbf{x}_0^{(n)}) \\
\hat{\mu}_{\phi} &:= \frac{1}{\bar{\lambda}_t} \frac{1}{P} \sum_n \lambda^{(n)} \phi(\mathbf{x}^{(n)}, t^{(n)})\n\end{aligned}
$$

$$
f_{\rm{max}}
$$

$$
\hat{\mathbf{\Sigma}}_{\boldsymbol{\phi}} := \frac{1}{\bar{\lambda_t}} \frac{1}{P} \sum_n \lambda^{(n)} \left[\boldsymbol{\phi}(\boldsymbol{x}^{(n)}, t^{(n)}) - \hat{\boldsymbol{\mu}}_{\boldsymbol{\phi}}\right] \left[\boldsymbol{\phi}(\boldsymbol{x}^{(n)}, t^{(n)}) - \hat{\boldsymbol{\mu}}_{\boldsymbol{\phi}}\right]^T
$$

1238

$$
\hat{\bm{J}}:=-\frac{1}{\bar{\lambda}_t}\frac{1}{P}\sum_n \lambda^{(n)}\left[\bm{\phi}(\bm{x}^{(n)},t^{(n)})-\hat{\bm{\mu}}_{\bm{\phi}}\right]\,\left[\tilde{\bm{s}}(\bm{x}^{(n)},t^{(n)};\bm{x}^{(n)}_0)-\hat{\bm{b}}\right]
$$

1239 1240 1241 where we have used $\lambda^{(n)}$ as a slightly less cumbersome shorthand for $\lambda_{t^{(n)}}$. We will not worry about using Bessel's correction in the covariance estimators, and we will see below that \hat{s} is actually unbiased for finite P even if the covariance estimators are not. Our learned score estimator is then

$$
\hat{s}_{\theta}(x,t) = \hat{J}^T \hat{\Sigma}_{\phi}^{-1} [\hat{\mu}_{\phi} - \phi(x,t)] + \hat{b}.
$$
 (65)

 \boldsymbol{T}

(64)

1242 1243 E.4 LINEAR SCORE MODEL ESTIMATOR IS UNBIASED

1244 1245 1246 1247 We are primarily interested in variance due to x_0 (for reasons that will become clear), so we will consider an ensemble of systems for which the $x^{(n)}$ and $t^{(n)}$ sample draws are the same, but the $x_0^{(n)}$ draws are different. Our estimator depends linearly on \tilde{s} , the quantity through which it depends on the x_0 samples. In particular,

$$
\hat{J}^{T}\hat{\Sigma}_{\phi}^{-1}\left[\hat{\mu}_{\phi}-\phi(x,t)\right]=\frac{1}{P}\sum_{n}\frac{\lambda^{(n)}}{\bar{\lambda}_{t}}\left[\tilde{s}(x^{(n)},t^{(n)};x_{0}^{(n)})-\hat{b}\right]\left[\phi(x^{(n)},t^{(n)})-\hat{\mu}_{\phi}\right]^{T}\hat{\Sigma}_{\phi}^{-1}\left[\phi(x,t)-\hat{\mu}_{\phi}\right]
$$
\n
\n1251
\n1252
\n1252
\n1252
\n1253
\n1252
\n1253
\n1252
\n1253

1253 1254

so

1248

1251 1252

1255 1256

1259

1263

1266 1267

$$
\hat{\mathbf{s}}_{\theta}(\mathbf{x},t) = \frac{1}{P} \sum_{n} \frac{\lambda^{(n)}}{\bar{\lambda}_t} Q(\mathbf{x}^{(n)}, t^{(n)}; \mathbf{x}, t) \ \tilde{\mathbf{s}}(\mathbf{x}^{(n)}, t^{(n)}; \mathbf{x}_0^{(n)})
$$
(66)

1257 1258 where we have defined the kernel function

$$
Q(\boldsymbol{x},t;\boldsymbol{x}',t') := 1 + \left[\phi(\boldsymbol{x},t) - \hat{\boldsymbol{\mu}}\right]^T \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\phi}}^{-1} \left[\phi(\boldsymbol{x}',t') - \hat{\boldsymbol{\mu}}\right]. \tag{67}
$$

1260 1261 1262 To see that this estimator is unbiased (when the model is sufficiently expressive), suppose the true score has the form of our linear estimator, i.e.,

$$
\mathbf{s}(\mathbf{x},t) = \mathbf{w}_0^* + \mathbf{W}^* \boldsymbol{\phi}(\mathbf{x},t) = \mathbf{W}^* \left[\boldsymbol{\phi}(\mathbf{x},t) - \langle \boldsymbol{\phi} \rangle \right], \qquad (68)
$$

1264 1265 where we have used the fact that $\mathbb{E}_{x}[s] = \langle s \rangle = 0$. Next, note that

$$
\frac{1}{P}\sum_{n}\frac{\lambda^{(n)}}{\overline{\lambda}_{t}}Q(\boldsymbol{x}^{(n)},t^{(n)};\boldsymbol{x},t)=1.
$$
\n(69)

1268 1269 Averaging our estimator over x_0 sample draws yields

$$
\mathbb{E}[\hat{\mathbf{s}}_{\theta}(\boldsymbol{x},t)] = \frac{1}{P} \sum_{n} \frac{\lambda^{(n)}}{\bar{\lambda}_t} Q(\boldsymbol{x}^{(n)},t^{(n)};\boldsymbol{x},t) \ \boldsymbol{W}^*[\phi(\boldsymbol{x}^{(n)},t^{(n)}) - \hat{\boldsymbol{\mu}} + \hat{\boldsymbol{\mu}} - \langle \phi \rangle]
$$
\n
$$
^{1272}_{1273} = \frac{1}{P} \sum_{n} \frac{\lambda^{(n)}}{\bar{\lambda}_t} Q(\boldsymbol{x}^{(n)},t^{(n)};\boldsymbol{x},t) \ \boldsymbol{W}^*[\phi(\boldsymbol{x}^{(n)},t^{(n)}) - \hat{\boldsymbol{\mu}}] + \boldsymbol{W}^*(\hat{\boldsymbol{\mu}} - \langle \phi \rangle)
$$

$$
\frac{1 - 7}{1275}
$$

$$
\begin{array}{c}\n 1276 \\
 1277\n \end{array}
$$

n t $=\frac{1}{r}$ P \sum n $\lambda^{(n)}$ $\overline{\bar{\lambda}}_t$ $\bm{W}^{*}[\bm{\phi}(\bm{x}^{(n)},t^{(n)})-\hat{\bm{\mu}}]\left[\bm{\phi}(\bm{x}^{(n)},t^{(n)})-\hat{\bm{\mu}}\right]^{T}\hat{\bm{\Sigma}}^{-1}_{\bm{\phi}}\left(\bm{\phi}(\bm{x},t)-\hat{\bm{\mu}}\right)+\bm{W}^{*}(\hat{\bm{\mu}}-\langle\bm{\phi}\rangle)$ $= \boldsymbol{W}^* \left(\boldsymbol{\phi}(\boldsymbol{x},t) - \hat{\boldsymbol{\mu}} \right) + \boldsymbol{W}^* (\hat{\boldsymbol{\mu}} - \langle \boldsymbol{\phi} \rangle)$

$$
\begin{array}{c} 1278 \\ 1279 \end{array}
$$

$$
= W^+(\phi(x,t)-\mu)+W^-(\mu-\mu)=W^*(\phi(x,t)-\langle\phi\rangle)\;,
$$

1280 1281 1282 1283 1284 1285 i.e., it is unbiased. What is worth emphasizing is that this is *exactly* true, and does not require taking any kind of large P limit. In other words, as long as P is large enough that Σ_{ϕ} is invertible, one recovers the true weights w_0^* and W^* , independent of the x and t sample draws. This is why variance due to x_0 sample draws matters, and variance due to the other draws does not, at least for this linear model.

1286 1287 E.5 COMPUTING THE V-KERNEL OF THE LINEAR SCORE MODEL

1288 1289 1290 Computing the V-kernel amounts to computing the covariance of the score model with respect to x_0 sample realizations. In the previous section, we computed the mean of our estimator; the covariance calculation will be fairly similar. Note that

$$
{}^{1291}_{1293}\qquad \text{Cov}[\hat{\boldsymbol{s}}(\boldsymbol{z}),\hat{\boldsymbol{s}}(\boldsymbol{z}')] = \frac{1}{P^2}\sum_{n,m}\frac{\lambda^{(n)}}{\bar{\lambda}_t}\frac{\lambda^{(m)}}{\bar{\lambda}_t}Q(\boldsymbol{z}^{(n)};\boldsymbol{z})Q(\boldsymbol{z}^{(m)};\boldsymbol{z}')\,\text{Cov}[\tilde{\boldsymbol{s}}(\boldsymbol{z}^{(n)};\boldsymbol{x}^{(n)}_0),\tilde{\boldsymbol{s}}(\boldsymbol{z}^{(m)};\boldsymbol{x}^{(m)}_0)]
$$

$$
1294\\
$$

1295
$$
= \frac{1}{P^2} \sum_{n} \left(\frac{\lambda^{(n)}}{\bar{\lambda}_t} \right)^2 Q(\mathbf{z}^{(n)}; \mathbf{z}) Q(\mathbf{z}^{(n)}; \mathbf{z}') \operatorname{Cov}[\tilde{\mathbf{s}}(\mathbf{z}^{(n)}; \mathbf{x}_0^{(n)})],
$$

1296 1297 1298 1299 where we have used z as shorthand for $\{x, t\}$, and the fact that x_0 sample draws are independent of one another. Now we will invoke the central limit theorem. Using $C(z) := Cov[\tilde{s}(z; x_0)]$ as shorthand, when P is very large, to leading order in $1/P$ we have

$$
Cov[\hat{s}(z), \hat{s}(z')] \approx \frac{1}{P} \int \left(\frac{\lambda_t}{\overline{\lambda}_t}\right)^2 Q(z''; z) Q(z''; z') C(z'') p(z'') dz''
$$

$$
\approx \frac{1}{P} \int \left(\frac{\lambda_t}{\mathbb{E}[\lambda_t]}\right)^2 Q(z''; z) Q(z''; z') C(z'') p(z'') dz''
$$
(70)

1303 1304

> **1307 1308**

1315 1316

1319

1300 1301 1302

1305 1306 where we replace the estimates $\hat{\mu}$ and $\hat{\Sigma}_{\phi}$ that appear in the kernel function with the true quantities, i.e., we redefine Q to be

$$
Q(\mathbf{x}'',t'';\mathbf{x},t) := 1 + \left[\phi(\mathbf{x}'',t'') - \langle\phi\rangle\right]^T \Sigma_{\phi}^{-1} \left[\phi(\mathbf{x},t) - \langle\phi\rangle\right]. \tag{71}
$$

1309 1310 1311 1312 If the number of features F does *not* scale with the number of samples P, then we are done: in the $P \rightarrow \infty$ limit, the score estimator covariance, and hence the V-kernel, approach zero. Alternatively, if the number of features F *does* scale with the number of samples P, a nontrivial result is possible.

1313 1314 The second term of Q , a quadratic form involving the model's feature maps, is the only place in Eq. [70](#page-24-0) one can get nontrivial scaling with F . Hence, if we define

$$
\tilde{C}_{ij} := \int \frac{\lambda_t^2}{\mathbb{E}[\lambda_t]^2} \left[\phi(\mathbf{z}'') - \langle \phi \rangle \right] \left[\phi(\mathbf{z}'') - \langle \phi \rangle \right]^T \, C_{ij}(\mathbf{z}'') \, p(\mathbf{z}'') \, dz'' \,, \tag{72}
$$

1317 1318 and the limit

$$
\lim_{P \to \infty} \left[\phi(z) - \langle \phi \rangle \right]^T \Sigma_{\phi}^{-1} \tilde{C}_{ij} \Sigma_{\phi}^{-1} \left[\phi(z') - \langle \phi \rangle \right] \tag{73}
$$

1320 exists and is finite, then the asymptotic V-kernel is

$$
V_{ij}(z; z') = \lim_{P \to \infty} \frac{1}{P} \sum_{a,b} D_{t,ia} [\phi(z) - \langle \phi \rangle]^T \Sigma_{\phi}^{-1} \tilde{C}_{ab} \Sigma_{\phi}^{-1} [\phi(z') - \langle \phi \rangle] D_{t',bj}.
$$
 (74)

Note also that, in the large P limit, the V-kernel *also* does not depend on the x and t sample draws.

1325 1326

1327 1328 1329

1350 1351 F NEURAL NETWORK SCORE ESTIMATOR IN NTK REGIME: DETAILS

1352 1353 1354 1355 1356 In this appendix, we prove Prop. [5.2,](#page-6-0) which means computing the V-kernel of a fully-connected, infinite-width neural network in the 'lazy' learning [\(Chizat et al., 2019\)](#page-9-8) regime. Although we focus on an extremely specific type of network here, note that our argument can be straightforwardly adapted to compute the V-kernel of other architectures with NTK limits, like convolutional neural networks [\(Arora et al., 2019\)](#page-8-10).

1357

1359

1358 F.1 DEFINITION OF NEURAL NETWORK MODEL

1360 1361 1362 1363 Consider a neural network score function approximator $\hat{s}_{\theta}(x, t)$ trained on the DSM objective (Eq. [4\)](#page-2-0). As elsewhere, we may use z as shorthand for $\{x, t\}$. For concreteness, assume that the network is fully-connected, has $L \geq 1$ layers and N_* trainable parameters, and that each hidden layer has N neurons and an identical pointwise nonlinearity G:

1364

$$
a_i^{(0)}(\boldsymbol{z}) := \psi_i(\boldsymbol{z})
$$

1365 1366

1379 1380 1381

1385

1387

1395 1396

$$
a_i^{(\ell+1)}(z) := G\left(\frac{1}{\sqrt{N}}\sum_j W_{ij}^{(\ell+1)} a_j^{(\ell)}(z)\right) \ell = 0, ..., L-2
$$
\n(75)

$$
a_i^{(L)}({\bm z}) := \frac{1}{\sqrt{N}} \sum_j W^{(L)}_{ij} a_j^{(L-1)}({\bm z}) \qquad \qquad \hat{{\bm s}}_{{\bm \theta}}({\bm z}) := {\bm a}^{(L)}({\bm z}) \ .
$$

1371 1372 1373 The (non-trainable) initial feature maps $\psi := (\psi_1, ..., \psi_{N_0})^T$ account for various preconditioningrelated choices. For example, in practice, diffusion models receive time/noise as input only through some time/noise embedding [\(Ho et al., 2020;](#page-9-0) [Song et al., 2021;](#page-11-7) [Karras et al., 2022\)](#page-10-1).

1374 1375 1376 1377 1378 Although characterizing the gradient descent dynamics of \hat{s} may be difficult in general, if the initial network weights are sampled i.i.d. from a standard normal (i.e., $W_{ij}^{(\ell)} \sim \mathcal{N}(0, 1)$ for all i, j, and ℓ), as N is taken to infinity the network output becomes independent of the precise values of the initial weights. Moreover, the network's output throughout training can be written in terms of a kernel function—the so-called NTK—defined by

$$
K^{cc'}(z, z') := \sum_{i} \mathbb{E}_{\theta} \left\{ \frac{\partial \hat{s}_{c}(z)}{\partial \theta_{i}} \frac{\partial \hat{s}_{c'}(z')}{\partial \theta_{i}} \right\}
$$
(76)

1382 1383 1384 where c and c' index different network outputs. In the infinite-width $(N \to \infty)$ limit, $K^{cc'}(z, z') =$ $\delta_{cc'} K(z, z')$, i.e., the off-diagonal kernels are identically zero and all kernels along the diagonal are the same [\(Shan & Bordelon, 2022\)](#page-10-12).

1386 F.2 LEARNED SCORE AFTER FULL-BATCH GRADIENT DESCENT

1388 1389 Computing the learned score. For simplicity, we assume that our neural network model is trained via full-batch gradient descent on P samples from $p(x, x_0, t)$. Although this assumption does not reflect standard practice [\(Song et al., 2021;](#page-11-7) [Karras et al., 2022\)](#page-10-1), it makes our computation substantially easier. If we let the dimensionless parameter τ denote training time, the output evolves via

$$
\frac{d}{d\tau}\hat{\boldsymbol{s}}(\boldsymbol{x}',t') = \mathbb{E}_{\boldsymbol{x},t,\boldsymbol{x}_0} \left\{ \frac{\lambda_t}{\mathbb{E}[\lambda_t]} \frac{\partial \hat{\boldsymbol{s}}(\boldsymbol{x}',t')}{\partial \boldsymbol{\theta}} \frac{\partial \hat{\boldsymbol{s}}(\boldsymbol{x},t)^T}{\partial \boldsymbol{\theta}} \left[\tilde{\boldsymbol{s}}(\boldsymbol{x},t;\boldsymbol{x}_0) - \hat{\boldsymbol{s}}(\boldsymbol{x},t) \right] \right\} \,. \tag{77}
$$

1394 In the infinite-width limit, we can replace the outer product that appears with the NTK:

$$
\frac{d}{d\tau}\hat{\boldsymbol{s}}(\boldsymbol{x}',t') = \mathbb{E}_{\boldsymbol{x},t,\boldsymbol{x}_0} \left\{ \frac{\lambda_t}{\mathbb{E}[\lambda_t]} K(\boldsymbol{x}',t';\boldsymbol{x},t) \left[\tilde{\boldsymbol{s}}(\boldsymbol{x},t;\boldsymbol{x}_0) - \hat{\boldsymbol{s}}(\boldsymbol{x},t) \right] \right\} \ . \tag{78}
$$

1397 1398 1399 Define the Gram matrix $K \in \mathbb{R}^{P \times P}$, the time-weighting matrix $\Lambda_T \in \mathbb{R}^{P \times P}$, the target matrix $\tilde{S} \in \mathbb{R}^{P \times D}$, and the output matrix $\hat{S} \in \mathbb{R}^{P \times D}$ via

1400
\n1401
\n1402
\n1403
\n
$$
\hat{S}_{ai} := \hat{s}_i(\boldsymbol{x}^{(a)}, t^{(a)}; \boldsymbol{x}^{(b)}, t^{(b)})
$$
\n
$$
\hat{S}_{ai} := \tilde{s}_i(\boldsymbol{x}^{(a)}, t^{(a)}; \boldsymbol{x}_0^{(a)})
$$
\n
$$
\hat{S}_{ai} := \hat{s}_i(\boldsymbol{x}^{(a)}, t^{(a)}; \boldsymbol{x}_0^{(a)})
$$
\n(79)

26

1404 1405 Eq. [78](#page-25-1) implies that

1406

1409 1410

1414 1415

1418 1419

1426 1427

1438

1447 1448

1457

$$
\frac{d}{d\tau}\hat{\mathbf{S}} = \frac{1}{P}\mathbf{K}\mathbf{\Lambda}_T \left(\tilde{\mathbf{S}} - \hat{\mathbf{S}}\right) . \tag{80}
$$

1407 1408 Hence, after training, the network's output on the set of samples is given by

$$
\hat{\mathbf{S}} = e^{-\mathbf{K}\mathbf{\Lambda}_T \tau / P} \hat{\mathbf{S}}_0 + (\mathbf{I} - e^{-\mathbf{K}\mathbf{\Lambda}_T \tau / P}) \tilde{\mathbf{S}} \tag{81}
$$

1411 1412 1413 where τ is the total training 'time' and \hat{S}_0 is the $P \times D$ matrix containing the network's initial output on the samples. Let $k(x, t)$ denote the P-dimensional vector whose i-th component is $K(\boldsymbol{x}^{(i)}, t^{(i)}; \boldsymbol{x}, t)$. The network's output given other inputs evolves according to the ODE

$$
\frac{d}{d\tau}\hat{\mathbf{s}}(\boldsymbol{x},t)^{T} = \frac{1}{P}\mathbf{k}(\boldsymbol{x},t)^{T}\boldsymbol{\Lambda}_{T}\left(\tilde{\mathbf{S}}-\hat{\mathbf{S}}\right),\tag{82}
$$

1416 1417 whose solution is

$$
\hat{\mathbf{s}}(\boldsymbol{x},t)^{T} = \hat{\mathbf{s}}_{0}(\boldsymbol{x},t)^{T} + \boldsymbol{k}(\boldsymbol{x},t)^{T}\boldsymbol{K}^{-1}(\boldsymbol{I}-e^{-\boldsymbol{K}\boldsymbol{\Lambda}_{T}\tau/P})(\tilde{\boldsymbol{S}}-\hat{\boldsymbol{S}}_{0})
$$
(83)

1420 1421 1422 where $\hat{s}_0(x, t)$ is the network's initial output given a $\{x, t\}$ input. If the Gram matrix K is rankdeficient, we must use its Moore-Penrose pseudoinverse. Alternatively, one can avoid this issue by including a weight regularization term in the objective.

1423 1424 1425 Expressing the learned score in terms of eigenfunctions. We will find it useful to consider a Mercer decomposition of K with respect to the measure $\lambda_t p(x, t)/\mathbb{E}[\lambda_t]$, so that K can be written

$$
K(\boldsymbol{x},t;\boldsymbol{x}',t') = \sum_{k} \lambda_k \phi_k(\boldsymbol{x},t) \phi_k(\boldsymbol{x}',t')
$$
\n(84)

1428 1429 where the features are orthonormal and complete, i.e.,

$$
\int \frac{\lambda_t}{\mathbb{E}[\lambda_t]} \phi_k(\boldsymbol{x}, t) \phi_{k'}(\boldsymbol{x}, t) \, p(\boldsymbol{x}, t) \, d\boldsymbol{x} dt = \delta_{k, k'}
$$
\n
$$
\sum_k \frac{\lambda_t}{\mathbb{E}[\lambda_t]} p(\boldsymbol{x}, t) \, \phi_k(\boldsymbol{x}, t) \phi_k(\boldsymbol{x}', t') = \delta(\boldsymbol{x} - \boldsymbol{x}') \delta(t - t') \, . \tag{85}
$$

1435 1436 1437 If we assume K has rank F not necessarily equal to P, we can write Eq. [83](#page-26-0) in terms of the eigenfunctions associated with the Mercer decomposition by defining the $P \times F$ matrix Φ with

$$
\Phi_{ak} := \phi_k(\boldsymbol{x}^{(a)}, t^{(a)}) \tag{86}
$$

1439 1440 1441 and noting that $K = \Phi \Lambda \Phi^T$, where Λ is the $F \times F$ diagonal matrix of associated eigenvalues. It is useful to observe that

$$
\frac{1442}{1443} \qquad \delta_{kk'} = \mathbb{E}_{\bm{x},t} \left\{ \frac{\lambda_t}{\mathbb{E}[\lambda_t]} \phi_k(\bm{x},t) \phi_{k'}(\bm{x},t) \right\} = \frac{1}{P} \sum_n \frac{\lambda^{(n)}}{\mathbb{E}[\lambda_t]} \phi_k(\bm{x}^{(n)},t^{(n)}) \phi_{k'}(\bm{x}^{(n)},t^{(n)}) + \mathcal{O}(1/\sqrt{P}),
$$

1444

1445 1446 which implies $I_F = \frac{\Phi^T \Lambda_T \Phi}{P}$ to leading order. Similarly, the completeness relation becomes

$$
I_P \approx \frac{\Phi \Phi^T \Lambda_T}{P} = \frac{\Lambda_T \Phi \Phi^T}{P}
$$
(87)

1449 to leading order. Using these identities, we can rewrite Eq. [83](#page-26-0) as

$$
\hat{s}(x,t)^{T} = \hat{s}_{0}(x,t)^{T} + \left[\phi(x,t)^{T}\Lambda\Phi^{T}\right] \left[\frac{\Lambda_{T}\Phi\Lambda^{-1}\Phi^{T}\Lambda_{T}}{P^{2}}\right] \left[\frac{\Phi}{P}(I - e^{-\Lambda\tau})\Phi^{T}\Lambda_{T}\right] (\tilde{S} - \hat{S}_{0})
$$

$$
= \hat{s}_{0}(x,t)^{T} + \frac{1}{P}\phi(x,t)^{T}(I - e^{-\Lambda\tau})\Phi^{T}\Lambda_{T}(\tilde{S} - \hat{S}_{0}).
$$
\n(88)

1456 Equivalently,

$$
\hat{\mathbf{s}}(\mathbf{x},t) = \hat{\mathbf{s}}_0(\mathbf{x},t) + \frac{1}{P} (\tilde{\mathbf{S}} - \hat{\mathbf{S}}_0)^T \mathbf{\Lambda}_T \mathbf{\Phi} (\mathbf{I} - e^{-\mathbf{\Lambda}\tau}) \boldsymbol{\phi}(\mathbf{x},t) \,. \tag{89}
$$

1458 1459 1460 Let S denote the $P \times D$ matrix whose entries are the true score evaluated on the set of input samples $\{(x^{(a)}, t^{(a)})\}$. When averaged over x_0 sample realizations, our estimator is

$$
\mathbb{E}[\hat{\mathbf{s}}(\boldsymbol{x},t)] = \hat{\mathbf{s}}_0(\boldsymbol{x},t) + \frac{1}{P}(\boldsymbol{S}-\hat{\boldsymbol{S}}_0)^T \boldsymbol{\Lambda}_T \boldsymbol{\Phi} (\boldsymbol{I}-e^{-\boldsymbol{\Lambda}\tau}) \boldsymbol{\phi}(\boldsymbol{x},t)
$$
(90)

1463 which implies

1461 1462

1464 1465

1468 1469 1470

1472 1473 1474

1476

1478

1482

$$
\hat{\mathbf{s}}(\mathbf{x},t) - \mathbb{E}[\hat{\mathbf{s}}(\mathbf{x},t)] = \frac{1}{P} (\tilde{\mathbf{S}} - \mathbf{S})^T \mathbf{\Lambda}_T \mathbf{\Phi} (\mathbf{I} - e^{-\mathbf{\Lambda}\tau}) \phi(\mathbf{x},t).
$$
 (91)

1466 1467 To make things slightly easier, define the kernel

$$
Q(\boldsymbol{x},t;\boldsymbol{x}',t') := \sum_{k=1}^{F} \phi_k(\boldsymbol{x},t) (1 - e^{-\lambda_k \tau}) \phi_k(\boldsymbol{x}',t') . \qquad (92)
$$

1471 In terms of this kernel, we can write

$$
\hat{\boldsymbol{s}}(\boldsymbol{x},t)-\mathbb{E}[\hat{\boldsymbol{s}}(\boldsymbol{x},t)]=\frac{1}{P}\sum_{n}\frac{\lambda^{(n)}}{\mathbb{E}[\lambda_t]}\left[\tilde{\boldsymbol{s}}(\boldsymbol{x}^{(n)},t^{(n)};\boldsymbol{x}_0^{(n)})-\boldsymbol{s}(\boldsymbol{x}^{(n)},t^{(n)})\right]Q(\boldsymbol{x}^{(n)},t^{(n)};\boldsymbol{x},t).
$$
(93)

1475 We will use this result in the next subsection to compute the V-kernel of this model.

1477 F.3 COMPUTING THE V-KERNEL OF THE NTK MODEL

1479 The covariance of the learned score estimator with respect to x_0 sample realizations is

1480 1481 1483 1484 1485 1486 1487 Cov[sˆθ(z), sˆθ(z ′)] = ¹ P² X n,m λ (n) E[λt] λ (m) E[λt] Cov h s˜(z (n) ; x (n) 0), s˜(z (m) ; x (m) 0) i Q(z (n) ; z)Q(z (m) ; z ′) = 1 P² X n λ (n) E[λt] 2 Cov h s˜(z (n) ; x (n) 0) i Q(z (n) ; z)Q(z (n) ; z ′) = 1 P Z λ 2 t ′′ E[λt] ² C(z ′′)Q(z ′′; z)Q(z ′′; z ′) p(z ′′) dz ′′ ,

1488 1489 when P is large, where we exploited the independence of the samples in the first step, and the central limit theorem in the second. As elsewhere, we have used $C(z) := Cov[\tilde{s}(z; x_0)]$ as shorthand.

1490 1491 We can rewrite this in a form similar to our result for linear models (c.f. Prop. [5.1\)](#page-5-1). Note,

$$
Cov[\hat{s}_i(z), \hat{s}_j(z')] = \frac{1}{P} \phi(z)^T (I_F - e^{-\mathbf{\Lambda}\tau}) \tilde{C}_{ij} (I_F - e^{-\mathbf{\Lambda}\tau}) \phi(z')
$$

$$
\tilde{C}_{ij} := \int \frac{\lambda_{t''}^2}{\mathbb{E}[\lambda_t]^2} \phi(z'') \phi(z'')^T C_{ij}(z'') p(z'') dz''.
$$
 (94)

(96)

Hence, the V-kernel is

$$
V_{ij}(z; z') = \lim_{P \to \infty} \frac{1}{P} \sum_{a,b} D_{t,ia} \phi(z)^T (I_F - e^{-\mathbf{\Lambda}\tau}) \tilde{C}_{ab} (I_F - e^{-\mathbf{\Lambda}\tau}) \phi(z') D_{t',bj} . \tag{95}
$$

1500 1501 provided that the limit exists and is finite.

1502 1503 The infinite training time limit is of particular interest, since in this limit we expect the model to interpolate all of its (noisy) samples. In this limit, we have

$$
\text{Cov}[\hat{s}_i(\boldsymbol{z}), \hat{s}_j(\boldsymbol{z}')] = \frac{1}{P} \int \frac{\lambda_{t''}^2}{\mathbb{E}[\lambda_t]^2} \, \boldsymbol{\phi}(\boldsymbol{z})^T \boldsymbol{\phi}(\boldsymbol{z}'') \boldsymbol{\phi}(\boldsymbol{z}'')^T \boldsymbol{\phi}(\boldsymbol{z}') C_{ij}(\boldsymbol{z}'') \, p(\boldsymbol{z}'') \, d\boldsymbol{z}'' \, \\qquad \qquad 1 \leq \lambda_{t''} \leq \lambda_{t''} \leq \lambda_{t''} \left[\lambda_{t''} \right] \left[\lambda_{t''} \
$$

$$
\frac{1506}{1507}
$$

1504 1505

> $=\frac{1}{t}$ P $\int \lambda_{t}$ $\frac{\lambda_{t^{\prime\prime}}}{\mathbb{E}[\lambda_t]}\, \boldsymbol{\phi}(\boldsymbol{z})^T \boldsymbol{\phi}(\boldsymbol{z}^{\prime\prime}) \begin{bmatrix} \frac{\lambda_{t^{\prime\prime}}}{\mathbb{E}[\lambda_t]}\end{bmatrix}$ $\frac{\lambda_{t^{\prime\prime}}}{\mathbb{E}[\lambda_t]}\boldsymbol{\phi}(\boldsymbol{z}^{\prime\prime})^T\boldsymbol{\phi}(\boldsymbol{z}^{\prime\prime})p(\boldsymbol{z}^{\prime\prime})\bigg]\,C_{ij}(\boldsymbol{z}^{\prime\prime})\,\,\,d\boldsymbol{z}^{\prime\prime}$

1508
\n1509
\n1510
\n
$$
= \frac{1}{P} \int \frac{\lambda_{t^{\prime\prime}}}{\mathbb{E}[\lambda_t]} \phi(z)^T \phi(z^{\prime\prime}) \delta(z^{\prime\prime} - z^{\prime}) C_{ij}(z^{\prime\prime}) dz^{\prime\prime}
$$

$$
P \int \mathbb{E}[\lambda_t] \, \mathcal{L}^{(\infty)} \, \varphi(\infty) \, \mathcal{L}^{(\infty)}
$$

$$
= \frac{1}{P} \frac{\lambda_{t'}}{\mathbb{E}[\lambda_t]} \phi(z)^T \phi(z') C_{ij}(z')
$$

1512 1513 1514 where we have exploited the completeness relation. Now we encounter a subtle technical point. Since $F \neq P$, in the $F, P \rightarrow \infty$ limit the quantity

$$
d(z, z') := \frac{1}{P} \frac{\lambda_{t'}}{\mathbb{E}[\lambda_t]} \Phi(z)^T \Phi(z')
$$
 (97)

1517 1518 1519 is not quite equal to the Dirac delta function, but is instead proportional to it. We need to work out the constant of proportionality. To do this, observe that

$$
\sum_{n} d(\boldsymbol{z}^{(n)}, \boldsymbol{z}^{(n)}) = \frac{1}{P} \sum_{n} \frac{\lambda^{(n)}}{\mathbb{E}[\lambda_t]} \boldsymbol{\Phi}(\boldsymbol{z}^{(n)})^T \boldsymbol{\Phi}(\boldsymbol{z}^{(n)}) \rightarrow \sum_{k=1}^{F} \int \frac{\lambda_t}{\mathbb{E}[\lambda_t]} \phi_k(\boldsymbol{z}) \phi_k(\boldsymbol{z}) p(\boldsymbol{z}) d\boldsymbol{z} = F.
$$

1523 On the other hand, for the Dirac delta function, we would have

$$
\sum_{n} \delta(0) = \frac{P}{\Delta z} \,, \tag{98}
$$

1527 where Δz is some small bin size. This implies

$$
d(z, z') = \frac{F\Delta z}{P} \delta(z - z'). \tag{99}
$$

1531 1532 If we define $\kappa := (F \Delta z)/P$, and assume κ remains constant as both parameters approach infinity, we finally obtain

$$
V_{ij}(z; z') = \kappa \sum_{a,b} D_{t,ia} C_{ab} D_{t,bj} \, \delta(z - z') \,. \tag{100}
$$

1515 1516

1520 1521 1522

1524 1525 1526

1528 1529 1530

1533 1534 1535

1541

1542 1543

1544 1545

1546 1547

1548 1549

1550 1551

1552

1553 1554

1555

1556 1557

1558

1559

1560

1561

1562

1563

1564 1565