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ABSTRACT

How diffusion models generalize beyond their training set is not known, and is
somewhat mysterious given two facts: the optimum of the denoising score match-
ing (DSM) objective usually used to train diffusion models is the score function of
the training distribution; and the networks usually used to learn the score function
are expressive enough to learn this score to high accuracy. We claim that a certain
feature of the DSM objective—the fact that its target is not the training distribu-
tion’s score, but a noisy quantity only equal to it in expectation—strongly impacts
whether and to what extent diffusion models generalize. In this paper, we develop
a mathematical theory that partly explains this ‘generalization through variance’
phenomenon. Our theoretical analysis exploits a physics-inspired path integral ap-
proach to compute the distributions typically learned by a few paradigmatic under-
and overparameterized diffusion models. We find that the distributions diffusion
models effectively learn to sample from resemble their training distributions, but
with ‘gaps’ filled in, and that this inductive bias is due to the covariance structure
of the noisy target used during training. We also characterize how this inductive
bias interacts with feature-related inductive biases.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Yang et al.,
2023) have proven effective at producing high-quality samples (e.g., images) like those from some
training distribution, but not overwhelmingly so. This ability to generalize is somewhat surprising
for two reasons. First, the optimum of the denoising score matching (DSM) objective usually used
to train them is the score function of the training distribution (Vincent, 2011; Song & Ermon, 2019),
and sampling using this score only reproduces training examples (see Appendix A). Second, the
network architectures usually used for score function approximation are highly expressive. Two
near-SOTA models developed by Karras et al. (2022) have ∼ 56 million (CIFAR-10, trained on 200
million samples) and ∼ 296 million parameters (ImageNet-64, trained on 2500 million samples),
respectively. Sufficiently expressive models can fit even random noise (Zhang et al., 2017).

A body of empirical work bears on the question of when and to what extent diffusion models gen-
eralize. Training data is more likely to be memorized when training sets are small (Somepalli et al.,
2023a; Stein et al., 2023; Dar et al., 2024; Kadkhodaie et al., 2024), contain duplicates (Somepalli
et al., 2023a; Carlini et al., 2023; Somepalli et al., 2023b), or feature low ‘complexity’ (Somepalli
et al., 2023b; Stein et al., 2023). The specific training examples more likely to be memorized are ei-
ther highly duplicated or outliers (Carlini et al., 2023). Whether generalization happens also strongly
depends on model capacity, with Yoon et al. (2023) and Zhang et al. (2024) observing a sharp tran-
sition from memorization to generalization as the number of training examples used somewhat out-
strips model capacity. However, the relationship between model performance (e.g., FID score) and
model size, given a fixed number of training examples, is not monotonic; Karras et al. (2024) observe
that their ImageNet models strictly improve (and hence generalize better) as model size increases.

At present, there is arguably no theory that describes when diffusion models generalize and charac-
terizes how the associated inductive biases depend on details like training set structure, the choice
of forward/reverse processes, and model architecture. Most existing theoretical work focuses on
orthogonal questions: given a known ground truth, can one mathematically guarantee that in some
limit (e.g., a large or infinite number of samples from the ground truth distribution) diffusion mod-
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els recover the ground truth, and bound how score approximation error impacts agreement (Bortoli,
2022; Chen et al., 2023a;c; Han et al., 2024)? The question we are interested in is qualitatively dif-
ferent: given M ≥ 1 examples from a data distribution pdata, how do samples from a model trained
on those examples differ from them? For example, does the model effectively interpolate training
data? If so, when, and what details does this depend on?

In this paper, we argue that six factors substantially impact how diffusion models generalize.

1. Noisy objective. The target of the DSM objective is not the score of the training distri-
bution, but a noisy quantity only equal to it in expectation. This quantity, which we call
the ‘proxy score’, introduces additional randomness to training, and has extremely high
variance at low noise levels (infinite variance, in fact, at zero noise). Intuitively, this makes
score function estimates, especially at low noise levels, inaccurate (this is well-known; Kar-
ras et al. (2022) remark on this when they discuss their choice of loss weighting). Moreover,
this variance is not uniform in state space, but higher in ‘boundary regions’, e.g., regions
of state space close to multiple training examples. This provides a useful inductive bias.

2. Forward process. Details of the forward process (e.g., when noise is added, asymmetry in
how noise is added along different directions of state space) affect generalization through
their influence on the covariance structure of the proxy score.

3. Nonlinear score-dependence. The learned distribution depends nonlinearly on the learned
score function through the dynamics of the reverse process. This implies that the average
learned distribution is not the training distribution, even if the score estimator is unbiased.

4. Model capacity. Models generalize better when they are somewhat underparameterized.
5. Model features. Feature-related inductive biases interact with, and can enhance, inductive

biases due to the covariance structure of the proxy score.
6. Training set structure. Nontrivial generalization (e.g., interpolation) is substantially more

likely when a large number of training examples are near each other in state space; outliers
are less likely to be meaningfully generalized.

Hence, details of training (1, 2), sampling (3), model architecture (4, 5), and the training set (6) all
interact to determine the details of generalization. Other aspects, like learning dynamics, also almost
certainly play a role, but we mostly neglect them here. The first factor is particularly important, and
without it we will see that diffusion models do not generalize well; for this reason, we refer to the
phenomenon enabled by (1) and affected by (2-6) as generalization through variance.

We support this claim using physics-inspired theory. The Martin-Siggia-Rose (MSR) path integral
description of stochastic dynamics (Martin et al., 1973), which has also been exploited to charac-
terize random neural networks (Crisanti & Sompolinsky, 2018) and learning dynamics (Mignacco
et al., 2020; Bordelon & Pehlevan, 2022; 2023), plays a pivotal role in our analysis. First, we use
the MSR path integral to derive the generic form of ‘generalization through variance’, and then we
discuss in specific, analytically tractable cases of interest (e.g., linear models, lazy infinite-width
neural networks) how the details change and the role of each of the aforementioned factors. To keep
our theoretical analysis tractable, we focus on unconditional, non-latent models.

2 PRELIMINARIES

Data distribution. Let pdata(x0) denote a data distribution on RD. We are especially interested
in the case that pdata consists of a discrete set of 1 ≤ M < ∞ examples (e.g., images), so that
pdata(x0) =

∑M
m=1 δ(x0 − µm)/M , where δ is the Dirac delta function. However, we do not

restrict ourselves to this case.

Forward/reverse diffusion. Training a diffusion model involves learning to convert samples from
some other distribution pnoise(xT ) (e.g., a normal distribution) to samples from pdata(x0) via

ẋt = −βtxt +Gtηt t = 0 → t = T forward process, pdata to pnoise (1)
ẋt = −βtxt −Dts(xt, t) t = T → t = ϵ reverse process, pnoise to pdata (2)

where ηt ∈ RK is Gaussian white noise, Gt ∈ RD×K is a nonnegative matrix that controls the
noise amplitude,Dt := GtG

T
t /2 is the corresponding diffusion tensor, βt ≥ 0 controls decay to the
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Table 1: Popular forward processes in our parameterization. For these,Gt := gtID andSt = σ2
t ID.

βt gt αt σt end time

VP-SDE βmin + βdt
√
2βt e−

∫ t
0
βt′ dt′

√
1− e−2

∫ t
0
βt′ dt′ 1

EDM 0
√
2t 1 t T

origin, ϵ > 0 is a parameter that helps ensure numerical stability, and s(x, t) := ∇x log p(x|t) is the
score function. We allow Gt to be a matrix so we can study how asymmetries affect generalization
later. The forward process’ marginals are p(x|t) :=

∫
p(x|x0, t)pdata(x0) dx0. The transition

probabilities are p(x|x0, t) = N (x;αtx0,St), where αt := e−
∫ t
0
βt′ dt′ and St :=

∫ t

0
2Dt′α

2
t′ dt

′.

The forward process assumed here is fairly general, and includes popular choices like the VP-SDE
(Song et al., 2021) and EDM formulation (Karras et al., 2022) (Table 1). This choice of reverse
process is called the probability flow ODE (PF-ODE), and has been shown to have both practical
(Song et al., 2021) and theoretical (Chen et al., 2023b) advantages. Since s(x, t) is required to run
the reverse process but is a priori unknown, “training” a model means approximating s(x, t).

Denoising score matching. One could in principle use a naive mean-squared-error objective

J0(θ) := Et,x

{
λt
2
∥ŝθ(x, t)− s(x, t)∥22

}
=

∫
λt
2
∥ŝθ(x, t)− s(x, t)∥22 p(x|t)p(t) dxdt (3)

to learn a parameterized score estimator ŝθ(x, t). Here, λt > 0 is a positive weighting function and
p(t) is a time-sampling distribution. The DSM objective (Vincent, 2011; Song & Ermon, 2019)

J1(θ) := Et,x0,x

{
λt
2
∥ŝθ(x, t)− s̃(x, t;x0)∥22

}
=

∫
λt
2

∥ŝθ − s̃∥22 p(x,x0, t) dxdx0dt (4)

where p(x,x0, t) := p(x|x0, t)pdata(x0)p(t), is usually used instead. While the folklore justifying
this choice is that the score function is not known, this is not true; both J0 and J1 are optimized
when ŝθ equals the score of the training distribution (see Appendix A), which is known.

We will argue that the real difference between J0 and J1 is that J1 generalizes better, and that this is
in part because the proxy score s̃(x, t;x0) := ∇x log p(x|x0, t) = S−1

t (αtx0 − x) is used as the
target instead of the true score. It is a ‘noisy’ version of the true score (see Appendix B), since

Ex0|x,t[s̃(x, t;x0)] = s(x, t) Covx0|x,t[s̃i, s̃j ] = S−1
t,ij + ∂2ij log p(x|t) . (5)

Although the proxy score is equal to the score of the training distribution in expectation, neural
networks trained on J1 empirically learn a different distribution and generalize better. We claim that
this fact is closely related to the covariance structure of the proxy score. Two relevant observations
about its form are as follows. First, it is large at small times, since St → 0 as t → 0. Second,
it is large where the log-likelihood log p(x|t) has substantial curvature. In the typical case, where
pdata consists of a discrete set of M examples, regions of high curvature precisely correspond to the
location of training examples and the boundaries between them (Fig. 1).

In what follows, we assume training involves P ≫ 1 independent samples from p(x,x0, t) (note
that P is different than M , the number of points in discrete pdata).

Generalization and inductive biases. In a typical supervised learning setting, one trains a model
on one set of data and tests it on another, and defines ‘generalization error’ as performance on
the held-out data. Here, we are interested in a different type of problem: given a model trained
on samples from p(x,x0, t), to what extent does the learned distribution differ from pdata, and
what are the associated inductive biases? Of particular interest in whether models do three things:
(i) interpolation (filling in gaps in the training data), (ii) extrapolation (extending patterns in the
training data), and (iii) feature blending (generating samples which include both feature X and
feature Y even when training examples only involve one of the two features).

In our setting, a subtle but important point is that there is generally no ground truth. For example,
the smooth distribution that CIFAR-10 or MNIST images are drawn from does not exist, except
in a ‘Platonic’ sense; we are interested in the extent to which diffusion models learn a distribution
plausibly like a smoothed version of the training distribution.
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Figure 1: Visualization of proxy score variance for four example 2D data distributions. Each distri-
bution is supported on six point masses (red dots). Note that as t changes (left: small t, right: large
t), boundary regions at different scales are emphasized.

3 APPROACH: COMPUTING TYPICAL LEARNED DISTRIBUTIONS

The distribution q(x0|θ) learned by a diffusion model depends on the learned score ŝθ nonlinearly
through PF-ODE dynamics; importantly, we are less interested in how well the score is estimated,
and more interested in how estimation errors impact q. The learned score can be viewed as a random
variable, since it depends on the P samples x(i),x

(i)
0 , t(i) ∼ p(x,x0, t) used during training. In

order to theoretically understand how diffusion models generalize, we aim to obtain an analytic
expression for the ‘typical’ learned distribution by averaging q over sample realizations.

How do we do the required averaging? One of our major contributions is to introduce a theoretical
approach for averaging q(x0) over variation due to ŝ. Below, we describe our approach.

Writing PF-ODE dynamics in terms of a path integral. How does one average over the result of
an ODE given that, in the case of PF-ODE dynamics, there is generally no closed-form expression
for the result? To address this issue, we use a novel stochastic path integral representation of PF-
ODE dynamics that makes the required average easy to do. If q(x0|xT ;θ) denotes the distribution
of PF-ODE outputs given a score estimator ŝθ(x, t) and a fixed noise seed xT ,

q(x0|xT ;θ) =

∫
D[pt]D[xt] exp

{∫ T

ϵ

ipt · [ẋt + βtxt +Dtŝθ(xt, t)] dt

}
(6)

where the integral is over all possible paths from xT to x0. (To avoid technical issues, we assume
a particular time discretization in all calculations. See Appendix C.) This type of path integral is a
time-reversed version of the Martin-Siggia-Rose (MSR) path integral (Martin et al., 1973).

Averaging over possible sample realizations. Because the argument of the exponential depends
linearly on the score, the required ensemble average is now easy to do. Using [· · · ] to denote it,

[q(x0|xT )] =

∫
D[pt]D[xt] exp

{
M1 −

1

2
M2 + · · ·

}
(7)

M1 :=

∫ T

ϵ

ipt · [ẋt + βtxt +Dtsavg(xt, t)] dt M2 :=

∫ T

ϵ

∫ T

ϵ

pTt V (xt, t;xt′ , t
′)pt′ dtdt

′

where savg(xt, t) := [ŝθ(xt, t)] is the ensemble’s average score estimator, and V (xt, t;xt′ , t
′) :=

DtCovθ[ŝ(xt, t), ŝ(xt′ , t
′)]Dt′ measures ensemble variance. Assuming higher-order terms can be

neglected—and hence that the estimator distribution is approximately Gaussian—one can show (see
Appendix C) that sampling from [q(x0|xT )] is equivalent to integrating an (Ito-interpreted) SDE:
Proposition 3.1 (Effective SDE description of typical learned distribution). Sampling from
[q(x0|xT )] is equivalent to integrating the (Ito-interpreted) SDE

ẋt = −βtxt −Dtsavg(xt, t) + ξ(xt, t) t = T → t = ϵ (8)

with initial condition xT , where savg(xt, t) := [ŝθ(xt, t)] and where the noise term ξ(xt, t) has
mean zero and autocorrelation V (xt, t;xt′ , t

′) :=DtCovθ[ŝ(xt, t), ŝ(xt′ , t
′)]Dt′ .

If ŝ is unbiased and M is finite, then the noise term is solely responsible for the difference between
true PF-ODE dynamics (which reproduces training examples) and a model’s ‘typical’ sampling

4
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Figure 2: Samples from naive score model (green, EDM) compared to comparable kernel density
estimate model (blue) for the four distributions depicted in Fig. 1. The naive score model does not
add probability mass uniformly about training data (red), but adds more mass to boundary regions.

dynamics—i.e., generalization occurs if and only if V ̸= 0. This makes characterizing V , which
we call the V-kernel since it reflects ensemble variance, crucially important for understanding how
diffusion models generalize. Our remaining theoretical work is to complete two tasks: first, to
compute savg and V for a few paradigmatic and theoretically tractable architectures; and second, to
study how their precise forms affect [q(x0)].

4 DIFFUSION MODELS THAT MEMORIZE TRAINING DATA STILL GENERALIZE

It is instructive to first consider an extreme case: do diffusion models generalize in the complete
absence of any model-related inductive biases? Perhaps surprisingly, the answer is yes. In this
section, we make this point using a toy model in which training and sampling are interleaved.

Suppose that the PF-ODE is integrated backward in time from an initial point xT (e.g., using first-
order Euler updates). At each time step, suppose one samples R times from p(x0|xt, t) and con-
structs the ‘naive’ score estimator ŝ(xt, t) :=

∑R
r=1 s̃(xt, t;x

(r)
0t )/R. Then suppose this estimator

is used as the score in that step’s PF-ODE update. Assume this process continues (with R new sam-
ples drawn at each time step) until t = ϵ. Despite this approach using the proxy score directly (so
that training data is ‘memorized’), one obtains a nontrivial V-kernel, and hence generalization:
Proposition 4.1 (Naive score estimator generalizes). Consider the result of integrating the PF-ODE
(Eq. 2) from t = T to t = ϵ using R ≥ 1 independent proxy score samples at each time step, i.e.,

ẋt = −βtxt −Dt

(
R∑

r=1

s̃(xt, t;x
(r)
0t )

R

)
x
(r)
0t ∼ p(x0|xt, t) :=

p(xt|x0, t)pdata(x0)

p(xt|t)
.

Then [q(x0|xT )] is described by an effective SDE (Eq. 8) with savg = s and V-kernel

Vij(xt, t;xt′ , t
′) :=

1

R

∑
a,b

Dt,ia

[
S−1
t,ab + ∂2ab log p(xt|t)

]
Dt,bj δ(t− t′) . (9)

See Appendix D for details and Fig. 2 for illustrative examples. Notably, the effective SDE is noisier
when the covariance of the proxy score is high, e.g., in boundary regions between training examples.
We will see in the next section that this is also true for less trivial models, but that the proxy score’s
covariance interacts with feature-related biases in order to determine the SDE’s overall noise term.

5 FEATURE-RELATED INDUCTIVE BIASES ENHANCE GENERALIZATION

Model architecture is known to produce certain inductive biases, with spectral bias being a well-
known example (Rahaman et al., 2019; Bordelon et al., 2020; Canatar et al., 2021). How do model-
feature-related inductive biases affect the V-kernel? We answer this question below in two inter-
esting but tractable cases: linear models, and (lazy regime) infinite-width neural networks. To ease
notation, let z := (x, t) and Cij(z) := Covx0|x,t[s̃i(x, t;x0), s̃j(x, t;x0)].

5
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5.1 THE V-KERNEL OF EXPRESSIVE LINEAR MODELS

Consider a linear score estimator
ŝθ(x, t) = w0 +Wϕ(x, t) , (10)

where the F feature maps ϕ := (ϕ1, ..., ϕF )
T are linearly independent, smooth functions from

RD× (0, T ] to R that are square-integrable with respect to the measure λtp(x, t). The parameters to
be estimated are θ := {w0,W }, withw0 ∈ RD andW ∈ RD×F . Note that this estimator is linear
in its features, but not necessarily in x or t. The weights that optimize Eq. 4 are (see Appendix E)

W ∗ = −JTΣ−1
ϕ w∗

0 = JTΣ−1
ϕ ⟨ϕ⟩+ ⟨s̃⟩ (11)

where we define ⟨ · · · ⟩ := Ex,x0,t[λt · · · ]/Et[λt] and matrices

J := − ⟨[ϕ(x, t)− ⟨ϕ⟩] [s̃(x, t;x0)− ⟨s̃⟩]T ⟩ Σϕ := ⟨[ϕ(x, t)− ⟨ϕ⟩] [ϕ(x, t)− ⟨ϕ⟩]T ⟩ .
When averaged over x0 sample realizations, the estimator ŝ∗(x, t) = w∗

0 +W
∗ϕ(x, t) is unbiased

as long as the set of feature maps is sufficiently expressive. Interestingly, this is true regardless of the
x or t samples used, provided F ≤ P . The following result characterizes [q(x0)] for linear models:
Proposition 5.1 (Expressive linear models asymptotically generalize). Suppose the parameters of
an expressive linear score estimator (Eq. 10) with F features are perfectly optimized according to
the DSM objective (Eq. 4) using P ≥ F independent samples from p(x,x0, t), and define matrices

C̃ij :=

∫
λ2t′′

Et[λt]2
[ϕ(z′′)− ⟨ϕ⟩] [ϕ(z′′)− ⟨ϕ⟩]TCij(z

′′) p(z′′) dz′′ . (12)

Provided that the limit exists and is finite, in the P → ∞ limit (where F may scale with P ) we have

Vij(z; z
′) = lim

P→∞

1

P

∑
a,b

Dt,ia[ϕ(z)− ⟨ϕ⟩]TΣ−1
ϕ C̃abΣ

−1
ϕ [ϕ(z′)− ⟨ϕ⟩] Dt′,bj . (13)

On the other hand, if the number of features F does not scale with P , V ≡ 0. See Appendix E for
the details of our argument.

The V-kernel for linear models differs from the naive score’s V-kernel (Eq. 9) via the presence
of feature-related factors. In particular, the effective SDE is noisier where features take atypical
values. One expects that these factors can either enhance or compete with noise due to the covariance
structure (e.g., noise should be higher if features take atypical values in boundary regions).

5.2 THE V-KERNEL OF LAZY INFINITE-WIDTH NEURAL NETWORKS

Neural networks in the neural tangent kernel (NTK) regime (Jacot et al., 2018; Bietti & Mairal,
2019) provide another interesting but tractable model. Such networks exhibit ‘lazy’ learning (Chizat
et al., 2019) in the sense that weights do not move much from their initial values. Moreover, it is
known that they interpolate training data in the absence of parameter regularization or early stopping
(Bordelon et al., 2020). If they precisely interpolated their samples, we would expect to recover a
V-kernel like the one we computed in Sec. 4; more generally, we expect something similar modified
by the spectral inductive biases associated with the architecture (Canatar et al., 2021).

For simplicity, we consider fully-connected networks whose hidden layers all have width N , which
is taken to infinity together with P (see Appendix F for details). The associated NTK has a Mercer
decomposition with respect to the measure λtp(x, t)/E[λt], so K can be written in terms of F
orthonormal features {ϕi}:

K(x, t;x′, t′) =
∑
k

λkϕk(x, t)ϕk(x
′, t′)

∫
λt

E[λt]
ϕk(x, t)ϕℓ(x, t) p(x, t) dxdt = δkℓ . (14)

We assume training involves full-batch gradient descent on P samples from p(x,x0, t), so that the
learned score function after training for an amount of ‘time’ τ has the closed-form solution

ŝ(z) = ŝ0(z) + [S̃ − Ŝ0]
T (I − e−ΛTKτ/P )K−1k(z)

where ŝ0 is the network’s initial output, S̃ ∈ RD×P contains proxy score samples, Ŝ0 ∈ RD×P

contains the network’s initial outputs given the samples, K ∈ RP×P is the kernel Gram matrix,
ΛT ∈ RP×P is a diagonal matrix containing the weighting function λt/E[λt] evaluated on samples,
and k(x, t) is an input-dependent vector whose i-th component is K(x(i), t(i);x, t). We have:

6
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Proposition 5.2 (Lazy neural networks asymptotically generalize). Suppose the parameters of a
fully-connected, infinite-width neural network characterized by a rank F NTK are optimized ac-
cording to the DSM objective (Eq. 4) using P independent samples from p(x,x0, t), and define

C̃ij :=

∫
λ2t′′

E[λt]2
ϕ(z′′)ϕ(z′′)TCij(z

′′) p(z′′) dz′′ . (15)

Provided that the limit exists and is finite, in the P → ∞ limit (where F may scale with P ) we have

Vij(z; z
′) = lim

P→∞

1

P

∑
a,b

Dt,iaϕ(z)
T (IF − e−Λτ )C̃ab(IF − e−Λτ )ϕ(z′)Dt′,bj . (16)

In the infinite training time (τ → ∞) limit, we recover the Sec. 4 result with a prefactor κ ∝ F/P :

Vij(z; z
′) = κ

∑
a,b

Dt,iaCabDt,bj δ(z − z′) . (17)

See Appendix F for the full details of our argument. Interestingly, although the network is not
assumed to be in the feature-learning regime, this result interpolates between our pure memorization
(Prop. 4.1) and linear model (Prop. 5.1) results as we change the value of the training time τ .

6 DISCUSSION

We used a novel path-integral approach to quantitatively characterize the ‘typical’ distribution
learned by diffusion models, and find that generalization is influenced by a combination of factors
related to training (the DSM objective and forward process; Sec. 2 and 4), sampling (the learned
distribution depends nonlinearly on score estimates; Sec. 3), model architecture (Sec. 5), and the
data distribution. Below, we use our theory to comment on various previous observations.

DSM produces noisy estimators, but stable distributions. Various forms of score ‘mislearning’
are well-known. At small times, scores are hard to learn due to the noisiness of the proxy score target,
leading authors like Karras et al. (2022) to suggest a p(t) that emphasizes intermediate noise scales.
Chao et al. (2022) discuss how score estimation errors affect conditional scores. Xu et al. (2023)
explicitly study the variance-near-mode-boundaries issue we discussed, and propose a strategy for
mitigating it. On the other hand, it is well-known that despite noisy score estimates, diffusion models
generally produce smooth output distributions (see, e.g., Luzi et al. (2024)). Moreover, two diffusion
models trained on non-overlapping subsets of a data set are often highly similar (Kadkhodaie et al.,
2024). These facts are due to noisy score estimates contributing to sample generation through the
PF-ODE, which effectively ‘averages’ over estimator noise. Our theory is consistent with these
observations: even the interleaved training-sampling procedure discussed in Sec. 4 produces a well-
behaved, smooth distribution.

DSM produces a boundary-smearing inductive bias. This has been previously pointed out by
authors like Xu et al. (2023). Where we differ from previous authors is in considering this issue a
potential strength. Integrating the PF-ODE using the true score reproduces training examples, so
it is in some sense beneficial to ‘mislearn’ the score. This particular kind of mislearning is useful
for several ways of generalizing point clouds, including interpolation, extrapolation, and feature
blending. Moreover, producing this inductive bias is an interesting way diffusion models differ from
something like kernel density estimation: boundary regions across different noise scales are smeared
out, with different scales linked via PF-ODE dynamics, which may provide better generalization
than convolving the training distribution with any single kernel.

Architecture-related inductive biases play a role. As we showed in Sec. 5, feature/architecture-
related inductive biases interact with DSM’s boundary-smearing bias in order to determine how
diffusion models generalize. This appears to be consistent, for example, with the Kadkhodaie et al.
(2024) finding that diffusion models effectively exhibit ‘adaptive geometric harmonic priors’; their
finding is specifically in the context of score estimation using a convolutional neural network (CNN)
architecture. It is plausible that this choice encourages a harmonic inductive bias, since CNNs more
generally exhibit inductive biases related to spatial translation invariance.
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Generalization through variance harmful and helpful. It is important to note that this kind
of generalization is not always helpful. A trivial example is that unconditional models trained on
MNIST digit images tend to learn to produce non-digits as output in the absence of label information
(see, e.g., Bortoli et al. (2021)). More generally, blending modes may or may not be desirable, since
it can produce (e.g.) images very qualitatively different from those of the training distribution.

Other forms of generalization are possible. Factors we did not study, like learning dynamics,
most likely also partly determine how diffusion models generalize. For example, the use of stochas-
tic gradient descent introduces additional randomness that disfavors converging on sharp local op-
tima (Smith & Le, 2018; Smith et al., 2020). It would be interesting to utilize recent theoretical
tools (Bordelon & Pehlevan, 2023) to characterize how learning dynamics impacts generalization,
especially in the rich (Geiger et al., 2020; Woodworth et al., 2020) rather than lazy learning regime.

Comment on memorization. Determining whether diffusion models memorize data (Somepalli
et al., 2023a; Carlini et al., 2023), and if so how to address the issue (Vyas et al., 2023), has become
a significant technical and societal issue. Our theory suggests that since generalization through
variance happens primarily in boundary regions, diffusion models are unlikely to substantially gen-
eralize outliers. Since conditional models involve distributions of much higher effective dimension,
one may expect that more training examples are ‘outlier-like’, and hence memorization should hap-
pen more often; this is consistent with the observations of Somepalli et al. (2023b). Our theory
also suggests why duplications increase memorization: the existence of a strong boundary between
modes, which requires modes to have comparable probability mass, is degraded.

Limitations of theoretical approach. Our theory is simplified in at least two ways. First, only
a simple formulation of training (via DSM) and sampling (via the PF-ODE) from diffusion models
is considered. There exist alternatives to DSM, like sliced score matching (Song et al., 2020), and
alternative ways of sampling, including using auxiliary momentum-like variables (Dockhorn et al.,
2022b). Also, our theoretical analysis neglects variation due to numerical integration schemes, even
though these may matter in practice (Liu et al., 2022; Karras et al., 2022; Dockhorn et al., 2022a).

Second, we study only unconditional models for simplicity. This means that in particular do not
consider diffusion coupled to attention layers, which enables the text-conditioning behind many of
the most striking diffusion-model-related successes (Rombach et al., 2022; Blattmann et al., 2023).

Finally, we do not consider realistic architectures (like U-nets) and rich learning dynamics due to
theoretical tractability. However, these challenges are not unique to the current setting. Despite
our contribution’s simplicity, we hope that it nonetheless provides a foundation for others to more
rigorously understand the inductive biases and generalization capabilities of diffusion models.
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Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In
32nd USENIX Security Symposium (USENIX Security 23), pp. 5253–5270, Anaheim, CA, August
2023. USENIX Association. ISBN 978-1-939133-37-3. URL https://www.usenix.org/
conference/usenixsecurity23/presentation/carlini.

Chen-Hao Chao, Wei-Fang Sun, Bo-Wun Cheng, Yi-Chen Lo, Chia-Che Chang, Yu-Lun Liu, Yu-
Lin Chang, Chia-Ping Chen, and Chun-Yi Lee. Denoising likelihood score matching for con-
ditional score-based data generation. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=LcF-EEt8cCC.

9

https://proceedings.neurips.cc/paper_files/paper/2019/file/dbc4d84bfcfe2284ba11beffb853a8c4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/dbc4d84bfcfe2284ba11beffb853a8c4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c4ef9c39b300931b69a36fb3dbb8d60e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c4ef9c39b300931b69a36fb3dbb8d60e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/d027a5c93d484a4312cc486d399c62c1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/d027a5c93d484a4312cc486d399c62c1-Paper-Conference.pdf
https://dx.doi.org/10.1088/1742-5468/ad01b0
https://dx.doi.org/10.1088/1742-5468/ad01b0
https://proceedings.mlr.press/v119/bordelon20a.html
https://proceedings.mlr.press/v119/bordelon20a.html
https://openreview.net/forum?id=MhK5aXo3gB
https://openreview.net/forum?id=MhK5aXo3gB
https://openreview.net/forum?id=9BnCwiXB0ty
https://doi.org/10.1038/s41467-021-23103-1
https://www.usenix.org/conference/usenixsecurity23/presentation/carlini
https://www.usenix.org/conference/usenixsecurity23/presentation/carlini
https://openreview.net/forum?id=LcF-EEt8cCC


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation
and distribution recovery of diffusion models on low-dimensional data. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 4672–4712. PMLR, 23–29 Jul 2023a. URL
https://proceedings.mlr.press/v202/chen23o.html.

Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim.
The probability flow ode is provably fast. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Process-
ing Systems, volume 36, pp. 68552–68575. Curran Associates, Inc., 2023b. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
d84a27ff694345aacc21c72097a69ea2-Paper-Conference.pdf.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru Zhang. Sampling is as easy as
learning the score: theory for diffusion models with minimal data assumptions. In The Eleventh
International Conference on Learning Representations, 2023c. URL https://openreview.
net/forum?id=zyLVMgsZ0U_.

Lénaı̈c Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable pro-
gramming. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
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A OPTIMIZING OBJECTIVE REPRODUCES TRAINING DISTRIBUTION

In this appendix, we characterize the optima of the naive and DSM objectives introduced in Sec.
2, and in particular show that one (naively) theoretically expects diffusion models to reproduce the
training distribution in the absence of expressivity-related constraints.

A.1 DENOISING SCORE MATCHING PRESERVES OPTIMA OF NAIVE OBJECTIVE

First, we reestablish the well-known fact that the optima of the naive objective

J0(θ) :=
1

2
Et,x

{
λt∥ŝθ(x, t)− s(x, t)∥22

}
=

∫
λt
2
∥ŝθ(x, t)− s(x, t)∥22 p(x|t)p(t) dxdt

(18)
and DSM objective

J1(θ) :=
1

2
Et,x0,x

{
λt∥ŝθ(x, t)− s̃(x, t;x0)∥22

}
=

∫
λt
2

∥ŝθ(x, t)− s̃(x, t;x0)∥22 p(x|x0, t)pdata(x0)p(t) dxdx0dt
(19)

are the same (Vincent, 2011; Song & Ermon, 2019; Song et al., 2021). Assume that x,x0 ∈ RD

and that θ ∈ RF . The gradient of J0 with respect to θ is
∂J0
∂θ

=

∫
λt
∂ŝθ(x, t)

T

∂θ
[ŝθ(x, t)− s(x, t)] p(x|t)p(t) dxdt (20)

where ∂ŝθ(x, t)/∂θ is the D × F Jacobian matrix of the score estimator. The gradient of J1 is
∂J1
∂θ

=

∫
λt
∂ŝθ(x, t)

T

∂θ
[ŝθ(x, t)− s̃(x, t;x0)] p(x|x0, t)pdata(x0)p(t) dxdx0dt . (21)

At this point, we make two observations about the gradient of J1. First, the term on the left does not
depend on x0, so we can marginalize over x0. Explicitly,∫
λt
∂ŝθ(x, t)

T

∂θ
ŝθ(x, t) p(x|x0, t)pdata(x0)p(t) dxdx0dt =

∫
λt
∂ŝθ(x, t)

T

∂θ
ŝθ(x, t) p(x|t)p(t) dxdt .

Second, the term on the right only depends on x0 through the proxy score target. Moreover,∫
s̃(x, t;x0) p(x|x0, t)pdata(x0) dx0 =

∫
∇x log p(x|x0, t) p(x|x0, t)pdata(x0) dx0

=

∫
∇xp(x|x0, t)pdata(x0) dx0

= ∇x

∫
p(x|x0, t)pdata(x0) dx0

= ∇xp(x|t)
= s(x, t)p(x|t) .

(22)

Hence, the gradient of J0 is the same as the gradient of J1, so they have the same optima. If the
score approximator is arbitrarily expressive and smooth in its parameters, we in particular have that
the true score (a global minimum of J0) is an optimum of the DSM objective.

This optimum is also the global minimum of J1. Note that J1 can be written as

Et,x0,x

{
λt
2
∥ŝθ(x, t)− s(x, t) + s(x, t)− s̃(x, t;x0)∥22

}
= Et,x0,x

{
λt
2

(
∥ŝθ(x, t)− s(x, t)∥22 + 2[ŝθ(x, t)− s(x, t)] · [s(x, t)− s̃(x, t;x0)] + ∥s(x, t)− s̃(x, t;x0)∥22

)}
.

The first term is precisely equal to J0. The second term vanishes, since (as shown by Eq. 22)
Ex0|x,t[s̃(x, t;x0)] = s(x, t) . (23)

Hence, we have that

J1 = J0 +
1

2
Et,x

{
λt tr( Covx0|x,t(s̃) )

}
. (24)

In words: J1 is equal to J0 up to a θ-independent term that is a weighted combination of proxy score
variances.
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A.2 TRAINING DISTRIBUTION REPRODUCTION

In practice, the training set consists of 1 ≤M <∞ examples (e.g., images) which together define

pdata(x0) =
1

M

M∑
m=1

δ(x0 − µm) . (25)

The corresponding ‘corrupted’ distribution, given our choice of forward process (see Sec. 2), is

p(x|t) = 1

M

M∑
m=1

N (x;αtµm,St) . (26)

Usually, model updates utilize batches of samples from p(x,x0, t) (Song et al., 2021; Karras et al.,
2022). As training proceeds, the model sees an ever larger number P of samples from this distribu-
tion, making the empirical objective

J1(θ;P ) :=
1

P

P∑
n=1

λ(t(n))

2
∥ŝθ(x(n), t(n))− s̃(x(n), t(n);x

(n)
0 )∥22 , (27)

where the n superscripts index different (independent) samples from p(x,x0, t) =
p(x|x0, t)pdata(x0)p(t). For P sufficiently large, by the central limit theorem, we expect the em-
pirical objective to be extremely close to the true objective, and hence share its global minimum.
But the global minimum is the true score, i.e.,

s(x, t) =

M∑
m=1

S−1
t (αtµm − x) N (x;αtµm,St)∑

m′ N (x;αtµm′ ,St)
.

Since integrating the PF-ODE using this score produces samples from pdata(x0)—as t → 0,
St → 0D, so the asymptotic ‘force’ pushing xt towards an example becomes infinitely strong—we
expect expressive diffusion models trained on the DSM objective using a large number of samples
to reproduce training examples.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B COVARIANCE OF PROXY SCORE

In this appendix, we compute the covariance of the proxy score s̃(x, t;x0) := ∇x log p(x|x0, t)
with respect to p(x0|x, t). We also show how this covariance is connected to Fisher information,
and explicitly compute it in the case that pdata(x0) is an isotropic Gaussian mixture.

B.1 COMPUTING COVARIANCE OF PROXY SCORE

Note that

∂2

∂xi∂xj
p(x|x0, t) =

[
−S−1

t,ij + s̃is̃j
]
p(x|x0, t) . (28)

Using this fact, we can write

Covx0|x,t(s̃i, s̃j) =

∫
s̃is̃j

p(x|x0, t)pdata(x0)

p(x|t)
dx0 − sisj

=

∫
1

p(x|t)

[
S−1
t,ij +

∂2

∂xi∂xj

]
p(x|x0, t)pdata(x0) dx0 − sisj

=

∫
1

p(x|t)

[
S−1
t,ij +

∂2

∂xi∂xj

]
p(x|t) p(x|x0, t)pdata(x0)

p(x|t)
dx0 − sisj

= S−1
t,ij +

1

p(x|t)
∂2p(x|t)
∂xi∂xj

− sisj

= S−1
t,ij +

∂2

∂xi∂xj
log p(x|t) .

(29)

B.2 CONNECTION TO FISHER INFORMATION

By definition, if p(x0|x, t) is viewed as a distribution with parameter vector x, and t is viewed as a
hyperparameter, the Fisher information IF is defined as

IF (x|t) :=
∫
∂ log p(x0|x, t)

∂xi
· ∂ log p(x0|x, t)

∂xj
p(x0|x, t) dx0

=

∫ [
∂ log p(x|x0, t)

∂xi
− ∂ log p(x|t)

∂xi

] [
∂ log p(x|x0, t)

∂xj
− ∂ log p(x|t)

∂xj

]
p(x0|x, t) dx0

=

∫
[s̃i − si] [s̃j − sj ] p(x0|x, t) dx0

= Covx0|x,t (s̃i, s̃j) .
(30)

B.3 EXPLICIT COVARIANCE FOR ISOTROPIC GAUSSIAN MIXTURE TRAINING DISTRIBUTION

Suppose that p(x0) and p(x|t) are

pdata(x0) =
1

M

∑
m

N (x0;µm, σ
2
0I) p(x|t) = 1

M

∑
m

N (x;αtµm, α
2
tσ

2
0I + St) .

(31)
Note that the delta mixture case is an example (σ2

0 = 0). Define the softmax distribution

p(m|x, t) := N (x;αtµm, α
2
tσ

2
0I + St)∑

m′ N (x;αtµm′ , α2
tσ

2
0I + St)

(32)

on M = {1, ...,M}. The first and second derivatives of p(x|t) can be written in terms of expecta-
tions with respect to this distribution, since

1

p(x|t)
∂p(x|t)
∂x

=
∑
m

(α2
tσ

2
0I + St)

−1(αtµm − x)p(m|x, t) = (α2
tσ

2
0I + St)

−1(αt⟨µ⟩M − x)
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and the Hessian matrix (Hij := ∂2ijp(x|t)) is

H

p(x|t)
=
∑
m

[
−(α2

tσ
2
0I + St)

−1 + (α2
tσ

2
0I + St)

−1(αtµm − x)(αtµm − x)T (α2
tσ

2
0I + St)

−1
]
p(m|x, t)

= −(α2
tσ

2
0I + St)

−1 + (α2
tσ

2
0I + St)

−1EM
{
(αtµ− x)(αtµ− x)T

}
(α2

tσ
2
0I + St)

−1

= −(α2
tσ

2
0I + St)

−1 + (α2
tσ

2
0I + St)

−1
[
α2
t CovM(µ) + (αt⟨µ⟩M − x)(αt⟨µ⟩M − x)T

]
(α2

tσ
2
0I + St)

−1 .

Then we have

∂2 log p(x|t)
∂xi∂xj

= −(α2
tσ

2
0I + St)

−1 + α2
t (α

2
tσ

2
0I + St)

−1CovM(µ)(α2
tσ

2
0I + St)

−1 (33)

and hence that

Covx0|x,t(s̃) = S
−1
t − (α2

tσ
2
0I + St)

−1 + α2
t (α

2
tσ

2
0I + St)

−1CovM(µ)(α2
tσ

2
0I + St)

−1 .

For a delta mixture training distribution, since σ2
0 = 0, the covariance simplifies to

Covx0|x,t(s̃) = α2
tS

−1
t CovM(µ)S−1

t . (34)
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C PATH-INTEGRAL REPRESENTATION OF LEARNED DISTRIBUTION

In this appendix, we derive a path-integral description of the ‘typical’ distribution learned by diffu-
sion models. We do this in three stages. First, we derive a path-integral description of the PF-ODE.
Next, we derive a path-integral description of a more general kind of stochastic process. Finally, we
show that averaging the path-integral representation of the PF-ODE over sample realizations pro-
duces a path integral whose dynamics correspond to those of the aforementioned stochastic process.

C.1 WARM-UP: DERIVING A PATH-INTEGRAL REPRESENTATION OF THE PF-ODE

A general ODE can be written as
ẋt = f(xt, t) (35)

where xt ∈ RD and t ∈ [0, T ]. We will assume that f is smooth to avoid technical issues. If we
discretize time, and slightly abuse notation by using t and T to refer to integer-valued indices instead
of real-valued times, we can write the trajectory as {xT , xT−1, ..., x1, x0} and the corresponding
updates in the form

xt = xt+1 − f(xt+1, t+ 1)∆t . (36)
Note that our discretization corresponds to a first-order Euler update scheme. In the small ∆t limit,
this specific choice does not matter, even if it matters in practice; we use it to slightly simplify our
argument. Conditional on the initial point xT , the probability of reaching another point x0 after T
backwards-time steps is

p(x0|xT ) =

∫
δ(x0 − x1 + f(x1, 1)∆t) · · · δ(xT−1 − xT + f(xT , T )∆t) dx1 · · · dxT−1 (37)

where δ is the Dirac delta function. Here, we will employ a well-known integral representation of
the Dirac delta function:

δ(x− x′) =

∫
dp

(2π)D
exp {−ip · (x− x′)} (38)

where p is integrated over all of RD. Our expression for p(x0|xT ) becomes

p(x0|xT ) =

∫
dp0

(2π)D
dx1dp1
(2π)D

· · · dxT−1dpT−1

(2π)D
exp

{
T−1∑
t=0

−ipt · [xt − xt+1 + f(xt+1, t+ 1)∆t]

}
.

(39)
Schematically, we can write this path integral as a ‘sum over paths’

p(x0|xT ) =

∫
D[pt]D[xt] exp

{∫ T

0

−ipt · [−ẋt + f(xt, t)] dt

}
, (40)

although explicitly using this form is unnecessary for our purposes. (This is good, since remaining
in discrete time allows us to avoid various thorny mathematical issues.) For the particular choice of
f associated with the PF-ODE, we have discrete and schematic forms

p(x0|xT ) =

∫
dp0

(2π)D
dx1dp1
(2π)D

· · · dxT−1dpT−1

(2π)D
e
∑T−1

t=0 −ipt·[xt−xt+1−(βt+1xt+1+Dt+1s(xt+1,t+1))∆t]

p(x0|xT ) =

∫
D[pt]D[xt] exp

{∫ T

0

ipt · [ẋt + βtxt +Dts(xt, t)] dt

}
.
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C.2 DERIVING A PATH-INTEGRAL REPRESENTATION OF A MORE GENERAL PROCESS

Consider a more general type of backwards, discrete-time stochastic process. Once again, suppose
that a variable xt ∈ RD evolves backwards in time from an initial point xT . But this time, suppose
that the transition between xt+1 and xt depends upon some set of K independent standard normal
random variables {ξk}. In particular, suppose that discrete-time updates have the form

xtj = xt+1,j − fj(xt+1, t+ 1)∆t+

K∑
k=1

Gjk(xt+1, t+ 1) ξk ∆t , (41)

i.e., updates are the same as before except for the new noise term. In general, the noise term is quite
complicated; G is a D × K matrix which can depend explicitly on both the current state and the
current time. The process described by the above updates is generally not Markov, since noise added
at different time steps can depend on some of the same ξk variables, and hence the amount of noise
added at one time step can be correlated with the amount of noise added at some other time step.

What is the distribution of x0, the result of T steps of this process, conditional on a starting point
xT ? We know that each update depends only on the previous state and the noise variables, so

p(x0|xT ) =

∫
p(x0|x1, {ξk})p(x1|x2, {ξk}) · · · p(xT−1|xT , {ξk}) p({ξk}) dx1 · · · dxT−1d{ξk} .

In particular, conditional on the previous state and the noise variables, updates are deterministic.
This allows us to write the above transition probability as∫  D∏

j=1

T−1∏
t=0

δ

(
xt,j − xt+1,j + fj(xt+1, t+ 1)∆t+

K∑
k=1

Gjk(xt+1, t+ 1) ξk ∆t

) p({ξk}) dx1 · · · dxT−1d{ξk} .

Using the same integral representation of the Dirac delta function that we used above, this becomes∫
e
∑

t,j −ipt,j[xt,j−xt+1,j+fj(xt+1,t+1)∆t+
∑K

k=1 Gjk(xt+1,t+1) ξk ∆t] p({ξk})
dp0

(2π)D
dx1dp1
(2π)D

· · · dxT−1dpT−1

(2π)D
d{ξk} .

Although this appears to be extremely complicated, it can be considerably simplified by doing the
integral over the noise variables. Since the noise variables are all independent and standard normal,

p({ξk}) =
1

(2π)k/2
exp

{
−ξ

2
1

2
− · · · − ξ2K

2

}
. (42)

Hence, the integral over the noise variables is a typical Gaussian integral with a linear term. We
can save time by recognizing the integral as essentially computing the characteristic function of a
standard normal; more precisely, we have

Ik =

∫
exp

−iξk
T−1∑
t=0

D∑
j=1

pt,jGjk(xt+1, t+ 1)∆t

 e−ξ2k/2

√
2π

dξk

= exp

−1

2

T−1∑
t=0

T−1∑
t′=0

D∑
j=1

D∑
j′=1

pt,jGjk(xt+1, t+ 1)Gj′k(xt′+1, t
′ + 1)pt′,j′∆t∆t


(43)

for each ξk. Putting everything together, we find that p(x0|xT ) can be written∫
e
∑

t,j −ipt,j [xt,j−xt+1,j+fj(xt+1,t+1)∆t]− 1
2

∑
t,t′,j,j′

∑K
k=1 pt,jGjk(xt+1,t+1)Gj′k(xt′+1,t

′+1)pt′,j′∆t∆t d{xt}d{pt}
(2π)DT

where we have used the shorthand d{xt}d{pt} := dp0 dx1dp1 · · · dxT−1dpT−1. This is our final
answer, although it is more enlightening to write it in its schematic continuous-time form. We obtain

p(x0|xT ) =

∫
D[pt]D[xt] exp

{∫ T

0

−ipt · [−ẋt + f(xt, t)] dt − 1

2

∫ T

0

∫ T

0

pTt V (xt, t;xt′ , t
′)pt′ dtdt

′

}
where we have defined the state- and time-dependent D ×D V-kernel Vij(xt, t;xt′ , t

′) via

Vij(xt, t;xt′ , t
′) :=

K∑
k=1

Gik(xt, t)Gjk(xt′ , t
′) , (44)

or equivalently via V (xt, t;xt′ , t
′) := G(xt, t)G

T (xt′ , t
′). Note that it is positive semidefinite.
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C.3 AVERAGING LEARNED DISTRIBUTION OVER SAMPLE REALIZATIONS

What is the ‘typical’ distribution learned by an ensemble of diffusion models which differ only in the
samples each used during training? In this subsection, we show that the net effect of averaging over
sample realizations is to contribute a noise term to the PF-ODE. The path-integral representation we
obtain is of the class we discussed in the previous subsection.

Suppose a diffusion model is associated with a parameterized score approximator ŝθ(x, t). The
distribution learned by the diffusion model is then

q(x0|xT ;θ) =

∫
D[pt]D[xt] exp

{∫ T

0

ipt · [ẋt + βtxt +Dtŝθ(xt, t)] dt

}
, (45)

where we have used the schematic form of the PF-ODE path-integral representation for clarity.
(Moving to discrete time does not affect our arguments, but only makes notation more cumbersome.)
Averaging over sample realizations is mathematically equivalent to computing the characteristic
function of the score approximator. The sample-averaged q, Eθ[q(x0|xT ;θ)] = [q(x0|xT )], is

[q(x0|xT )] =

∫
D[pt]D[xt] exp

{∫ T

0

ipt · [ẋt + βtxt] dt

}
Eθ

[
e
∫ T
0

ipT
t Dtŝθ(xt,t) dt

]
. (46)

Assuming the score approximator ensemble is well-behaved, its characteristic function can be writ-
ten as a cumulant expansion. Here, we have

logEθ

[
e
∫ T
0

ipT
t Dtŝθ(xt,t) dt

]
=

∫ T

0

iptDt[ŝθ(xt, t)] dt−
1

2

∫ T

0

∫ T

0

pTt DtCovθ [ŝθ(xt, t), ŝθ(xt′ , t
′)]Dt′pt′ + · · ·

(47)

where the dots indicate higher-order cumulants and [ŝθ(xt, t)] indicates the ensemble-averaged
score approximator. In this work, we neglect the higher-order terms. Often, they are suppressed
by some factor (e.g., the number of model parameters divided by the number of samples).

We obtain dynamics of the class described in the previous subsection. Here, the D ×D V-kernel is

Vij(xt, t;xt′ , t
′) :=

∑
a,b

Dt,iaCovθ[ŝa(xt, t), ŝb(xt′ , t
′)]Dt′,bj , (48)

or equivalently V (xt, t;xt′ , t
′) :=DtCovθ [ŝθ(xt, t), ŝθ(xt′ , t

′)]Dt′ .
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D NAIVE SCORE ESTIMATORS GENERALIZE: DETAILS

In this appendix, we show that integrating the PF-ODE using naive score estimates yields a specific
kind of generalization (Prop. 4.1). Suppose that we are integrating the PF-ODE from some initial
point xT using T first-order Euler updates (or some other integration scheme; the choice does not
matter in the continuous-time limit), so that

xt = xt+1 + (βt+1xt+1 +Dt+1s(xt+1, t+ 1))∆t . (49)

But suppose that we do not have direct access to the score function. Instead, assume that at each
time step we draw R samples x(r)

0,t+1 ∼ p(x0|xt+1, t+ 1), compute the naive score estimator

ŝ(xt+1, t+ 1) =
1

R

∑
r

S−1
t+1(αt+1x

(r)
0,t+1 − xt+1) , (50)

and use this quantity as the score function for that time step’s update. We are interested in studying
the extent to which this scheme produces a distribution different from pdata(x0).

Using the result from Appendix C, the typical learned distribution [q(x0|xT )] is characterized by
the average and V-kernel of ŝ. If R is somewhat larger than 1, by the central limit theorem ŝ is
approximately Gaussian, so higher-order terms in the cumulant expansion (Eq. 47) can be neglected.

Since ŝ is just an average of (independent) proxy scores, this score estimator is unbiased, i.e., [ŝ] =
s. The V-kernel is

V (xt, t;xt′ , t
′) :=DtCovθ[ŝ(xt, t), ŝ(xt′ , t

′)]Dt′ =DtCovθ[ŝ(xt, t), ŝ(xt, t)]Dt δ(t− t′)

since samples generated at different time steps are independent of one another. Moreover,

Covθ[ŝ(xt, t)] =
1

R
Covθ[s̃(xt, t)] (51)

since the estimator is a sum of independent and identically distributed proxy scores. Finally,

Vij(xt, t;xt′ , t
′) =

1

R

∑
a,b

Dt,iaCovθ[s̃a(xt, t), s̃b(xt, t)]Dt,bj δ(t− t′)

=
1

R

∑
a,b

Dt,ia

[
S−1
t,ab + ∂2ab log p(xt|t)

]
Dt,bj δ(t− t′) .

(52)
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E LINEAR SCORE ESTIMATOR: DETAILS

In this appendix, we compute the sample-realization-averaged distribution learned by a linear score
estimator (Prop. 5.1). Whether it generalizes or not depends strongly on whether the number of
features F scales with the number of samples P used during training. First, we must compute the
optimum of the DSM objective for a linear model. Then we will determine the average and V-kernel
of the optimal linear score estimator.

E.1 DEFINITION OF LINEAR SCORE MODEL

Consider a linear score estimator

ŝθ(x, t) = w0 +Wϕ(x, t) ŝi(x, t) = w0i +

F∑
j=1

Wijϕj(x, t) , (53)

where the feature maps ϕ = (ϕ1, ..., ϕF )
T are linearly independent, smooth functions from RD ×

[0, T ] to R that are square-integrable with respect to the measure λtp(x, t) for all t. The parameters
to be estimated are θ := {w0,W }, with w0 ∈ RD andW ∈ RD×F .

E.2 OPTIMUM OF DSM OBJECTIVE FOR LINEAR SCORE MODEL

For this estimator, the DSM objective reads

J1(θ) =

∫
λt
2

∥w0 +Wϕ(x, t)− s̃(x, t;x0)∥22 p(x|x0, t)pdata(x0)p(t) dxdx0dt . (54)

Note,
∂ŝi
∂w0a

= δia
∂ŝi
∂Wab

= δiaϕb . (55)

Using these to take the gradient of the DSM objective, we have

∂J1
∂w0a

= Ex,x0,t

λt
w0a +

F∑
j=1

Wajϕj(x, t)− s̃a(x, t;x0)


∂J1
∂Wab

= Ex,x0,t

λt
w0a +

F∑
j=1

Wajϕj(x, t)− s̃a(x, t;x0)

ϕb(x, t)
 .

(56)

Setting these equal to zero, we have

Ex,x0,t {λt}w0a +

F∑
j=1

WajEx,x0,t {λtϕj(x, t)} = Ex,x0,t {λts̃a(x, t;x0)}

Ex,x0,t {λtϕb(x, t)}w0a +

F∑
j=1

WajEx,x0,t {λtϕj(x, t)ϕb(x, t)} = Ex,x0,t {λts̃a(x, t;x0)ϕb(x, t)} .

(57)

The first row tells us that

w0a =
1

Et[λt]
Ex,x0,t {λts̃a(x, t;x0)} −

1

Et[λt]

F∑
j=1

WajEx,x0,t {λtϕj(x, t)} , (58)

or equivalently that the optimal bias term satisfies w∗
0 = ⟨s̃⟩ −W ∗⟨ϕ⟩, where we have used ⟨· · · ⟩

to denote averages with respect to λtp(x,x0, t)/E[λt], and where we have defined the vectors

⟨s̃⟩ := Ex,x0,t[λts̃(x, t;x0)]

Et[λt]
=

1

Et[λt]

∫
λt s̃(x, t;x0) p(x,x0, t) dxdx0dt

⟨ϕ⟩ := Ex,t[λtϕ(x, t)]

Et[λt]
=

1

Et[λt]

∫
λt ϕ(x, t) p(x, t) dxdt .

(59)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Using the first row result, the second row can be written as

⟨ϕb⟩

⟨s̃a⟩ − F∑
j=1

Waj⟨ϕj⟩

+ F∑
j=1

Waj
Ex,x0,t {λtϕj(x, t)ϕb(x, t)}

Et[λt]
=

Ex,x0,t {λts̃a(x, t;x0)ϕb(x, t)}
Et[λt]

and hence the second row can be written in terms of matrices

Σϕ :=
Ex,t

{
λt [ϕ(x, t)− ⟨ϕ⟩] [ϕ(x, t)− ⟨ϕ⟩]T

}
Et[λt]

=
1

Et[λt]

∫
λt [ϕ(x, t)− ⟨ϕ⟩] [ϕ(x, t)− ⟨ϕ⟩]T p(x, t) dxdt

J := −
Ex,x0,t

{
λt [ϕ(x, t)− ⟨ϕ⟩] [s̃(x, t;x0)− ⟨s̃⟩]T

}
Et[λt]

= − 1

Et[λt]

∫
λt [ϕ(x, t)− ⟨ϕ⟩] [s̃(x, t;x0)− ⟨s̃⟩]T p(x,x0, t) dxdx0dt .

(60)

In particular,
W ∗Σϕ = −JT =⇒ W ∗ = −JTΣ−1

ϕ , (61)
where we have assumed that Σϕ is invertible. This ought to be true, since the feature maps are
independent and p(x|t) is a smooth distribution supported on all of RD (especially since we are
technically only considering t as small as ϵ, the nonzero lower bound, for regularization purposes).

The optimal score is

ŝ∗(x, t) = w
∗
0 +W

∗ϕ(x, t) = JTΣ−1
ϕ [ ⟨ϕ⟩ − ϕ(x, t) ] + ⟨s̃⟩ . (62)

As a side comment, omitting the bias term just removes the mean corrections from the definitions
of J and Σϕ, as well as the ⟨ϕ⟩ and ⟨s̃⟩ offsets. Without it, the optimal score is ŝ∗(x, t) =

W ∗ϕ(x, t) = −JTΣ−1
ϕ ϕ(x, t), where J and Σϕ are instead defined to be

Σϕ :=
Ex,t

{
λt ϕ(x, t)ϕ(x, t)

T
}

Et[λt]

J := −
Ex,x0,t

{
λt ϕ(x, t)s̃(x, t;x0)

T
}

Et[λt]
.

(63)

In the rest of this appendix, we will assume that the bias term is present.

E.3 OPTIMUM OF DSM OBJECTIVE GIVEN A FINITE NUMBER OF SAMPLES

Assume we have access to P ≫ 1 samples x(n),x
(n)
0 , t(n) ∼ p(x,x0, t), and that we estimate the

parameters of the linear score model using naive sample mean estimators

λ̄t :=
1

P

∑
n

λ(n)

b̂ :=
1

λ̄t

1

P

∑
n

λ(n)s̃(x(n), t(n);x
(n)
0 )

µ̂ϕ :=
1

λ̄t

1

P

∑
n

λ(n)ϕ(x(n), t(n))

Σ̂ϕ :=
1

λ̄t

1

P

∑
n

λ(n)
[
ϕ(x(n), t(n))− µ̂ϕ

] [
ϕ(x(n), t(n))− µ̂ϕ

]T
Ĵ := − 1

λ̄t

1

P

∑
n

λ(n)
[
ϕ(x(n), t(n))− µ̂ϕ

] [
s̃(x(n), t(n);x

(n)
0 )− b̂

]T

(64)

where we have used λ(n) as a slightly less cumbersome shorthand for λt(n) . We will not worry
about using Bessel’s correction in the covariance estimators, and we will see below that ŝ is actually
unbiased for finite P even if the covariance estimators are not. Our learned score estimator is then

ŝθ(x, t) = Ĵ
T Σ̂−1

ϕ [ µ̂ϕ − ϕ(x, t) ] + b̂ . (65)
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E.4 LINEAR SCORE MODEL ESTIMATOR IS UNBIASED

We are primarily interested in variance due to x0 (for reasons that will become clear), so we will
consider an ensemble of systems for which the x(n) and t(n) sample draws are the same, but the x(n)

0
draws are different. Our estimator depends linearly on s̃, the quantity through which it depends on
the x0 samples. In particular,

ĴT Σ̂−1
ϕ [µ̂ϕ − ϕ(x, t)] = 1

P

∑
n

λ(n)

λ̄t

[
s̃(x(n), t(n);x

(n)
0 )− b̂

] [
ϕ(x(n), t(n))− µ̂ϕ

]T
Σ̂−1

ϕ [ϕ(x, t)− µ̂ϕ]

=
1

P

∑
n

λ(n)

λ̄t
s̃(x(n), t(n);x

(n)
0 )

[
ϕ(x(n), t(n))− µ̂ϕ

]T
Σ̂−1

ϕ [ϕ(x, t)− µ̂ϕ] ,

so

ŝθ(x, t) =
1

P

∑
n

λ(n)

λ̄t
Q(x(n), t(n);x, t) s̃(x(n), t(n);x

(n)
0 ) (66)

where we have defined the kernel function

Q(x, t;x′, t′) := 1 + [ϕ(x, t)− µ̂]T Σ̂−1
ϕ [ ϕ(x′, t′)− µ̂ ] . (67)

To see that this estimator is unbiased (when the model is sufficiently expressive), suppose the true
score has the form of our linear estimator, i.e.,

s(x, t) = w∗
0 +W

∗ϕ(x, t) =W ∗ [ ϕ(x, t)− ⟨ϕ⟩ ] , (68)

where we have used the fact that Ex[s] = ⟨s⟩ = 0. Next, note that

1

P

∑
n

λ(n)

λ̄t
Q(x(n), t(n);x, t) = 1 . (69)

Averaging our estimator over x0 sample draws yields

E[ŝθ(x, t)] =
1

P

∑
n

λ(n)

λ̄t
Q(x(n), t(n);x, t)W ∗[ϕ(x(n), t(n))− µ̂+ µ̂− ⟨ϕ⟩]

=
1

P

∑
n

λ(n)

λ̄t
Q(x(n), t(n);x, t)W ∗[ϕ(x(n), t(n))− µ̂] +W ∗(µ̂− ⟨ϕ⟩)

=
1

P

∑
n

λ(n)

λ̄t
W ∗[ϕ(x(n), t(n))− µ̂]

[
ϕ(x(n), t(n))− µ̂

]T
Σ̂−1

ϕ (ϕ(x, t)− µ̂) +W ∗(µ̂− ⟨ϕ⟩)

=W ∗ (ϕ(x, t)− µ̂) +W ∗(µ̂− ⟨ϕ⟩)
=W ∗ (ϕ(x, t)− ⟨ϕ⟩) ,

i.e., it is unbiased. What is worth emphasizing is that this is exactly true, and does not require
taking any kind of large P limit. In other words, as long as P is large enough that Σ̂ϕ is invertible,
one recovers the true weights w∗

0 and W ∗, independent of the x and t sample draws. This is why
variance due to x0 sample draws matters, and variance due to the other draws does not, at least for
this linear model.

E.5 COMPUTING THE V-KERNEL OF THE LINEAR SCORE MODEL

Computing the V-kernel amounts to computing the covariance of the score model with respect to x0

sample realizations. In the previous section, we computed the mean of our estimator; the covariance
calculation will be fairly similar. Note that

Cov[ŝ(z), ŝ(z′)] =
1

P 2

∑
n,m

λ(n)

λ̄t

λ(m)

λ̄t
Q(z(n); z)Q(z(m); z′) Cov[s̃(z(n);x(n)

0 ), s̃(z(m);x
(m)
0 )]

=
1

P 2

∑
n

(
λ(n)

λ̄t

)2

Q(z(n); z)Q(z(n); z′) Cov[s̃(z(n);x(n)
0 )] ,
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where we have used z as shorthand for {x, t}, and the fact that x0 sample draws are independent
of one another. Now we will invoke the central limit theorem. Using C(z) := Cov[s̃(z;x0)] as
shorthand, when P is very large, to leading order in 1/P we have

Cov[ŝ(z), ŝ(z′)] ≈ 1

P

∫ (
λt
λ̄t

)2

Q(z′′; z)Q(z′′; z′) C(z′′) p(z′′) dz′′

≈ 1

P

∫ (
λt

E[λt]

)2

Q(z′′; z)Q(z′′; z′) C(z′′) p(z′′) dz′′
(70)

where we replace the estimates µ̂ and Σ̂ϕ that appear in the kernel function with the true quantities,
i.e., we redefine Q to be

Q(x′′, t′′;x, t) := 1 + [ϕ(x′′, t′′)− ⟨ϕ⟩]T Σ−1
ϕ [ϕ(x, t)− ⟨ϕ⟩] . (71)

If the number of features F does not scale with the number of samples P , then we are done: in the
P → ∞ limit, the score estimator covariance, and hence the V-kernel, approach zero. Alternatively,
if the number of features F does scale with the number of samples P , a nontrivial result is possible.

The second term of Q, a quadratic form involving the model’s feature maps, is the only place in Eq.
70 one can get nontrivial scaling with F . Hence, if we define

C̃ij :=

∫
λ2t

E[λt]2
[ϕ(z′′)− ⟨ϕ⟩] [ϕ(z′′)− ⟨ϕ⟩]T Cij(z

′′) p(z′′) dz′′ , (72)

and the limit
lim

P→∞
[ϕ(z)− ⟨ϕ⟩]T Σ−1

ϕ C̃ijΣ
−1
ϕ [ϕ(z′)− ⟨ϕ⟩] (73)

exists and is finite, then the asymptotic V-kernel is

Vij(z; z
′) = lim

P→∞

1

P

∑
a,b

Dt,ia[ϕ(z)− ⟨ϕ⟩]TΣ−1
ϕ C̃abΣ

−1
ϕ [ϕ(z′)− ⟨ϕ⟩] Dt′,bj . (74)

Note also that, in the large P limit, the V-kernel also does not depend on the x and t sample draws.
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F NEURAL NETWORK SCORE ESTIMATOR IN NTK REGIME: DETAILS

In this appendix, we prove Prop. 5.2, which means computing the V-kernel of a fully-connected,
infinite-width neural network in the ‘lazy’ learning (Chizat et al., 2019) regime. Although we focus
on an extremely specific type of network here, note that our argument can be straightforwardly
adapted to compute the V-kernel of other architectures with NTK limits, like convolutional neural
networks (Arora et al., 2019).

F.1 DEFINITION OF NEURAL NETWORK MODEL

Consider a neural network score function approximator ŝθ(x, t) trained on the DSM objective (Eq.
4). As elsewhere, we may use z as shorthand for {x, t}. For concreteness, assume that the network
is fully-connected, has L ≥ 1 layers and N∗ trainable parameters, and that each hidden layer has N
neurons and an identical pointwise nonlinearity G:

a
(0)
i (z) := ψi(z)

a
(ℓ+1)
i (z) := G

 1√
N

∑
j

W
(ℓ+1)
ij a

(ℓ)
j (z)

 ℓ = 0, ..., L− 2

a
(L)
i (z) :=

1√
N

∑
j

W
(L)
ij a

(L−1)
j (z) ŝθ(z) := a

(L)(z) .

(75)

The (non-trainable) initial feature maps ψ := (ψ1, ..., ψN0
)T account for various preconditioning-

related choices. For example, in practice, diffusion models receive time/noise as input only through
some time/noise embedding (Ho et al., 2020; Song et al., 2021; Karras et al., 2022).

Although characterizing the gradient descent dynamics of ŝ may be difficult in general, if the initial
network weights are sampled i.i.d. from a standard normal (i.e., W (ℓ)

ij ∼ N (0, 1) for all i, j, and ℓ),
as N is taken to infinity the network output becomes independent of the precise values of the initial
weights. Moreover, the network’s output throughout training can be written in terms of a kernel
function—the so-called NTK—defined by

Kcc′(z, z′) :=
∑
i

Eθ

{
∂ŝc(z)

∂θi

∂ŝc′(z
′)

∂θi

}
(76)

where c and c′ index different network outputs. In the infinite-width (N → ∞) limit, Kcc′(z, z′) =
δcc′K(z, z′), i.e., the off-diagonal kernels are identically zero and all kernels along the diagonal are
the same (Shan & Bordelon, 2022).

F.2 LEARNED SCORE AFTER FULL-BATCH GRADIENT DESCENT

Computing the learned score. For simplicity, we assume that our neural network model is trained
via full-batch gradient descent on P samples from p(x,x0, t). Although this assumption does not
reflect standard practice (Song et al., 2021; Karras et al., 2022), it makes our computation substan-
tially easier. If we let the dimensionless parameter τ denote training time, the output evolves via

d

dτ
ŝ(x′, t′) = Ex,t,x0

{
λt

E[λt]
∂ŝ(x′, t′)

∂θ

∂ŝ(x, t)T

∂θ
[s̃(x, t;x0)− ŝ(x, t)]

}
. (77)

In the infinite-width limit, we can replace the outer product that appears with the NTK:
d

dτ
ŝ(x′, t′) = Ex,t,x0

{
λt

E[λt]
K(x′, t′;x, t) [s̃(x, t;x0)− ŝ(x, t)]

}
. (78)

Define the Gram matrix K ∈ RP×P , the time-weighting matrix ΛT ∈ RP×P , the target matrix
S̃ ∈ RP×D, and the output matrix Ŝ ∈ RP×D via

Kab := K(x(a), t(a);x(b), t(b))

ΛT,ab := δabλt(a)/E[λt]

S̃ai := s̃i(x
(a), t(a);x

(a)
0 )

Ŝai := ŝi(x
(a), t(a)) .

(79)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Eq. 78 implies that
d

dτ
Ŝ =

1

P
KΛT

(
S̃ − Ŝ

)
. (80)

Hence, after training, the network’s output on the set of samples is given by

Ŝ = e−KΛT τ/P Ŝ0 + (I − e−KΛT τ/P )S̃ (81)

where τ is the total training ‘time’ and Ŝ0 is the P × D matrix containing the network’s initial
output on the samples. Let k(x, t) denote the P -dimensional vector whose i-th component is
K(x(i), t(i);x, t). The network’s output given other inputs evolves according to the ODE

d

dτ
ŝ(x, t)T =

1

P
k(x, t)TΛT

(
S̃ − Ŝ

)
, (82)

whose solution is

ŝ(x, t)T = ŝ0(x, t)
T + k(x, t)TK−1(I − e−KΛT τ/P )(S̃ − Ŝ0) (83)

where ŝ0(x, t) is the network’s initial output given a {x, t} input. If the Gram matrix K is rank-
deficient, we must use its Moore-Penrose pseudoinverse. Alternatively, one can avoid this issue by
including a weight regularization term in the objective.

Expressing the learned score in terms of eigenfunctions. We will find it useful to consider a
Mercer decomposition of K with respect to the measure λtp(x, t)/E[λt], so that K can be written

K(x, t;x′, t′) =
∑
k

λkϕk(x, t)ϕk(x
′, t′) (84)

where the features are orthonormal and complete, i.e.,∫
λt

E[λt]
ϕk(x, t)ϕk′(x, t) p(x, t) dxdt = δk,k′∑

k

λt
E[λt]

p(x, t) ϕk(x, t)ϕk(x
′, t′) = δ(x− x′)δ(t− t′) .

(85)

If we assume K has rank F not necessarily equal to P, we can write Eq. 83 in terms of the eigen-
functions associated with the Mercer decomposition by defining the P × F matrix Φ with

Φak := ϕk(x
(a), t(a)) (86)

and noting that K = ΦΛΦT , where Λ is the F × F diagonal matrix of associated eigenvalues. It
is useful to observe that

δkk′ = Ex,t

{
λt

E[λt]
ϕk(x, t)ϕk′(x, t)

}
=

1

P

∑
n

λ(n)

E[λt]
ϕk(x

(n), t(n))ϕk′(x(n), t(n)) +O(1/
√
P ) ,

which implies IF = ΦTΛTΦ
P to leading order. Similarly, the completeness relation becomes

IP ≈ ΦΦTΛT

P
=

ΛTΦΦT

P
(87)

to leading order. Using these identities, we can rewrite Eq. 83 as

ŝ(x, t)T = ŝ0(x, t)
T +

[
ϕ(x, t)TΛΦT

] [ΛTΦΛ−1ΦTΛT

P 2

] [
Φ

P
(I − e−Λτ )ΦTΛT

]
(S̃ − Ŝ0)

= ŝ0(x, t)
T +

1

P
ϕ(x, t)T (I − e−Λτ )ΦTΛT (S̃ − Ŝ0) .

(88)

Equivalently,

ŝ(x, t) = ŝ0(x, t) +
1

P
(S̃ − Ŝ0)

TΛTΦ(I − e−Λτ )ϕ(x, t) . (89)
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Let S denote the P ×D matrix whose entries are the true score evaluated on the set of input samples
{(x(a), t(a))}. When averaged over x0 sample realizations, our estimator is

E[ŝ(x, t)] = ŝ0(x, t) +
1

P
(S − Ŝ0)

TΛTΦ(I − e−Λτ )ϕ(x, t) (90)

which implies

ŝ(x, t)− E[ŝ(x, t)] =
1

P
(S̃ − S)TΛTΦ(I − e−Λτ )ϕ(x, t) . (91)

To make things slightly easier, define the kernel

Q(x, t;x′, t′) :=

F∑
k=1

ϕk(x, t)(1− e−λkτ )ϕk(x
′, t′) . (92)

In terms of this kernel, we can write

ŝ(x, t)−E[ŝ(x, t)] =
1

P

∑
n

λ(n)

E[λt]

[
s̃(x(n), t(n);x

(n)
0 )− s(x(n), t(n))

]
Q(x(n), t(n);x, t) . (93)

We will use this result in the next subsection to compute the V-kernel of this model.

F.3 COMPUTING THE V-KERNEL OF THE NTK MODEL

The covariance of the learned score estimator with respect to x0 sample realizations is

Cov[ŝθ(z), ŝθ(z′)] =
1

P 2

∑
n,m

λ(n)

E[λt]
λ(m)

E[λt]
Cov

[
s̃(z(n);x

(n)
0 ), s̃(z(m);x

(m)
0 )

]
Q(z(n); z)Q(z(m); z′)

=
1

P 2

∑
n

(
λ(n)

E[λt]

)2

Cov
[
s̃(z(n);x

(n)
0 )
]
Q(z(n); z)Q(z(n); z′)

=
1

P

∫
λ2t′′

E[λt]2
C(z′′)Q(z′′; z)Q(z′′; z′) p(z′′) dz′′ ,

when P is large, where we exploited the independence of the samples in the first step, and the central
limit theorem in the second. As elsewhere, we have used C(z) := Cov [s̃(z;x0)] as shorthand.

We can rewrite this in a form similar to our result for linear models (c.f. Prop. 5.1). Note,

Cov[ŝi(z), ŝj(z′)] =
1

P
ϕ(z)T (IF − e−Λτ )C̃ij(IF − e−Λτ )ϕ(z′)

C̃ij :=

∫
λ2t′′

E[λt]2
ϕ(z′′)ϕ(z′′)TCij(z

′′) p(z′′) dz′′ .
(94)

Hence, the V-kernel is

Vij(z; z
′) = lim

P→∞

1

P

∑
a,b

Dt,iaϕ(z)
T (IF − e−Λτ )C̃ab(IF − e−Λτ )ϕ(z′)Dt′,bj . (95)

provided that the limit exists and is finite.

The infinite training time limit is of particular interest, since in this limit we expect the model to
interpolate all of its (noisy) samples. In this limit, we have

Cov[ŝi(z), ŝj(z′)] =
1

P

∫
λ2t′′

E[λt]2
ϕ(z)Tϕ(z′′)ϕ(z′′)Tϕ(z′)Cij(z

′′) p(z′′) dz′′

=
1

P

∫
λt′′

E[λt]
ϕ(z)Tϕ(z′′)

[
λt′′

E[λt]
ϕ(z′′)Tϕ(z′)p(z′′)

]
Cij(z

′′) dz′′

=
1

P

∫
λt′′

E[λt]
ϕ(z)Tϕ(z′′)δ(z′′ − z′)Cij(z

′′) dz′′

=
1

P

λt′

E[λt]
ϕ(z)Tϕ(z′)Cij(z

′)

(96)
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where we have exploited the completeness relation. Now we encounter a subtle technical point.
Since F ̸= P , in the F, P → ∞ limit the quantity

d(z, z′) :=
1

P

λt′

E[λt]
Φ(z)TΦ(z′) (97)

is not quite equal to the Dirac delta function, but is instead proportional to it. We need to work out
the constant of proportionality. To do this, observe that

∑
n

d(z(n), z(n)) =
1

P

∑
n

λ(n)

E[λt]
Φ(z(n))TΦ(z(n)) →

F∑
k=1

∫
λt

E[λt]
ϕk(z)ϕk(z) p(z) dz = F .

On the other hand, for the Dirac delta function, we would have∑
n

δ(0) =
P

∆z
, (98)

where ∆z is some small bin size. This implies

d(z, z′) =
F∆z

P
δ(z − z′) . (99)

If we define κ := (F∆z)/P , and assume κ remains constant as both parameters approach infinity,
we finally obtain

Vij(z; z
′) = κ

∑
a,b

Dt,iaCabDt,bj δ(z − z′) . (100)
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